Log in

Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Anion-immobilized solid composite electrolytes (SCEs) are important to restrain the propagation of lithium dendrites for all solid-state lithium metal batteries (ASSLMBs). Herein, a novel SCEs based on metal-organic frameworks (MOFs, UiO-66-NH2) and superacid ZrO2 (S-ZrO2) fillers are proposed, and the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive X-ray spectroscopy (EDS), thermo-gravimetric analyzer (TGA) and some other electrochemical measurements. The -NH2 groups of UiO-66-NH2 combines with F atoms of poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) chains by hydrogen bonds, leading to a high electrochemical stability window of 5 V. Owing to the incorporation of UiO-66-NH2 and S-ZrO2 in PVDF-HFP polymer, the open metal sites of MOFs and acid surfaces of S-ZrO2 can immobilize anions by strong Lewis acid-base interaction, which enhances the effect of immobilization anions, achieving a high Li-ion transference number (t+) of 0.72, and acquiring a high ionic conductivity of 1.05×10−4 S·cm−1 at 60°C. The symmetrical Li/Li cells with the anion-immobilized SCEs may steadily operate for over 600 h at 0.05 mA·cm−2 without the short-circuit occurring. Besides, the solid composite Li/LiFePO4 (LFP) cell with the anion-immobilized SCEs shows a superior discharge specific capacity of 158 mAh·g−1 at 0.2 C. The results illustrate that the anion-immobilized SCEs are one of the most promising choices to optimize the performances of ASSLMBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z.M. Zheng, H.H. Wu, H.D. Liu, Q.B. Zhang, X. He, S.C. Yu, V. Petrova, J. Feng, R. Kostecki, P. Liu, D.L. Peng, M.L. Liu, and M.S. Wang, Achieving fast and durable lithium storage through amorphous FeP nanoparticles encapsulated in ultrathin 3D P-doped porous carbon nanosheets, ACS Nano, 14(2020), No. 8, p. 9545.

    Article  CAS  Google Scholar 

  2. J.M. Jiang, G.D. Nie, P. Nie, Z.W. Li, Z.H. Pan, Z.K. Kou, H. Dou, X.G. Zhang, and J. Wang, Nanohollow carbon for rechargeable batteries: Ongoing progresses and challenges, Nano Micro Lett., 12(2020), No. 1, p. 1.

    Article  CAS  Google Scholar 

  3. Z.M. Zheng, P. Li, J. Huang, H.D. Liu, Y. Zao, Z.L. Hu, L. Zhang, H.X. Chen, M.S. Wang, D.L. Peng, and Q.B. Zhang, High performance columnar-like Fe2O3@carbon composite anode via yolk@shell structural design, J. Energy Chem., 41(2020), p. 126.

    Article  Google Scholar 

  4. Y.Q. Su, X.Y. Zhang, L.M. Liu, Y.T. Zhao, F. Liu, and Q.S. Huang, Optimization of battery life and capacity by setting dense mesopores on the surface of nanosheets used as electrode, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 142.

    Article  CAS  Google Scholar 

  5. Q.B. Zhang, H.X. Chen, L.L. Luo, B.T. Zhao, H. Luo, X. Han, J.W. Wang, C.M. Wang, Y. Yang, T. Zhu, and M.L. Liu, Harnessing the concurrent reaction dynamics in active Si and Ge to achieve high performance lithium-ion batteries, Energy Environ. Sci., 11(2018), No. 3, p. 669.

    Article  CAS  Google Scholar 

  6. W.X. Zhao, L.X. Gao, L.C. Yue, X.Y. Wang, Q. Liu, Y.L. Luo, T.S. Li, X.F. Shi, A.M. Asiri, and X.P. Sun, Constructing a hollow microflower-like ZnS/CuS@C heterojunction as an effective ion-transport booster for an ultrastable and high-rate sodium storage anode, J. Mater. Chem. A, 9(2021), No. 10, p. 6402.

    Article  CAS  Google Scholar 

  7. Y.M. Wu, H.T. Zhao, Z.G. Wu, L.C. Yue, J. Liang, Q. Liu, Y.L. Luo, S.Y. Gao, S.Y. Lu, G. Chen, X.F. Shi, B.H. Zhong, X.D. Guo, and X.P. Sun, Rational design of carbon materials as anodes for potassium-ion batteries, Energy Storage Mater., 34(2021), p. 483.

    Article  Google Scholar 

  8. L.C. Yue, H.T. Zhao, Z.G. Wu, J. Liang, S.Y. Lu, G. Chen, S.Y. Gao, B.H. Zhong, X.D. Guo, and X.P. Sun, Recent advances in electrospun one-dimensional carbon nanofiber structures/heterostructures as anode materials for sodium ion batteries, J. Mater. Chem. A, 8(2020), No. 23, p. 11493.

    Article  CAS  Google Scholar 

  9. L. Chen, Y.T. Li, S.P. Li, L.Z. Fan, C.W. Nan, and J.B. Goodenough, PEO/garnet composite electrolytes for solid-state lithium batteries: From “ceramic-in-polymer” to “polymer-in-ceramic”, Nano Energy, 46(2018), p. 176.

    Article  CAS  Google Scholar 

  10. Q.B. Zhang, Z.L. Gong, and Y. Yang, Advance in interface and characterizations of sulfide solid electrolyte materials, Acta Phys. Sinica, 69(2020), No. 22, art. No. 228803.

  11. Z.Y. Huang, W.Y. Pang, P. Liang, Z.H. **, N. Grundish, Y.T. Li, and C.A. Wang, A dopamine modified Li6.4La3Zr1.4Ta0.6O12/PEO solid-state electrolyte: Enhanced thermal and electrochemical properties, J. Mater. Chem. A, 7(2019), No. 27, p. 16425.

    Article  CAS  Google Scholar 

  12. Z.H. Zhang, T. Wei, J.H. Lu, Q.M. **ong, Y.H. Ji, Z.Y. Zhu, and L.T. Zhang, Practical development and challenges of garnet-structured Li7La3Zr2O12 electrolytes for all solid-state lithium-ion battery-a review, Int. J. Miner. Metall. Mater., 28(2021), 10, p. 1565.

    Article  Google Scholar 

  13. K. Jeong, S. Park, and S.Y. Lee, Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries, J. Mater. Chem. A, 7(2019), No. 5, p. 1917.

    Article  CAS  Google Scholar 

  14. D.C. Lin, Y.Y. Liu, Z. Liang, H.W. Lee, J. Sun, H.T. Wang, K. Yan, J. **e, and Y. Cui, Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes, Nat. Nanotechnol., 11(2016), No. 7, p. 626.

    Article  CAS  Google Scholar 

  15. H. Zhang, C.M. Li, M. Piszcz, E. Coya, T. Rojo, L.M. Rodriguez-Martinez, M. Armand, and Z.B. Zhou, Single lithium-ion conducting solid polymer electrolytes: Advances and perspectives, Chem. Soc. Rev., 46(2017), No. 3, p. 797.

    Article  CAS  Google Scholar 

  16. C.P. Yang, L. Zhang, B.Y. Liu, S.M. Xu, T. Hamann, D. McOwen, J.Q. Dai, W. Luo, Y.H. Gong, E.D. Wachsman, and L.B. Hu, Continuous plating/strip** behavior of solid-state lithium metal anode in a 3D ion-conductive framework, Proc. Natl. Acad. Sci. U.S.A., 115(2018), No. 15, p. 3770.

    Article  CAS  Google Scholar 

  17. Q.Q. Zhang, K. Liu, F. Ding, and X.J. Liu, Recent advances in solid polymer electrolytes for lithium batteries, Nano Res., 10(2017), No. 12, p. 4139.

    Article  Google Scholar 

  18. C.W. Sun, J. Liu, Y.D. Gong, D.P. Wilkinson, and J.J. Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy, 33(2017), p. 363.

    Article  CAS  Google Scholar 

  19. M. Shoji, E.J. Cheng, T. Kimura, and K. Kanamura, Recent progress for all solid state battery using sulfide and oxide solid electrolytes, J. Phys. D: Appl. Phys., 52(2019), No. 10, art. No. 103001.

  20. F.D. Han, Y.Z. Zhu, X.F. He, Y.F. Mo, and C.S. Wang, Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12 solid electrolytes, Adv. Energy Mater., 6(2016), No. 8, art. No. 1501590.

  21. Y. Wang and W.H. Zhong, Development of electrolytes towards achieving safe and high-performance energy-storage devices: A review, ChemElectroChem, 2(2015), No. 1, p. 3.

    Article  CAS  Google Scholar 

  22. A.I. Pitillas Martinez, F. Aguesse, L. Otaegui, M. Schneider, A. Roters, A. Llordés, and L. Buannic, The cathode composition, a key player in the success of Li-metal solid-state batteries, J. Phys. Chem. C, 123(2019), No. 6, p. 3270.

    Article  CAS  Google Scholar 

  23. J. Zheng and Y.Y. Hu, New insights into the compositional dependence of Li-ion transport in polymer-ceramic composite electrolytes, ACS Appl. Mater. Interfaces, 10(2018), No. 4, p. 4113.

    Article  CAS  Google Scholar 

  24. Z.N. Wang, S. Wang, A.L. Wang, X. Liu, J. Chen, Q.H. Zeng, L. Zhang, W. Liu, and L.Y. Zhang, Covalently linked metal-organic framework (MOF)-polymer all-solid-state electrolyte membranes for room temperature high performance lithium batteries, J. Mater. Chem. A, 6(2018), No. 35, p. 17227.

    Article  CAS  Google Scholar 

  25. R. Zhao, Z.B. Liang, R.Q. Zou, and Q. Xu, Metal-organic frameworks for batteries, Joule, 2(2018), No. 11, p. 2235.

    Article  CAS  Google Scholar 

  26. F.L. Zhu, H.F. Bao, X.S. Wu, Y.L. Tao, C. Qin, Z.M. Su, and Z.H. Kang, High-performance metal-organic framework-based single ion conducting solid-state electrolytes for low-temperature lithium metal batteries, ACS Appl. Mater. Interfaces, 11(2019), No. 46, p. 43206.

    Article  CAS  Google Scholar 

  27. Y.C. Jiang, H.T. Zhao, L.C. Yue, J. Liang, T.S. Li, Q. Liu, Y.L. Luo, X.Z. Kong, S.Y. Lu, X.F. Shi, K. Zhou, and X.P. Sun, Recent advances in lithium-based batteries using metal organic frameworks as electrode materials, Electrochem. Commun., 122(2021), art. No. 106881.

  28. B.M. Wiers, M.L. Foo, N.P. Balsara, and J.R. Long, A solid lithium electrolyte via addition of lithium isopropoxide to a metal-organic framework with open metal sites, J. Am. Chem. Soc., 133(2011), No. 37, p. 14522.

    Article  CAS  Google Scholar 

  29. B. Chen, Z. Huang, X.T. Chen, Y.R. Zhao, Q. Xu, P. Long, S.J. Chen, and X.X. Xu, A new composite solid electrolyte PEO/Li10GeP2S12/SN for all-solid-state lithium battery, Electrochim. Acta, 210(2016), p. 905.

    Article  CAS  Google Scholar 

  30. A.R. Polu and H.W. Rhee, Effect of TiO2 nanoparticles on structural, thermal, mechanical and ionic conductivity studies of PEO12-LiTDI solid polymer electrolyte, J. Ind. Eng. Chem., 37(2016), p. 347.

    Article  CAS  Google Scholar 

  31. L.J. Zhu, L.P. Zhu, P.B. Zhang, B.K. Zhu, and Y.Y. Xu, Surface zwitterionicalization of poly(vinylidene fluoride) membranes from the entrapped reactive core-shell silica nanoparticles, J. Colloid Interface Sci., 468(2016), p. 110.

    Article  CAS  Google Scholar 

  32. H.M.J.C. Pitawala, M.A.K.L. Dissanayake, V.A. Seneviratne, B.E. Mellander, and I. Albinson, Effect of plasticizers (EC or PC) on the ionic conductivity and thermal properties of the (PEO)9LiTf: Al2O3 nanocomposite polymer electrolyte system, J. Solid State Electrochem., 12(2008), p. 783.

    Article  CAS  Google Scholar 

  33. Z.Y. Tu, P. Nath, Y.Y. Lu, M.D. Tikekar, and L.A. Archer, Nanostructured electrolytes for stable lithium electrodeposition in secondary batteries, Acc. Chem. Res., 48(2015), No. 11, p. 2947.

    Article  CAS  Google Scholar 

  34. F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, and M.A. Hendrickson, Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes, Electrochim. Acta, 46(2001), No. 16, p. 2457.

    Article  CAS  Google Scholar 

  35. F. Croce, L. Settimi, and B. Scrosati, Superacid ZrO2-added, composite polymer electrolytes with improved transport properties, Electrochem. Commun., 8(2006), No. 2, p. 364.

    Article  CAS  Google Scholar 

  36. T. Wei, Z.H. Zhang, Z.M. Wang, Q. Zhang, Y.S. Ye, J.H. Lu, Z.U. Rahman, and Z.W. Zhang, Ultrathin solid composite electrolyte based on Li6.4La3Zr1.4Ta0.6O12/PVDF-HFP/LiTFSI/succinonitrile for high-performance solid-state lithium metal batteries, ACS Appl. Energy Mater., 3(2020), No. 9, p. 9428.

    Article  CAS  Google Scholar 

  37. M.J. Katz, Z.J. Brown, Y.J. Colón, P.W. Siu, K.A. Scheidt, R.Q. Snurr, J.T. Hupp, and O.K. Farha, A facile synthesis of UiO-66, UiO-67 and their derivatives, Chem. Commun., 49(2013), No. 82, art. No. 9449.

  38. J.F. Wu and X. Guo, Nanostructured metal-organic framework (MOF)-derived solid electrolytes realizing fast lithium ion transportation kinetics in solid-state batteries, Small, 15(2019), No. 5, art. No. 1804413.

  39. X.Y. Xu and B. Yan, Selective detection and controlled release of Aspirin over fluorescent amino-functionalized metal-organic framework in aqueous solution, Sens. Actuators, B, 230(2016), p. 463.

    Article  CAS  Google Scholar 

  40. H.Y. Huo, B. Wu, T. Zhang, X.S. Zheng, L. Ge, T.W. Xu, X.X. Guo, and X.L. Sun, Anion-immobilized polymer electrolyte achieved by cationic metal-organic framework filler for dendrite-free solid-state batteries, Energy Storage Mater., 18(2019), p. 59.

    Article  Google Scholar 

  41. X.M. Li, J. Liu, C. Zhao, J.L. Zhou, L. Zhao, S.L. Li, and Y.Q. Lan, Strategic hierarchical improvement of superprotonic conductivity in a stable metal-organic framework system, J. Mater. Chem. A, 7(2019), No. 43, p. 25165.

    Article  CAS  Google Scholar 

  42. C.F. Yuan, J. Li, P.F. Han, Y.Q. Lai, Z.A. Zhang, and J. Liu, Enhanced electrochemical performance of poly(ethylene oxide) based composite polymer electrolyte by incorporation of nanosized metal-organic framework, J. Power Sources, 240(2013), p. 653.

    Article  CAS  Google Scholar 

  43. H.B. Wu and X.W.D. Lou, Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges, Sci. Adv., 3(2017), No. 12, art. No. eaap9252.

  44. Y. Zhang, J. **ong, C. Chen, Q.Z. Li, J.J. Liu, and Z.C. Zhang, Regulating the dissociation of LiCl and transportation of Li ions within UiO-66-NH2 framework for humidity sensing applications with superb comprehensive performances, J. Alloys Compd., 818(2020), art. No. 152854.

  45. J. Lu, Y.C. Liu, P.H. Yao, Z.Y. Ding, Q.M. Tang, J.W. Wu, Z.R. Ye, K. Huang, and X.J. Liu, Hybridizing poly(vinylidene fluoride-co-hexafluoropropylene) with Li6.5La3Zr1.5Ta0.5O12 as a lithium-ion electrolyte for solid state lithium metal batteries, Chem. Eng. J., 367(2019), p. 230.

    Article  CAS  Google Scholar 

  46. R. Qiao, H. Deng, K.W. Putz, and L.C. Brinson, Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites, J. Polym. Sci. B: Polym. Phys., 49(2011), No. 10, p. 740.

    Article  CAS  Google Scholar 

  47. Y. **a, X.L. Wang, X.H. **a, R.C. Xu, S.Z. Zhang, J.B. Wu, Y.F. Liang, C.D. Gu, and J.P. Tu, A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexa-fluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries, Chem. Eur. J., 23(2017), No. 60, p. 15203.

    Article  CAS  Google Scholar 

  48. T. Huang, M.C. Long, X.L. Wang, G. Wu, and Y.Z. Wang, One-step preparation of poly(ionic liquid)-based flexible electrolytes by in situ polymerization for dendrite-free lithium ion batteries, Chem. Eng. J., 375(2019), art. No. 122062.

  49. H. Yang, J. Bright, B.H. Chen, P. Zheng, X.F. Gao, B.T. Liu, S. Kasani, X.W. Zhang, and N.Q. Wu, Chemical interaction and enhanced interfacial ion transport in a ceramic nanofiber-polymer composite electrolyte for all-solid-state lithium metal batteries, J. Mater. Chem. A, 8(2020), No. 15, p. 7261.

    Article  CAS  Google Scholar 

  50. N. Chen, Y. **ng, L.L. Wang, F. Liu, L. Li, R.J. Chen, F. Wu, and S.J. Guo, “Tai Chi” philosophy driven rigid-flexible hybrid ionogel electrolyte for high-performance lithium battery, Nano Energy, 47(2018), p. 35.

    Article  CAS  Google Scholar 

  51. W.Q. Zhang, J.H. Nie, F. Li, Z.L. Wang, and C.W. Sun, A durable and safe solid-state lithium battery with a hybrid electrolyte membrane, Nano Energy, 45(2018), p. 413.

    Article  CAS  Google Scholar 

  52. Y. Li, W. Arnold, A. Thapa, J.B. Jasinski, G. Sumanasekera, M. Sunkara, T. Druffel, and H. Wang, Stable and flexible sulfide composite electrolyte for high-performance solid-state lithium batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 38, p. 42653.

    Article  CAS  Google Scholar 

  53. L.N. Cong, Y.N. Li, W. Lu, J. Jie, Y.L. Liu, L.Q. Sun, and H.M. **e, Unlocking the poly(vinylidene fluoride-co-hexa-fluoropropylene)/Li10GeP2S12 composite solid-state electrolytes for dendrite-free Li metal batteries assisting with perfluoropolyethers as bifunctional adjuvant, J. Power Sources, 446(2020), art. No. 227365.

  54. P. Xu, H.Y. Chen, X. Zhou, and H.F. **ang, Gel polymer electrolyte based on PVDF-HFP matrix composited with rGO-PEG-NH2 for high-performance lithium ion battery, J. Membr. Sci., 617(2021), art. No. 118660.

  55. K.X. Huang, Y.Y. Wang, H.W. Mi, D.T. Ma, B. Yong, and P.X. Zhang, [BMIM]BF4-modified PVDF-HFP composite polymer electrolyte for high-performance solid-state lithium metal battery, J. Mater. Chem. A, 8(2020), No. 39, p. 20593.

    Article  CAS  Google Scholar 

  56. J.X. Ma, C.S. Wang, and S. Wroblewski, Kinetic characteristics of mixed conductive electrodes for lithium ion batteries, J. Power Sources, 164(2007), No. 2, p. 849.

    Article  CAS  Google Scholar 

  57. L.Y. Wang, L.F. Wang, R. Wang, R. Xu, C. Zhan, W. Yang, and G.C. Liu, Solid electrolyte-electrode interface based on buffer therapy in solid-state lithium batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1584.

    Article  Google Scholar 

  58. Y.F. Liang, S.J. Deng, Y. **a, X.L. Wang, X.H. **a, J.B. Wu, C.D. Gu, and J.P. Tu, A superior composite gel polymer electrolyte of Li7La3Zr2O12-poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries, Mater. Res. Bull., 102(2018), p. 412.

    Article  CAS  Google Scholar 

  59. D.Y.W. Yu, C. Fietzek, W. Weydanz, K. Donoue, T. Inoue, H. Kurokawa, and S. Fujitani, Study of LiFePO4 by cyclic voltam-metry, J. Electrochem. Soc., 154(2007), No. 4, p. A253.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Natural Science Foundation of China (No. 21701083), Zhenjiang Key Laboratory of Marine Power Equipment Performance (SS2018006), The Postgraduate Research & Practice Innovation Program of Jiangsu Province (No. SJCX19_0612) and Project of Jiangsu University (High-Tech Ship) Collaborative Innovation Center (2019, 1174871801-11).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, T., Zhang, Zh., Zhang, Q. et al. Anion-immobilized solid composite electrolytes based on metal-organic frameworks and superacid ZrO2 fillers for high-performance all solid-state lithium metal batteries. Int J Miner Metall Mater 28, 1636–1646 (2021). https://doi.org/10.1007/s12613-021-2289-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2289-z

Keywords

Navigation