Log in

Gut Microbes in Polycystic Ovary Syndrome and Associated Comorbidities; Type 2 Diabetes, Non-Alcoholic Fatty Liver Disease (NAFLD), Cardiovascular Disease (CVD), and the Potential of Microbial Therapeutics

  • Review
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is one of the most common endocrine anomalies among females of reproductive age, highlighted by hyperandrogenism. PCOS is multifactorial as it can be associated with obesity, insulin resistance, low-grade chronic inflammation, and dyslipidemia. PCOS also leads to dysbiosis by lowering microbial diversity and beneficial microbes, such as Faecalibacterium, Roseburia, Akkermenisa, and Bifidobacterium, and by causing a higher load of opportunistic pathogens, such as Escherichia/Shigella, Fusobacterium, Bilophila, and Sutterella. Wherein, butyrate producers and Akkermansia participate in the glucose uptake by inducing glucagon-like peptide-1 (GLP-1) and glucose metabolism, respectively. The abovementioned gut microbes also maintain the gut barrier function and glucose homeostasis by releasing metabolites such as short-chain fatty acids (SCFAs) and Amuc_1100 protein. In addition, PCOS-associated gut is found to be higher in gut-microbial enzyme β-glucuronidase, causing the de-glucuronidation of conjugated androgen, making it susceptible to reabsorption by entero-hepatic circulation, leading to a higher level of androgen in the circulatory system. Overall, in PCOS, such dysbiosis increases the gut permeability and LPS in the systemic circulation, trimethylamine N-oxide (TMAO) in the circulatory system, chronic inflammation in the adipose tissue and liver, and oxidative stress and lipid accumulation in the liver. Thus, in women with PCOS, dysbiosis can promote the progression and severity of type 2 diabetes, non-alcoholic fatty liver disease (NAFLD), and cardiovascular diseases (CVD). To alleviate such PCOS-associated complications, microbial therapeutics (probiotics and fecal microbiome transplantation) can be used without any side effects, unlike in the case of hormonal therapy. Therefore, this study sought to understand the mechanistic significance of gut microbes in PCOS and associated comorbidities, along with the role of microbial therapeutics that can ease the life of PCOS-affected women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Bulsara J, Patel P, Soni A, Acharya S (2021) A review: brief insight into polycystic ovarian syndrome. Endocrine and Metabolic Science 3:100085. https://doi.org/10.1016/j.endmts.2021.100085

    Article  CAS  Google Scholar 

  2. Azziz R, Carmina E, Dewailly D, Diamanti-Kandarakis E, Escobar-Morreale HF, Futterweit W, Janssen OE, Legro RS, Norman RJ, Taylor AE (2009) The androgen excess and PCOS society criteria for the polycystic ovary syndrome: the complete task force report. Fertil Steril 91(2):456–488. https://doi.org/10.1016/j.fertnstert.2008.06.035

    Article  PubMed  Google Scholar 

  3. Ibáñez L, Potau N, Marcos MV, de Zegher F (2000) Treatment of hirsutism, hyperandrogenism, oligomenorrhea, dyslipidemia, and hyperinsulinism in nonobese, adolescent girls: effect of flutamide. J Clin Endocrinol Metab 85(9):3251–3255. https://doi.org/10.1210/jcem.85.9.6814

    Article  PubMed  Google Scholar 

  4. Ding DC, Chen W, Wang JH, Lin SZ (2018) Association between polycystic ovarian syndrome and endometrial, ovarian, and breast cancer: a population-based cohort study in Taiwan. Medicine 97(39):e12608. https://doi.org/10.1097/md.0000000000012608

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang C, Ma J, Wang W, Sun Y, Sun K (2018) Lysyl oxidase blockade ameliorates anovulation in polycystic ovary syndrome. Human reproduction (Oxford, England) 33(11):2096–2106. https://doi.org/10.1093/humrep/dey292

    Article  CAS  PubMed  Google Scholar 

  6. Norman RJ, Teede HJ (2018) A new evidence-based guideline for assessment and management of polycystic ovary syndrome. Med J Aust 209(7):299–300. https://doi.org/10.5694/mja18.00635

    Article  PubMed  Google Scholar 

  7. Gutierrez-Grobe Y, Ponciano-Rodríguez G, Ramos MH, Uribe M, Méndez-Sánchez N (2010) Prevalence of non alcoholic fatty liver disease in premenopausal, posmenopausal and polycystic ovary syndrome women. The role of estrogens. J Hepatol 9(4):402–409. https://doi.org/10.1016/S1665-2681(19)31616-3

    Article  Google Scholar 

  8. Makri E, Tziomalos K (2017) Prevalence, etiology and management of non-alcoholic fatty liver disease in patients with polycystic ovary syndrome. Minerva Endocrinol 42(2):122–131. https://doi.org/10.23736/s0391-1977.16.02564-5

    Article  PubMed  Google Scholar 

  9. Rasquin L I, Anastasopoulou C, Mayrin J V (2022) Polycystic ovarian disease, in StatPearls [Internet]. StatPearls Publishing

  10. Zhu J-l, Chen Z, Feng W-j, Long S-l, Mo Z-C (2019) Sex hormone-binding globulin and polycystic ovary syndrome. Clin Chim Acta 499:142–148. https://doi.org/10.1016/j.cca.2019.09.010

    Article  CAS  PubMed  Google Scholar 

  11. Thackray VG (2019) Sex, microbes, and polycystic ovary syndrome. Trends Endocrinol Metab 30(1):54–65. https://doi.org/10.1016/j.tem.2018.11.001

    Article  CAS  PubMed  Google Scholar 

  12. Lindheim L, Bashir M, Münzker J, Trummer C, Zachhuber V, Leber B, Horvath A, Pieber TR, Gorkiewicz G, Stadlbauer V, Obermayer-Pietsch B (2017) Alterations in gut microbiome composition and barrier function are associated with reproductive and metabolic defects in women with polycystic ovary syndrome (PCOS): a pilot study. PLoS ONE 12(1):e0168390. https://doi.org/10.1371/journal.pone.0168390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu R, Zhang C, Shi Y, Zhang F, Li L, Wang X, Ling Y, Fu H, Dong W, Shen J, Reeves A, Greenberg AS, Zhao L, Peng Y, Ding X (2017) Dysbiosis of gut microbiota associated with clinical parameters in polycystic ovary syndrome. Front Microbiol 8:324. https://doi.org/10.3389/fmicb.2017.00324

    Article  PubMed  PubMed Central  Google Scholar 

  14. Torres PJ, Siakowska M, Banaszewska B, Pawelczyk L, Duleba AJ, Kelley ST, Thackray VG (2018) Gut microbial diversity in women with polycystic ovary syndrome correlates with hyperandrogenism. J Clin Endocrinol Metab 103(4):1502–1511. https://doi.org/10.1210/jc.2017-02153

    Article  PubMed  PubMed Central  Google Scholar 

  15. Singh V, Park Y-J, Lee G, Unno T, Shin J-H (2023) Dietary regulations for microbiota dysbiosis among post-menopausal women with type 2 diabetes. Crit Rev Food Sci Nutr 63(29):9961–9976. https://doi.org/10.1080/10408398.2022.2076651

    Article  CAS  PubMed  Google Scholar 

  16. Singh V, Lee G, Son H, Koh H, Kim ES, Unno T, Shin J-H (2023) Butyrate producers, “The Sentinel of Gut”: their intestinal significance with and beyond butyrate, and prospective use as microbial therapeutics. Front Microbiol 13:1103836. https://doi.org/10.3389/fmicb.2022.1103836

    Article  PubMed  PubMed Central  Google Scholar 

  17. Salva-Pastor N, Chávez-Tapia NC, Uribe M, Nuño-Lámbarri N (2019) Understanding the association of polycystic ovary syndrome and non-alcoholic fatty liver disease. J Steroid Biochem Mol Biol 194:105445. https://doi.org/10.1016/j.jsbmb.2019.105445

    Article  CAS  PubMed  Google Scholar 

  18. Paschou SA, Polyzos SA, Anagnostis P, Goulis DG, Kanaka-Gantenbein C, Lambrinoudaki I, Georgopoulos NA, Vryonidou A (2020) Nonalcoholic fatty liver disease in women with polycystic ovary syndrome. Endocrine 67(1):1–8. https://doi.org/10.1007/s12020-019-02085-7

    Article  CAS  PubMed  Google Scholar 

  19. Boursier J, Mueller O, Barret M, Machado M, Fizanne L, Araujo-Perez F, Guy CD, Seed PC, Rawls JF, David LA, Hunault G, Oberti F, Calès P, Diehl AM (2016) The severity of nonalcoholic fatty liver disease is associated with gut dysbiosis and shift in the metabolic function of the gut microbiota. Hepatology 63(3):764–775. https://doi.org/10.1002/hep.28356

    Article  CAS  PubMed  Google Scholar 

  20. Masenga SK, Hamooya B, Hangoma J, Hayumbu V, Ertuglu LA, Ishimwe J, Rahman S, Saleem M, Laffer CL, Elijovich F, Kirabo A (2022) Recent advances in modulation of cardiovascular diseases by the gut microbiota. J Hum Hypertens 36(11):952–959. https://doi.org/10.1038/s41371-022-00698-6

    Article  PubMed  PubMed Central  Google Scholar 

  21. Nian F, Zhu C, ** N, **a Q, Wu L, Lu X (2023) Gut microbiota metabolite TMAO promoted lipid deposition and fibrosis process via KRT17 in fatty liver cells in vitro. Biochem Biophys Res Commun 669:134–142. https://doi.org/10.1016/j.bbrc.2023.05.041

    Article  CAS  PubMed  Google Scholar 

  22. Chu W, Han Q, Xu J, Wang J, Sun Y, Li W, Chen ZJ, Du Y (2022) Metagenomic analysis identified microbiome alterations and pathological association between intestinal microbiota and polycystic ovary syndrome. Fertility and Sterility 113(6):1286–1298.e4. https://doi.org/10.1016/j.fertnstert.2020.01.027

    Article  CAS  Google Scholar 

  23. Insenser M, Murri M, Del Campo R, Martinez-Garcia MA, Fernandez-Duran E, Escobar-Morreale HF (2018) Gut microbiota and the polycystic ovary syndrome: influence of sex, sex hormones, and obesity. J Clin Endocrinol Metab 103(7):2552–2562. https://doi.org/10.1210/jc.2017-02799

    Article  PubMed  Google Scholar 

  24. Qi X, Yun C, Sun L, **a J, Wu Q, Wang Y, Wang L, Zhang Y, Liang X, Wang L (2019) Gut microbiota–bile acid–interleukin-22 axis orchestrates polycystic ovary syndrome. Nat Med 25(8):1225–1233. https://doi.org/10.1038/s41591-019-0509-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zeng B, Lai Z, Sun L, Zhang Z, Yang J, Li Z, Lin J, Zhang Z (2019) Structural and functional profiles of the gut microbial community in polycystic ovary syndrome with insulin resistance (IR-PCOS): a pilot study. Res Microbiol 170(1):43–52. https://doi.org/10.1016/j.resmic.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  26. Liang Y, Ming Q, Liang J, Zhang Y, Zhang H, Shen T (2020) Gut microbiota dysbiosis in polycystic ovary syndrome: association with obesity—a preliminary report. Can J Physiol Pharmacol 98(11):803–809. https://doi.org/10.1139/cjpp-2019-0413

    Article  CAS  PubMed  Google Scholar 

  27. Duan L, An X, Zhang Y, ** D, Zhao S, Zhou R, Duan Y, Zhang Y, Liu X, Lian F (2021) Gut microbiota as the critical correlation of polycystic ovary syndrome and type 2 diabetes mellitus. Biomed Pharmacother 142:112094. https://doi.org/10.1016/j.biopha.2021.112094

    Article  CAS  PubMed  Google Scholar 

  28. Zheng Y, Yu J, Liang C, Li S, Wen X, Li Y (2021) Characterization on gut microbiome of PCOS rats and its further design by shifts in high-fat diet and dihydrotestosterone induction in PCOS rats. Bioprocess Biosyst Eng 44:953–964. https://doi.org/10.1007/s00449-020-02320-w

    Article  CAS  PubMed  Google Scholar 

  29. Zhou L, Ni Z, Yu J, Cheng W, Cai Z, Yu C (2020) Correlation between fecal metabolomics and gut microbiota in obesity and polycystic ovary syndrome. Front Endocrinol 11:628. https://doi.org/10.3389/fendo.2020.00628

    Article  Google Scholar 

  30. Jobira B, Frank DN, Pyle L, Silveira LJ, Kelsey MM, Garcia-Reyes Y, Robertson CE, Ir D, Nadeau KJ, Cree-Green M (2020) Obese adolescents with PCOS have altered biodiversity and relative abundance in gastrointestinal microbiota. J Clin Endocrinol Metab 105(6):e2134–e2144. https://doi.org/10.1210/clinem/dgz263

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhou J, Qiu X, Chen X, Ma S, Chen Z, Wang R, Tian Y, Jiang Y, Fan L, Wang J (2023) Comprehensive analysis of gut microbiota alteration in the patients and animal models with polycystic ovary syndrome. J Microbiol 1–16. https://doi.org/10.1007/s12275-023-00079-9

  32. Eshre T R, Group A-S P C W (2004) Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil Steril 81(1):19–25. https://doi.org/10.1016/j.fertnstert.2003.10.004

    Article  Google Scholar 

  33. Smet ME, McLennan A (2018) Rotterdam criteria, the end. Australasian Journal of Ultrasound in Medicine 21(2):59. https://doi.org/10.1002/ajum.12096

    Article  PubMed  PubMed Central  Google Scholar 

  34. March WA, Moore VM, Willson KJ, Phillips DI, Norman RJ, Davies MJ (2010) The prevalence of polycystic ovary syndrome in a community sample assessed under contrasting diagnostic criteria. Human reproduction (Oxford, England) 25(2):544–551. https://doi.org/10.1093/humrep/dep399

    Article  PubMed  Google Scholar 

  35. Azziz R, Woods KS, Reyna R, Key TJ, Knochenhauer ES, Yildiz BO (2004) The prevalence and features of the polycystic ovary syndrome in an unselected population. J Clin Endocrinol Metab 89(6):2745–2749. https://doi.org/10.1210/jc.2003-032046

    Article  CAS  PubMed  Google Scholar 

  36. Escobar-Morreale HF (2018) Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol 14(5):270–284. https://doi.org/10.1038/nrendo.2018.24

    Article  PubMed  Google Scholar 

  37. Malini NA, Roy George K (2018) Evaluation of different ranges of LH:FSH ratios in polycystic ovarian syndrome (PCOS) – clinical based case control study. Gen Comp Endocrinol 260:51–57. https://doi.org/10.1016/j.ygcen.2017.12.007

    Article  CAS  PubMed  Google Scholar 

  38. Tanbo T, Mellembakken J, Bjercke S, Ring E, Åbyholm T, Fedorcsak P (2018) Ovulation induction in polycystic ovary syndrome. Acta Obstet Gynecol Scand 97(10):1162–1167. https://doi.org/10.1111/aogs.13395

    Article  PubMed  Google Scholar 

  39. Sanchez-Garrido MA, Tena-Sempere M (2020) Metabolic dysfunction in polycystic ovary syndrome: pathogenic role of androgen excess and potential therapeutic strategies. Molecular Metabolism 35:100937. https://doi.org/10.1016/j.molmet.2020.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Misso M, Boyle J, Norman R, Teede H (2014) Development of evidenced-based guidelines for PCOS and implications for community health. in Seminars in reproductive medicine. Thieme Medical Publishers. https://doi.org/10.1055/s-0034-1371095

  41. Guo Y, Qi Y, Yang X, Zhao L, Wen S, Liu Y, Tang L (2016) Association between polycystic ovary syndrome and gut microbiota. PLoS ONE 11(4):e0153196. https://doi.org/10.1371/journal.pone.0153196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Osuka S, Nakanishi N, Murase T, Nakamura T, Goto M, Iwase A, Kikkawa F (2019) Animal models of polycystic ovary syndrome: a review of hormone-induced rodent models focused on hypothalamus-pituitary-ovary axis and neuropeptides. Reproductive medicine and biology 18(2):151–160. https://doi.org/10.1002/rmb2.12262

    Article  PubMed  Google Scholar 

  43. Han Q, Wang J, Li W, Chen Z-J, Du Y (2021) Androgen-induced gut dysbiosis disrupts glucolipid metabolism and endocrinal functions in polycystic ovary syndrome. Microbiome 9(1):101. https://doi.org/10.1186/s40168-021-01046-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hsiao T-H, Chou C-H, Chen Y-L, Wang P-H, Brandon-Mong G-J, Lee T-H, Wu T-Y, Li P-T, Li C-W, Lai Y-L (2023) Circulating androgen regulation by androgen-catabolizing gut bacteria in male mouse gut. Gut Microbes 15(1):2183685. https://doi.org/10.1080/19490976.2023.2183685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Organski AC, Jorgensen JS, Cross T-WL (2021) Involving the life inside: the complex interplay between reproductive axis hormones and gut microbiota. Current Opinion in Endocrine and Metabolic Research 20:100284. https://doi.org/10.1016/j.coemr.2021.100284

    Article  CAS  Google Scholar 

  46. Patel J, Chaudhary H, Rajput K, Parekh B, Joshi R (2023) Assessment of gut microbial β-glucuronidase and β-glucosidase activity in women with polycystic ovary syndrome. Sci Rep 13(1):11967. https://doi.org/10.1038/s41598-023-39168-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Song C-H, Kim N, Nam RH, Choi SI, Jang JY, Lee H-N (2022) Changes in gut microbiome upon orchiectomy and testosterone administration in AOM/DSS-induced colon cancer mouse model. Cancer Research and Treatment: Official Journal of Korean Cancer Association 55(1):196–218. https://doi.org/10.4143/crt.2022.080

    Article  CAS  Google Scholar 

  48. Kumari N, Kumari R, Dua A, Singh M, Kumar R, Singh P, Duyar-Ayerdi S, Pradeep S, Ojesina A I, Kumar R From gut to hormones: unraveling the role of gut microbiota in (phyto)estrogen modulation in health and disease. Molecular Nutrition & Food Research. (n/a): 2300688. https://doi.org/10.1002/mnfr.202300688

  49. Rizk M G, Thackray V G (2020) Intersection of polycystic ovary syndrome and the gut microbiome. Journal of the Endocrine Society 5(2). https://doi.org/10.1210/jendso/bvaa177

  50. He Y, Wang Q, Li X, Wang G, Zhao J, Zhang H, Chen W (2020) Lactic acid bacteria alleviate polycystic ovarian syndrome by regulating sex hormone related gut microbiota. Food Funct 11(6):5192–5204. https://doi.org/10.1039/C9FO02554E

    Article  CAS  PubMed  Google Scholar 

  51. Guo J, Shao J, Yang Y, Niu X, Liao J, Zhao Q, Wang D, Li S, Hu J (2022) Gut microbiota in patients with polycystic ovary syndrome: a systematic review. Reproductive Sciences. 1–15. https://doi.org/10.1007/s43032-020-00430-0

  52. Tsai Y-L, Liu Y-W, Wang P-N, Lin C-Y, Lan T-H (2022) Gender differences in gut microbiome composition between schizophrenia patients with normal body weight and central obesity. Front Psych 13:836896. https://doi.org/10.3389/fpsyt.2022.836896

    Article  Google Scholar 

  53. Iljazovic A, Amend L, Galvez E J C, de Oliveira R, Strowig T (2011) Modulation of inflammatory responses by gastrointestinal Prevotella spp. – from associations to functional studies. Int J Med Microbiol 311(2):151472. https://doi.org/10.1016/j.ijmm.2021.151472

    Article  CAS  Google Scholar 

  54. Zhou Q, Zhang Y, Wang X, Yang R, Zhu X, Zhang Y, Chen C, Yuan H, Yang Z, Sun L (2020) Gut bacteria Akkermansia is associated with reduced risk of obesity: evidence from the American Gut Project. Nutr Metab 17(1):90. https://doi.org/10.1186/s12986-020-00516-1

    Article  CAS  Google Scholar 

  55. Postler TS, Ghosh S (2017) Understanding the holobiont: how microbial metabolites affect human health and shape the immune system. Cell Metab 26(1):110–130. https://doi.org/10.1016/j.cmet.2017.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang M, Hu R, Huang Y, Zhou F, Li F, Liu Z, Geng Y, Dong H, Ma W, Song K (2022) Present and future: crosstalks between polycystic ovary syndrome and gut metabolites relating to gut microbiota. Front Endocrinol 13:933110. https://doi.org/10.3389/fendo.2022.933110

    Article  Google Scholar 

  57. Le Poul E, Loison C, Struyf S, Springael J-Y, Lannoy V, Decobecq M-E, Brezillon S, Dupriez V, Vassart G, Van Damme J, Parmentier M, Detheux M (2003) Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J Biol Chem 278(28):25481–25489. https://doi.org/10.1074/jbc.M301403200

    Article  CAS  PubMed  Google Scholar 

  58. Brown AJ, Goldsworthy SM, Barnes AA, Eilert MM, Tcheang L, Daniels D, Muir AI, Wigglesworth MJ, Kinghorn I, Fraser NJ, Pike NB, Strum JC, Steplewski KM, Murdock PR, Holder JC, Marshall FH, Szekeres PG, Wilson S, Ignar DM, Foord SM, Wise A, Dowell SJ (2003) The orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J Biol Chem 278(13):11312–11319. https://doi.org/10.1074/jbc.M211609200

    Article  CAS  PubMed  Google Scholar 

  59. Bolognini D, Tobin AB, Milligan G, Moss CE (2016) The pharmacology and function of receptors for short-chain fatty acids. Mol Pharmacol 89(3):388–398. https://doi.org/10.1124/mol.115.102301

    Article  CAS  PubMed  Google Scholar 

  60. Everard A, Cani PD (2014) Gut microbiota and GLP-1. Rev Endocr Metab Disord 15:189–196. https://doi.org/10.1007/s11154-014-9288-6

    Article  CAS  PubMed  Google Scholar 

  61. Martin-Gallausiaux C, Marinelli L, Blottière HM, Larraufie P, Lapaque N (2021) SCFA: mechanisms and functional importance in the gut. Proceedings of the Nutrition Society 80(1):37–49. https://doi.org/10.1017/S0029665120006916

    Article  CAS  PubMed  Google Scholar 

  62. Ferreira C M, Vieira A T, Vinolo M A R, Oliveira F A, Curi R, Martins F d S (2014) The central role of the gut microbiota in chronic inflammatory diseases. J Immunol Res.  https://doi.org/10.1155/2014/689492

  63. Yadav H, Lee J-H, Lloyd J, Walter P, Rane SG (2013) Beneficial metabolic effects of a probiotic via butyrate-induced GLP-1 hormone secretion. J Biol Chem 288(35):25088–25097. https://doi.org/10.1074/jbc.M113.452516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Frampton J, Murphy KG, Frost G, Chambers ES (2020) Short-chain fatty acids as potential regulators of skeletal muscle metabolism and function. Nat Metab 2(9):840–848. https://doi.org/10.1038/s42255-020-0188-7

    Article  CAS  PubMed  Google Scholar 

  65. Olaniyi KS, Bashir A-a M, Areloegbe SE, Sabinari IW, Akintayo CO, Oniyide AA, Aturamu A (2022) Short chain fatty acid, acetate restores ovarian function in experimentally induced PCOS rat model. PLoS ONE 17(7):e0272124. https://doi.org/10.1371/journal.pone.0272124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Guzior DV, Quinn RA (2021) Review: microbial transformations of human bile acids. Microbiome 9(1):140. https://doi.org/10.1186/s40168-021-01101-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wu L, Feng J, Li J, Yu Q, Ji J, Wu J, Dai W, Guo C (2021) The gut microbiome-bile acid axis in hepatocarcinogenesis. Biomed Pharmacother 133:111036. https://doi.org/10.1016/j.biopha.2020.111036

    Article  CAS  PubMed  Google Scholar 

  68. Zhang B, Shen S, Gu T, Hong T, Liu J, Sun J, Wang H, Bi Y, Zhu D (2019) Increased circulating conjugated primary bile acids are associated with hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol 189:171–175. https://doi.org/10.1016/j.jsbmb.2019.03.005

    Article  CAS  PubMed  Google Scholar 

  69. Tomkin GH, Owens D (2016) Obesity diabetes and the role of bile acids in metabolism. Journal of Translational Internal Medicine 4(2):73–80. https://doi.org/10.1515/jtim-2016-0018

    Article  PubMed  PubMed Central  Google Scholar 

  70. Jiao N, Baker SS, Chapa-Rodriguez A, Liu W, Nugent CA, Tsompana M, Mastrandrea L, Buck MJ, Baker RD, Genco RJ (2018) Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD. Gut 67(10):1881–1891. https://doi.org/10.1136/gutjnl-2017-314307

    Article  CAS  PubMed  Google Scholar 

  71. Jones LA, Sun EW, Martin AM, Keating DJ (2020) The ever-changing roles of serotonin. Int J Biochem Cell Biol 125:105776. https://doi.org/10.1016/j.biocel.2020.105776

    Article  CAS  PubMed  Google Scholar 

  72. Escobar-Morreale HF, San Millán JL (2007) Abdominal adiposity and the polycystic ovary syndrome. Trends Endocrinol Metab 18(7):266–272. https://doi.org/10.1016/j.tem.2007.07.003

    Article  CAS  PubMed  Google Scholar 

  73. Wild RA, Carmina E, Diamanti-Kandarakis E, Dokras A, Escobar-Morreale HF, Futterweit W, Lobo R, Norman RJ, Talbott E, Dumesic DA (2010) Assessment of cardiovascular risk and prevention of cardiovascular disease in women with the polycystic ovary syndrome: a consensus statement by the Androgen Excess and Polycystic Ovary Syndrome (AE-PCOS) Society. J Clin Endocrinol Metab 95(5):2038–2049. https://doi.org/10.1210/jc.2009-2724

    Article  CAS  PubMed  Google Scholar 

  74. Hudnut-Beumler J, Kaar JL, Taylor A, Kelsey MM, Nadeau KJ, Zeitler P, Snell-Bergeon J, Pyle L, Cree-Green M (2021) Development of type 2 diabetes in adolescent girls with polycystic ovary syndrome and obesity. Pediatr Diabetes 22(5):699–706. https://doi.org/10.1111/pedi.13206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Gambineri A, Pelusi C, Vicennati V, Pagotto U, Pasquali R (2002) Obesity and the polycystic ovary syndrome. Int J Obes 26(7):883–896. https://doi.org/10.1038/sj.ijo.0801994

    Article  CAS  Google Scholar 

  76. Norman RJ, Masters L, Milner CR, Wang JX, Davies MJ (2001) Relative risk of conversion from normoglycaemia to impaired glucose tolerance or non-insulin dependent diabetes mellitus in polycystic ovarian syndrome. Human reproduction (Oxford, England) 16(9):1995–1998. https://doi.org/10.1093/humrep/16.9.1995

    Article  CAS  PubMed  Google Scholar 

  77. Pasquali R, Casimirri F (1993) The impact of obesity on hyperandrogenism and polycystic ovary syndrome in premenopausal women. Clin Endocrinol 39(1):1–16. https://doi.org/10.1111/j.1365-2265.1993.tb01744.x

    Article  CAS  Google Scholar 

  78. Ebejer K, Calleja-Agius J (2013) The role of cytokines in polycystic ovarian syndrome. Gynecol Endocrinol 29(6):536–540. https://doi.org/10.3109/09513590.2012.760195

    Article  CAS  PubMed  Google Scholar 

  79. Yurtdaş G, Akdevelioğlu Y (2020) A new approach to polycystic ovary syndrome: the gut microbiota. J Am Coll Nutr 39(4):371–382. https://doi.org/10.1080/07315724.2019.1657515

    Article  CAS  PubMed  Google Scholar 

  80. Shabbir S, Khurram E, Moorthi VS, Eissa YTH, Kamal MA, Butler AE (2023) The interplay between androgens and the immune response in polycystic ovary syndrome. J Transl Med 21(1):259. https://doi.org/10.1186/s12967-023-04116-4

    Article  PubMed  PubMed Central  Google Scholar 

  81. Pandey V, Singh A, Singh A, Krishna A, Pandey U, Tripathi YB (2016) Role of oxidative stress and low-grade inflammation in letrozole-induced polycystic ovary syndrome in the rat. Reprod Biol 16(1):70–77. https://doi.org/10.1016/j.repbio.2015.12.005

    Article  PubMed  Google Scholar 

  82. Murri M, Luque-Ramírez M, Insenser M, Ojeda-Ojeda M, Escobar-Morreale HF (2013) Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): a systematic review and meta-analysis. Hum Reprod Update 19(3):268–288. https://doi.org/10.1093/humupd/dms059

    Article  CAS  PubMed  Google Scholar 

  83. Turan V, Sezer ED, Zeybek B, Sendag F (2015) Infertility and the presence of insulin resistance are associated with increased oxidative stress in young, non-obese Turkish women with polycystic ovary syndrome. J Pediatr Adolesc Gynecol 28(2):119–123. https://doi.org/10.1016/j.jpag.2014.05.003

    Article  PubMed  Google Scholar 

  84. Kelly CCJ, Lyall H, Petrie JR, Gould GW, Connell JMC, Sattar N (2001) Low grade chronic inflammation in women with polycystic ovarian syndrome. J Clin Endocrinol Metab 86(6):2453–2455. https://doi.org/10.1210/jcem.86.6.7580

    Article  CAS  PubMed  Google Scholar 

  85. Guo R, Zheng Y, Yang J, Zheng N (2015) Association of TNF-alpha, IL-6 and IL-1beta gene polymorphisms with polycystic ovary syndrome: a meta-analysis. BMC Genet 16(1):5. https://doi.org/10.1186/s12863-015-0165-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Peng Z, Sun Y, Lv X, Zhang H, Liu C, Dai S (2016) Interleukin-6 levels in women with polycystic ovary syndrome: a systematic review and meta-analysis. PLoS ONE 11(2):e0148531. https://doi.org/10.1371/journal.pone.0148531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Liu Q, **e Y-J, Qu L-H, Zhang M-X, Mo Z-C (2019) Dyslipidemia involvement in the development of polycystic ovary syndrome. Taiwan J Obstet Gynecol 58(4):447–453. https://doi.org/10.1016/j.tjog.2019.05.003

    Article  PubMed  Google Scholar 

  88. Kim JJ, Choi YM (2013) Dyslipidemia in women with polycystic ovary syndrome. Obstetrics & gynecology science 56(3):137–142. https://doi.org/10.5468/ogs.2013.56.3.137

    Article  Google Scholar 

  89. Ovalle F, Azziz R (2002) Insulin resistance, polycystic ovary syndrome, and type 2 diabetes mellitus. Fertil Steril 77(6):1095–1105. https://doi.org/10.1016/S0015-0282(02)03111-4

    Article  PubMed  Google Scholar 

  90. Cocomazzi G, Del Pup L, Contu V, Maggio G, Parmegiani L, Ciampaglia W, De Ruvo D, Faioli R, Maglione A, Baldini GM, Baldini D, Pazienza V (2024) Gynecological cancers and microbiota dynamics: insights into pathogenesis and therapy. Int J Mol Sci 25(4):2237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Thursby E, Juge N (2017) Introduction to the human gut microbiota. Biochem J 474(11):1823–1836. https://doi.org/10.1042/BCJ20160510

    Article  CAS  PubMed  Google Scholar 

  92. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermúdez-Humarán LG, Gratadoux J-J, Blugeon S, Bridonneau C, Furet J-P, Corthier G (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci 105(43):16731–16736. https://doi.org/10.1073/pnas.0804812105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Gurung M, Li Z, You H, Rodrigues R, Jump D B, Morgun A, Shulzhenko N (2020) Role of gut microbiota in type 2 diabetes pathophysiology. EBioMedicine. 51. https://doi.org/10.1016/j.ebiom.2019.11.051

  94. Zhao MA, Chu J, Feng S, Guo C, Xue B, He K, Li L (2023) Immunological mechanisms of inflammatory diseases caused by gut microbiota dysbiosis: a review. Biomed Pharmacother 164

    Article  CAS  PubMed  Google Scholar 

  95. Tejkalová H, Jakob L, Kvasnová S, Klaschka J, Sechovcová H, Mrázek J, Páleníček T, Fliegerová KO (2023) The influence of antibiotic treatment on the behavior and gut microbiome of adult rats neonatally insulted with lipopolysaccharide. Heliyon 9(4). https://doi.org/10.1016/j.heliyon.2023.e15417

  96. Williams BL, Hornig M, Parekh T, Lipkin WI (2012) Application of novel PCR-based methods for detection, quantitation, and phylogenetic characterization of Sutterella species in intestinal biopsy samples from children with autism and gastrointestinal disturbances. mBio. 3(1). https://doi.org/10.1128/mbio.00261-11

  97. Hirano A, Umeno J, Okamoto Y, Shibata H, Ogura Y, Moriyama T, Torisu T, Fujioka S, Fuyuno Y, Kawarabayasi Y (2018) Comparison of the microbial community structure between inflamed and non-inflamed sites in patients with ulcerative colitis. J Gastroenterol Hepatol 33(9):1590–1597. https://doi.org/10.1111/jgh.14129

    Article  CAS  Google Scholar 

  98. Li P, Shuai P, Shen S, Zheng H, Sun P, Zhang R, Lan S, Lan Z, Jayawardana T, Yang Y (2023) Perturbations in gut microbiota composition in patients with polycystic ovary syndrome: a systematic review and meta-analysis. BMC Med 21(1):302. https://doi.org/10.1186/s12916-023-02975-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. He F, Li Y (2021) The gut microbial composition in polycystic ovary syndrome with insulin resistance: findings from a normal-weight population. Journal of Ovarian Research 14(1):1–12. https://doi.org/10.1186/s13048-021-00799-9

    Article  CAS  Google Scholar 

  100. Pappachan JM, Antonio FA, Edavalath M, Mukherjee A (2014) Non-alcoholic fatty liver disease: a diabetologist’s perspective. Endocrine 45:344–353. https://doi.org/10.1007/s12020-013-0087-8

    Article  CAS  PubMed  Google Scholar 

  101. Caldwell ASL, Middleton LJ, Jimenez M, Desai R, McMahon AC, Allan CM, Handelsman DJ, Walters KA (2014) Characterization of reproductive, metabolic, and endocrine features of polycystic ovary syndrome in female hyperandrogenic mouse models. Endocrinology 155(8):3146–3159. https://doi.org/10.1210/en.2014-1196

    Article  CAS  PubMed  Google Scholar 

  102. Li X, Huang Y, Song L, **ao Y, Lu S, Xu J, Li J, Ren Z (2020) Lactobacillus plantarum prevents obesity via modulation of gut microbiota and metabolites in high-fat feeding mice. Journal of Functional Foods 73:104103. https://doi.org/10.1016/j.jff.2020.104103

    Article  CAS  Google Scholar 

  103. Hong X, Qin P, Huang K, Ding X, Ma J, Xuan Y, Zhu X, Peng D, Wang B (2020) Association between polycystic ovary syndrome and the vaginal microbiome: a case-control study. Clin Endocrinol 93(1):52–60. https://doi.org/10.1111/cen.14198

    Article  CAS  Google Scholar 

  104. Falzarano C, Lofton T, Osei-Ntansah A, Oliver T, Southward T, Stewart S, Andrisse S (2021) Nonalcoholic fatty liver disease in women and girls with polycystic ovary syndrome. J Clin Endocrinol Metab 107(1):258–272. https://doi.org/10.1210/clinem/dgab658

    Article  Google Scholar 

  105. Jones H, Sprung VS, Pugh CJA, Daousi C, Irwin A, Aziz N, Adams VL, Thomas EL, Bell JD, Kemp GJ, Cuthbertson DJ (2012) Polycystic ovary syndrome with hyperandrogenism is characterized by an increased risk of hepatic steatosis compared to nonhyperandrogenic PCOS phenotypes and healthy controls, independent of obesity and insulin resistance. J Clin Endocrinol Metab 97(10):3709–3716. https://doi.org/10.1210/jc.2012-1382

    Article  CAS  PubMed  Google Scholar 

  106. Vidal-Cevallos P, Mijangos-Trejo A, Uribe M, Tapia NC (2023) The interlink between metabolic-associated fatty liver disease and polycystic ovary syndrome. Endocrinol Metab Clin 52(3):533–545. https://doi.org/10.1016/j.ecl.2023.01.005

    Article  Google Scholar 

  107. Albillos A, De Gottardi A, Rescigno M (2020) The gut-liver axis in liver disease: pathophysiological basis for therapy. J Hepatol 72(3):558–577. https://doi.org/10.1016/j.jhep.2019.10.003

    Article  CAS  PubMed  Google Scholar 

  108. Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y, Li L (2016) Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep 6(1):32002. https://doi.org/10.1038/srep32002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Iino C, Endo T, Mikami K, Hasegawa T, Kimura M, Sawada N, Nakaji S, Fukuda S (2019) Significant decrease in Faecalibacterium among gut microbiota in nonalcoholic fatty liver disease: a large BMI- and sex-matched population study. Hep Intl 13(6):748–756. https://doi.org/10.1007/s12072-019-09987-8

    Article  Google Scholar 

  110. Compare D, Coccoli P, Rocco A, Nardone O, De Maria S, Cartenì M, Nardone G (2012) Gut–liver axis: the impact of gut microbiota on non alcoholic fatty liver disease. Nutr Metab Cardiovasc Dis 22(6):471–476. https://doi.org/10.1016/j.numecd.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  111. Walter J (2008) Ecological role of Lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl Environ Microbiol 74(16):4985–4996. https://doi.org/10.1128/AEM.00753-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, Chomka A, Ilott NE, Johnston DG, Pires E (2019) The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50(2):432–455. e7. https://doi.org/10.1016/j.immuni.2018.12.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Chang PV, Hao L, Offermanns S, Medzhitov R (2014) The microbial metabolite butyrate regulates intestinal macrophage function via histone deacetylase inhibition. Proc Natl Acad Sci 111(6):2247–2252. https://doi.org/10.1073/pnas.1322269111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Marcondes-de-Castro IA, Reis-Barbosa PH, Marinho TS, Aguila MB, Mandarim-de-Lacerda CA (2023) AMPK/mTOR pathway significance in healthy liver and non-alcoholic fatty liver disease and its progression. J Gastroenterol Hepatol 38(11):1868–1876. https://doi.org/10.1111/jgh.16272

    Article  CAS  PubMed  Google Scholar 

  115. Huang J, Liu L, Chen C, Gao Y (2020) PCOS without hyperandrogenism is associated with higher plasma trimethylamine N-oxide levels. BMC Endocr Disord 20(1):3. https://doi.org/10.1186/s12902-019-0486-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Eyupoglu ND, Caliskan Guzelce E, Acikgoz A, Uyanik E, Bjørndal B, Berge RK, Svardal A, Yildiz BO (2019) Circulating gut microbiota metabolite trimethylamine N-oxide and oral contraceptive use in polycystic ovary syndrome. Clin Endocrinol 91(6):810–815. https://doi.org/10.1111/cen.14101

    Article  CAS  Google Scholar 

  117. Chen Y-M, Liu Y, Zhou R-F, Chen X-l, Wang C, Tan X-Y, Wang L-J, Zheng R-D, Zhang H-W, Ling W-H, Zhu H-l (2016) Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 6(1):19076. https://doi.org/10.1038/srep19076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Rath S, Heidrich B, Pieper DH, Vital M (2017) Uncovering the trimethylamine-producing bacteria of the human gut microbiota. Microbiome 5(1):54. https://doi.org/10.1186/s40168-017-0271-9

    Article  PubMed  PubMed Central  Google Scholar 

  119. Wild RA, Rizzo M, Clifton S, Carmina E (2011) Lipid levels in polycystic ovary syndrome: systematic review and meta-analysis. Fertil Steril 95(3):1073-1079.e11. https://doi.org/10.1016/j.fertnstert.2010.12.027

    Article  CAS  PubMed  Google Scholar 

  120. Schmidt J, Landin-Wilhelmsen K, Brännström M, Dahlgren E (2011) Cardiovascular disease and risk factors in PCOS women of postmenopausal age: a 21-year controlled follow-up study. J Clin Endocrinol Metab 96(12):3794–3803. https://doi.org/10.1210/jc.2011-1677

    Article  CAS  PubMed  Google Scholar 

  121. Osibogun O, Ogunmoroti O, Michos ED (2020) Polycystic ovary syndrome and cardiometabolic risk: opportunities for cardiovascular disease prevention. Trends Cardiovasc Med 30(7):399–404. https://doi.org/10.1016/j.tcm.2019.08.010

    Article  PubMed  Google Scholar 

  122. Christian RC, Dumesic DA, Behrenbeck T, Oberg AL, Sheedy PF II, Fitzpatrick LA (2003) Prevalence and predictors of coronary artery calcification in women with polycystic ovary syndrome. J Clin Endocrinol Metab 88(6):2562–2568. https://doi.org/10.1210/jc.2003-030334

    Article  CAS  PubMed  Google Scholar 

  123. Calderon-Margalit R, Siscovick D, Merkin SS, Wang E, Daviglus ML, Schreiner PJ, Sternfeld B, Williams OD, Lewis CE, Azziz R, Schwartz SM, Wellons MF (2014) Prospective association of polycystic ovary syndrome with coronary artery calcification and carotid-intima-media thickness. Arterioscler Thromb Vasc Biol 34(12):2688–2694. https://doi.org/10.1161/ATVBAHA.114.304136

    Article  CAS  PubMed  Google Scholar 

  124. Rizzo M, Berneis K, Hersberger M, Pepe I, Di Fede G, Rini GB, Spinas GA, Carmina E (2009) Milder forms of atherogenic dyslipidemia in ovulatory versus anovulatory polycystic ovary syndrome phenotype. Human reproduction (Oxford, England) 24(9):2286–2292. https://doi.org/10.1093/humrep/dep121

    Article  CAS  PubMed  Google Scholar 

  125. Marchesan LB, Spritzer PM (2019) ACC/AHA 2017 definition of high blood pressure: implications for women with polycystic ovary syndrome. Fertil Steril 111(3):579–587.e1. https://doi.org/10.1016/j.fertnstert.2018.11.034

    Article  PubMed  Google Scholar 

  126. Cascella T, Palomba S, Tauchmanovà L, Manguso F, Di Biase S, Labella D, Giallauria F, Vigorito C, Colao A, Lombardi G (2006) Serum aldosterone concentration and cardiovascular risk in women with polycystic ovarian syndrome. J Clin Endocrinol Metab 91(11):4395–4400. https://doi.org/10.1210/jc.2006-0399

    Article  CAS  PubMed  Google Scholar 

  127. Makrecka-Kuka M, Volska K, Antone U, Vilskersts R, Grinberga S, Bandere D, Liepinsh E, Dambrova M (2017) Trimethylamine N-oxide impairs pyruvate and fatty acid oxidation in cardiac mitochondria. Toxicol Lett 267:32–38. https://doi.org/10.1016/j.toxlet.2016.12.017

    Article  CAS  PubMed  Google Scholar 

  128. Zhang Y, Wang Y, Ke B, Du J (2021) TMAO: how gut microbiota contributes to heart failure. Transl Res 228:109–125. https://doi.org/10.1016/j.trsl.2020.08.007

    Article  CAS  PubMed  Google Scholar 

  129. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, Sartor RB, McIntyre TM, Silverstein RL, Tang WHW, DiDonato JA, Brown JM, Lusis AJ, Hazen SL (2016) Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell 165(1):111–124. https://doi.org/10.1016/j.cell.2016.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Cai YY, Huang FQ, Lao X, Lu Y, Gao X, Alolga RN, Yin K, Zhou X, Wang Y, Liu B, Shang J, Qi LW, Li J (2022) Integrated metagenomics identifies a crucial role for trimethylamine-producing Lachnoclostridium in promoting atherosclerosis. npj Biofilms and Microbiomes 8(1):11. https://doi.org/10.1038/s41522-022-00273-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Chen W, Zhang S, Wu J, Ye T, Wang S, Wang P, **ng D (2020) Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clin Chim Acta 507:236–241. https://doi.org/10.1016/j.cca.2020.04.037

    Article  CAS  PubMed  Google Scholar 

  132. Frangogiannis NG (2014) The inflammatory response in myocardial injury, repair, and remodelling. Nat Rev Cardiol 11(5):255–265. https://doi.org/10.1038/nrcardio.2014.28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Zhang J, Alcaide P, Liu L, Sun J, He A, Luscinskas FW, Shi G-P (2011) Regulation of endothelial cell adhesion molecule expression by mast cells, macrophages, and neutrophils. PLoS ONE 6(1):e14525. https://doi.org/10.1371/journal.pone.0014525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Maldonado-Gómez MX, Martínez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, Hillmann B, Vangay P, Knights D, Hutkins RW (2016) Stable engraftment of Bifidobacterium longum AH1206 in the human gut depends on individualized features of the resident microbiome. Cell Host Microbe 20(4):515–526. https://doi.org/10.1016/j.chom.2016.09.001

    Article  CAS  PubMed  Google Scholar 

  135. Jamilian M, Mansury S, Bahmani F, Heidar Z, Amirani E, Asemi Z (2018) The effects of probiotic and selenium co-supplementation on parameters of mental health, hormonal profiles, and biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome. J Ovarian Res 11:1–7. https://doi.org/10.1186/s13048-018-0457-1

    Article  CAS  Google Scholar 

  136. Nasri K, Jamilian M, Rahmani E, Bahmani F, Tajabadi-Ebrahimi M, Asemi Z (2018) The effects of synbiotic supplementation on hormonal status, biomarkers of inflammation and oxidative stress in subjects with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. BMC Endocr Disord 18:1–8. https://doi.org/10.1186/s12902-018-0248-0

    Article  CAS  Google Scholar 

  137. Arab A, Hossein-Boroujerdi M, Moini A, Sepidarkish M, Shirzad N, Karimi E (2022) Effects of probiotic supplementation on hormonal and clinical outcomes of women diagnosed with polycystic ovary syndrome: a double-blind, randomized, placebo-controlled clinical trial. J Funct Foods 96:105203

    Article  CAS  Google Scholar 

  138. Kaur I, Suri V, Sachdeva N, Rana SV, Medhi B, Sahni N, Ahire J, Singh A (2022) Efficacy of multi-strain probiotic along with dietary and lifestyle modifications on polycystic ovary syndrome: a randomised, double-blind placebo-controlled study. Eur J Nutr 61(8):4145–4154

    Article  CAS  PubMed  Google Scholar 

  139. Karamali M, Eghbalpour S, Rajabi S, Jamilian M, Bahmani F, TajabadiEbrahimi M, Keneshlou F, Mirhashemi SM, Chamani M, Gelougerdi SH (2018) Effects of probiotic supplementation on hormonal profiles, biomarkers of inflammation and oxidative stress in women with polycystic ovary syndrome: a randomized, doubleblind, placebo-controlled trial. Arch Iran Med 21(1):1–7

    PubMed  Google Scholar 

  140. Hulston CJ, Churnside AA, Venables MC (2015) Probiotic supplementation prevents high-fat, overfeeding-induced insulin resistance in human subjects. Br J Nutr 113(4):596–602. https://doi.org/10.1017/S0007114514004097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Minami J-i, Kondo S, Yanagisawa N, Odamaki T, **ao J-Z, Abe F, Nakajima S, Hamamoto Y, Saitoh S, Shimoda T (2015) Oral administration of Bifidobacterium breve B-3 modifies metabolic functions in adults with obese tendencies in a randomised controlled trial. Journal of Nutritional Science 4:e71. https://doi.org/10.1017/jns.2015.5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Cano PG, Santacruz A, Trejo FM, Sanz Y (2013) Bifidobacterium CECT 7765 improves metabolic and immunological alterations associated with obesity in high-fat diet-fed mice. Obesity 21(11):2310–2321. https://doi.org/10.1002/oby.20330

    Article  CAS  PubMed  Google Scholar 

  143. Kondo S, **ao J-Z, Satoh T, Odamaki T, Takahashi S, Sugahara H, Yaeshima T, Iwatsuki K, Kamei A, Abe K (2010) Antiobesity effects of Bifidobacterium breve strain B-3 supplementation in a mouse model with high-fat diet-induced obesity. Biosci Biotechnol Biochem 74(8):1656–1661. https://doi.org/10.1271/bbb.100267

    Article  CAS  PubMed  Google Scholar 

  144. Zhang J, Sun Z, Jiang S, Bai X, Ma C, Peng Q, Chen K, Chang H, Fang T, Zhang H (2019) Probiotic Bifidobacterium lactis V9 regulates the secretion of sex hormones in polycystic ovary syndrome patients through the gut-brain axis. Msystems 4(2). https://doi.org/10.1128/msystems.00017-19

  145. Ahmadi S, Jamilian M, Karamali M, Tajabadi-Ebrahimi M, Jafari P, Taghizadeh M, Memarzadeh MR, Asemi Z (2017) Probiotic supplementation and the effects on weight loss, glycaemia and lipid profiles in women with polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. Hum Fertil 20(4):254–261. https://doi.org/10.1080/14647273.2017.1283446

    Article  CAS  Google Scholar 

  146. Ghanei N, Rezaei N, Amiri GA, Zayeri F, Makki G, Nasseri E (2018) The probiotic supplementation reduced inflammation in polycystic ovary syndrome: a randomized, double-blind, placebo-controlled trial. J Funct Foods 42:306–311. https://doi.org/10.1016/j.jff.2017.12.047

    Article  CAS  Google Scholar 

  147. Karimi E, Heshmati J, Shirzad N, Vesali S, Hosseinzadeh-Attar MJ, Moini A, Sepidarkish M (2020) The effect of synbiotics supplementation on anthropometric indicators and lipid profiles in women with polycystic ovary syndrome: a randomized controlled trial. Lipids Health Dis 19:1–9. https://doi.org/10.1186/s12944-020-01244-4

    Article  CAS  Google Scholar 

  148. Karimi E, Moini A, Yaseri M, Shirzad N, Sepidarkish M, Hossein-Boroujerdi M, Hosseinzadeh-Attar MJ (2018) Effects of synbiotic supplementation on metabolic parameters and apelin in women with polycystic ovary syndrome: a randomised double-blind placebo-controlled trial. Br J Nutr 119(4):398–406. https://doi.org/10.1017/S0007114517003920

    Article  CAS  PubMed  Google Scholar 

  149. Samimi M, Dadkhah A, Haddad Kashani H, Tajabadi-Ebrahimi M, Seyed Hosseini E, Asemi Z (2019) The effects of synbiotic supplementation on metabolic status in women with polycystic ovary syndrome: a randomized double-blind clinical trial. Probiotics and antimicrobial proteins 11:1355–1361. https://doi.org/10.1007/s12602-018-9405-z

    Article  CAS  PubMed  Google Scholar 

  150. Chudzicka-Strugała I, Kubiak A, Banaszewska B, Zwozdziak B, Siakowska M, Pawelczyk L, Duleba AJ (2021) Effects of synbiotic supplementation and lifestyle modifications on women with polycystic ovary syndrome. J Clin Endocrinol Metab 106(9):2566–2573. https://doi.org/10.1210/clinem/dgab369

    Article  PubMed  Google Scholar 

  151. Darvishi S, Rafraf M, Asghari-Jafarabadi M, Farzadi L (2021) Synbiotic supplementation improves metabolic factors and obesity values in women with polycystic ovary syndrome independent of affecting apelin levels: a randomized double-blind placebo-controlled clinical trial. International Journal of Fertility & Sterility 15(1):51. https://doi.org/10.22074/IJFS.2021.6186

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We want to acknowledge that our wonderful friend, Aprajita Bhandari (Dore), is the main motivation behind this work; she has been suffering from PCOS since her teenage, and her health issues have made us realize the problems of women with PCOS. We also acknowledge the KNU NGS Core Facility (Kyungpook National University, Daegu, South Korea) for providing the facilities. Figures in this review were made using BioRender.

Funding

The present work was supported by the Biological Materials Specialized Graduate Program through the Korea Environmental Industry & Technology Institute (KEITI) funded by the Ministry of Environment (MOE) and the Korea Basic Science Institute (National Research Facilities and Equipment Center) grant, funded by the Ministry of Education (2021R1A6C101A416), Republic of Korea.

Author information

Authors and Affiliations

Authors

Contributions

VS & KM conceptualized, analyzed, wrote, and drafted the manuscript; KM and VS made the illustrations; DJ participated in writing and management; JHS supervised, reviewed, and approved the manuscript.

Corresponding author

Correspondence to Jae-Ho Shin.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, V., Mahra, K., Jung, D. et al. Gut Microbes in Polycystic Ovary Syndrome and Associated Comorbidities; Type 2 Diabetes, Non-Alcoholic Fatty Liver Disease (NAFLD), Cardiovascular Disease (CVD), and the Potential of Microbial Therapeutics. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10262-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10262-y

Keywords

Navigation