Log in

Genome Analysis and Safety Assessment of Achromobacter marplatensis Strain YKS2 Strain Isolated from the Rumen of Yaks in China

  • Research
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Achromobacter marplatensis strain YKS2 isolated from the yak rumen has the feature of producing cellulose. This study aims to analyze the genome and safety of strain YKS2 in vivo, considering its future research and application prospects. The genome of strain YKS2 was sequenced and used for genomic in silico studies. The administration of strain YKS2 in three doses was carried out on mice for 3 days of oral and 7 days of clinical observation tests. The BW, FI, organ indices, gut microbiota, and histological appearances of organs and intestines, along with hematological parameters and serum biochemistry, were measured in mice. The chromosome size of strain YKS2 was 6,588,568 bp, with a GC content of 65.27%. The 6058 coding sequences of strain YKS2 without plasmid were predicted and annotated and have multiple functions. The mice in all groups were alive, with good mental states and functional activities. Compared with the control group, there was no significant difference in the three dose groups on BW, FI, hematological parameters (WBC, LYM, etc.), and serum biochemistry (ALB, ALT, etc.). No abnormalities were observed in the main visceral organs, intestinal tissue, and V/C value in groups. However, the IEL number of duodenum and gut microbiota diversity (Shannon’s index) in the high-dose group was significantly higher than in the control group (p < 0.05). Besides, the low dose of strain YKS2 also significantly affected the bacterial abundance of Firmicutes, Actinobacteria, and desulphurizing Bacteroidetes at the phylum level. There was no significant effect at genus levels in groups. In conclusion, the study revealed the genome and potential functional genes of strain YKS2, which is beneficial to understanding the features of the A. marplatensis strain and proved strain YKS2 to be without acute toxicity to mice. However, a long-term feeding toxicity experiment in vivo should be performed to further ensure its potential application value strain in the animal industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Li K, Liu J, Zeng Z et al (2020) The complete genome of probiotic Lactobacillus sakei derived from plateau yak feces. Genes 11:1527. https://doi.org/10.3390/genes11121527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zhao C, Wang L, Ke S et al (2022) Yak rumen microbiome elevates fiber degradation ability and alters rumen fermentation pattern to increase feed efficiency. Anim Nutri 11:201–214. https://doi.org/10.1016/j.aninu.2022.07.014

    Article  CAS  Google Scholar 

  3. Huang X, Mi J, Denman SE et al (2022) Changes in rumen microbial community composition in yak in response to seasonal variations. J Appl Microbiol 132:1652–1665. https://doi.org/10.1111/jam.15322

    Article  CAS  PubMed  Google Scholar 

  4. Yang X, Fan X, Jiang H et al (2022) Simulated seasonal diets alter yak rumen microbiota structure and metabolic function. Front Microbiol 13

  5. Suntara C, Cherdthong A, Wanapat M et al (2021) Isolation and characterization of yeasts from rumen fluids for potential use as additives in ruminant feeding. Vet Sci 8:52. https://doi.org/10.3390/vetsci8030052

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhao J, Shao T, Chen S et al (2021) Characterization and identification of cellulase-producing Enterococcus species isolated from Tibetan yak (Bos grunniens) rumen and their application in various forage silages. J Appl Microbiol 131:1102–1112. https://doi.org/10.1111/jam.15014

    Article  CAS  PubMed  Google Scholar 

  7. Jiang P, Liu F, Zou Z et al (2016) Isolation and identification of cellulase-producing Bacillus in rak rumen. China Anim Husb Vet Med 43:527–534. https://doi.org/10.16431/j.cnki.1671-7236.2016.02.035

    Article  CAS  Google Scholar 

  8. Li R (2015) Yak rumen cellulase production of facultative bacteria screening. identification and fermentation research. [dissertation/master's thesis]. [Lanzhou]. Lanzhou Jiaotong University

  9. Li D, Cao C, Fu P et al (2022) Identification and biological characteristics evaluation of an Achromobacter strain isolated from rumen of yak. China Anim Husb Vet Med 49:4909–4919. https://doi.org/10.16431/j.cnki.1671-7236.2022.12.038

    Article  Google Scholar 

  10. Gomila M, Tvrzová L, Teshim A et al (2011) Achromobacter marplatensis sp. nov., isolated from a pentachlorophenol-contaminated soil. Int J Syst Evol Microbiol 61:2231–2237. https://doi.org/10.1099/ijs.0.025304-0

    Article  CAS  PubMed  Google Scholar 

  11. Tiirola MA, Männistö MK, Puhakka JA, Kulomaa MS (2002) Isolation and characterization of Novosphingobium sp. strain MT1, a dominant polychlorophenol-degrading strain in a groundwater bioremediation system. Appl Environ Microbiol 68:173–180. https://doi.org/10.1128/AEM.68.1.173-180.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Erkkilä S, Petäjä E (2000) Screening of commercial meat starter cultures at low pH and in the presence of bile salts for potential probiotic use. Meat Sci 55:297–300. https://doi.org/10.1016/S0309-1740(99)00156-4

    Article  PubMed  Google Scholar 

  13. Liu J, Wang Y, Li A et al (2020) Probiotic potential and safety assessment of Lactobacillus isolated from yaks. Microb Pathog 145:104213. https://doi.org/10.1016/j.micpath.2020.104213

    Article  CAS  PubMed  Google Scholar 

  14. Zhang J, Zhang H, Wang L et al (2021) The safety and potential probiotic properties analysis of Streptococcus alactolyticus strain FGM isolated from the chicken cecum. Ann Microbiol 71:19. https://doi.org/10.1186/s13213-021-01630-y

    Article  CAS  Google Scholar 

  15. Ashburner M, Ball CA, Blake JA et al (2000) Gene Ontology: tool for the unification of biology. Nat Genet 25:25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jia B, Raphenya AR, Alcock B et al (2017) CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res 45:D566–D573. https://doi.org/10.1093/nar/gkw1004

    Article  CAS  PubMed  Google Scholar 

  17. Chen L, **ong Z, Sun L et al (2012) VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res 40:D641–D645. https://doi.org/10.1093/nar/gkr989

    Article  CAS  PubMed  Google Scholar 

  18. Li W, Jaroszewski L, Godzik A (2002) Tolerating some redundancy significantly speeds up clustering of large protein databases. Bioinformatics 18:77–82. https://doi.org/10.1093/bioinformatics/18.1.77

    Article  CAS  PubMed  Google Scholar 

  19. Cantarel BL, Coutinho PM, Rancurel C et al (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37:D233–D238. https://doi.org/10.1093/nar/gkn663

    Article  CAS  PubMed  Google Scholar 

  20. Metzler-Zebeli BU, Caine WR, McFall M et al (2010) Supplementation of diets for lactating sows with zinc amino acid complex and gastric nutriment-intubation of suckling pigs with zinc methionine on mineral status, intestinal morphology and bacterial translocation in lipopolysaccharide-challenged weaned pigs. J Anim Physiol Anim Nutr 94:237–249. https://doi.org/10.1111/j.1439-0396.2008.00904.x

    Article  CAS  Google Scholar 

  21. Han M, Song P, Huang C et al (2016) Dietary grape seed proanthocyanidins (GSPs) improve weaned intestinal microbiota and mucosal barrier using a piglet model. Oncotarget 7:80313–80326. https://doi.org/10.18632/oncotarget.13450

    Article  PubMed  PubMed Central  Google Scholar 

  22. Li F, Hitch TCA, Chen Y et al (2019) Comparative metagenomic and metatranscriptomic analyses reveal the breed effect on the rumen microbiome and its associations with feed efficiency in beef cattle. Microbiome 7:6. https://doi.org/10.1186/s40168-019-0618-5

    Article  PubMed  PubMed Central  Google Scholar 

  23. Xue Y, Lin L, Hu F et al (2020) Disruption of ruminal homeostasis by malnutrition involved in systemic ruminal microbiota-host interactions in a pregnant sheep model. Microbiome 8:138. https://doi.org/10.1186/s40168-020-00916-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zeineldin M, Barakat R, Elolimy A et al (2018) Synergetic action between the rumen microbiota and bovine health. Microb Pathog 124:106–115. https://doi.org/10.1016/j.micpath.2018.08.038

    Article  PubMed  Google Scholar 

  25. Bansal N, Tewari R, Soni R, Soni SK (2012) Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manage 32:1341–1346. https://doi.org/10.1016/j.wasman.2012.03.006

    Article  CAS  Google Scholar 

  26. Li G, Yang L, Zhang T et al (2018) Complete genome sequence of Achromobacter spanius type strain DSM 23806T, a pathogen isolated from human blood. J Glob Antimicrob Resist 14:1–3. https://doi.org/10.1016/j.jgar.2018.05.003

    Article  PubMed  Google Scholar 

  27. Chan HT, Ku H, Low YP et al (2020) Characterization of novel lytic bacteriophages of Achromobacter marplantensis isolated from a pneumonia patient. Viruses 12:1138. https://doi.org/10.3390/v12101138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chen L, Gu Q, Li P et al (2019) Genomic analysis of Lactobacillus reuteri WHH1689 reveals its probiotic properties and stress resistance. Food Sci Nutr 7:844–857. https://doi.org/10.1002/fsn3.934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Nguyen STC, Freund HL, Kasanjian J, Berlemont R (2018) Function, distribution, and annotation of characterized cellulases, xylanases, and chitinases from CAZy. Appl Microbiol Biotechnol 102:1629–1637. https://doi.org/10.1007/s00253-018-8778-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lombard V, Golaconda Ramulu H, Drula E et al (2014) The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res 42:D490–D495. https://doi.org/10.1093/nar/gkt1178

    Article  CAS  PubMed  Google Scholar 

  31. Vu VV, Marletta MA (2016) Starch-degrading polysaccharide monooxygenases. Cell Mol Life Sci 73:2809–2819. https://doi.org/10.1007/s00018-016-2251-9

    Article  CAS  PubMed  Google Scholar 

  32. Choudhary J, Dubey RC, Sengar G, Dheeman S (2019) Evaluation of probiotic potential and safety assessment of Lactobacillus pentosus MMP4 isolated from Mare’s lactation. Probiotics & Antimicro Prot 11:403–412. https://doi.org/10.1007/s12602-018-9431-x

    Article  CAS  Google Scholar 

  33. Temmerman R, Pot B, Huys G, Swings J (2003) Identification and antibiotic susceptibility of bacterial isolates from probiotic products. Int J Food Microbiol 81:1–10. https://doi.org/10.1016/S0168-1605(02)00162-9

    Article  CAS  PubMed  Google Scholar 

  34. Hillman JD, Maiden MFJ, Pfaller SP, et al (1993) Characterization of hemolytic bacteria in subgingival plaque. J Periodontal Res 28:173–180. https://doi.org/10.1111/j.1600-0765.1993.tb01066.x

  35. FAO/WHO (2016) Evaluation of certain veterinary drug residues in food. Eighty-first report of the Joint FAO/WHO Expert Committee on Food Additives. World Health Organ Tech Rep Ser

  36. Basha S, Surendran N, Pichichero M (2014) Immune responses in neonates. Expert Rev Clin Immunol 10:1171–1184. https://doi.org/10.1586/1744666X.2014.942288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Stevenson RD, Woods WA Jr (2006) Condition indices for conservation: new uses for evolving tools. Integr Comp Biol 46:1169–1190. https://doi.org/10.1093/icb/icl052

    Article  CAS  PubMed  Google Scholar 

  38. Teshfam M, Saeidi J, Zarei A (2010) Morphological and enzymological studies of the small intestine villi of rats receiving diets containing different levels of protein. J Appl Anim Res 37:207–211. https://doi.org/10.1080/09712119.2010.9707125

    Article  Google Scholar 

  39. Chen X, Chen X, Qiu S et al (2014) Effects of epimedium polysaccharide-propolis flavone oral liquid on mucosal immunity in chickens. Int J Biol Macromol 64:6–10. https://doi.org/10.1016/j.ijbiomac.2013.11.015

    Article  CAS  PubMed  Google Scholar 

  40. Pelaseyed T, Bergström JH, Gustafsson JK et al (2014) The mucus and mucins of the goblet cells and enterocytes provide the first defense line of the gastrointestinal tract and interact with the immune system. Immunol Rev 260:8–20. https://doi.org/10.1111/imr.12182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bai Y, Huang F, Zhang R et al (2020) Longan pulp polysaccharide protects against cyclophosphamide-induced immunosuppression in mice by promoting intestinal secretory IgA synthesis. Food Funct 11:2738–2748. https://doi.org/10.1039/C9FO02780G

    Article  CAS  PubMed  Google Scholar 

  42. Cockburn DW, Koropatkin NM (2016) Polysaccharide degradation by the intestinal microbiota and its influence on human health and disease. J Mol Biol 428:3230–3252. https://doi.org/10.1016/j.jmb.2016.06.021

    Article  CAS  PubMed  Google Scholar 

  43. Coutinho CMLM, Coutinho-Silva R, Zinkevich V et al (2017) Sulphate-reducing bacteria from ulcerative colitis patients induce apoptosis of gastrointestinal epithelial cells. Microb Pathog 112:126–134. https://doi.org/10.1016/j.micpath.2017.09.054

    Article  CAS  PubMed  Google Scholar 

  44. Gong Q-H, Shi X-R, Hong Z-Y et al (2011) A new hope for neurodegeneration: possible role of hydrogen sulfide. J Alzheimers Dis 24:173–182. https://doi.org/10.3233/JAD-2011-110128

    Article  CAS  PubMed  Google Scholar 

  45. Loubinoux J, Jaulhac B, Piemont Y et al (2003) Isolation of sulfate-reducing bacteria from human thoracoabdominal pus. J Clin Microbiol 41:1304–1306. https://doi.org/10.1128/JCM.41.3.1304-1306.2003

    Article  PubMed  PubMed Central  Google Scholar 

  46. Sayavedra L, Li T, Bueno Batista M et al (2022) Desulfovibrio diazotrophicus sp. nov., a sulfate-reducing bacterium from the human gut capable of nitrogen fixation. Environ Microbiol 24:4971. https://doi.org/10.1111/1462-2920.16239

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Key Research and Development Program of China (2022YFD1801104), National Natural Science Foundation of China (31602101), International Cooperation Program of Gansu Province (22YF7WA032), and Technical innovation guidance plan of Gansu Province (22CX8NA013).

Author information

Authors and Affiliations

Authors

Contributions

LDP and ZJY provided the research idea. WL, LQ, GZT, XGW, ZH, WL, GZT and ZK contributed reagents, materials, and analysis tools. LDP and HSW performed the experiments and wrote the manuscript. LJX and ZJY revised the manuscript. All authors participated in writing and reviewing the manuscript.

Corresponding author

Correspondence to **gyan Zhang.

Ethics declarations

Competing Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Han, S., Zhang, K. et al. Genome Analysis and Safety Assessment of Achromobacter marplatensis Strain YKS2 Strain Isolated from the Rumen of Yaks in China. Probiotics & Antimicro. Prot. (2023). https://doi.org/10.1007/s12602-023-10124-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-023-10124-z

Keywords

Navigation