Log in

Probiotic Characteristics of Lactiplantibacillus Plantarum N-1 and Its Cholesterol-Lowering Effect in Hypercholesterolemic Rats

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

In this study, the probiotic potential and treatment effects of Lactiplantibacillus plantarum N-1 in hypercholesterolemic rats were investigated, and the possible regulatory mechanisms of lipid metabolism via short-chain fatty acids (SCFAs) and 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase were elucidated. The strain N-1 displayed probiotic properties of antioxidant capacity, adhesion to Caco-2 cells, susceptibility to antibiotics in vitro. The results in animal study showed that the total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) levels in serum and TC in liver declined significantly in both N-1 and simvastatin (Sta) treatment groups compared to the control (P < 0.05), and the extent of these decreases were similar between them. The expression of the HMG-CoA gene in the N-1 group was downregulated significantly by 31.18% compared to the control (P < 0.01), and the contents of butyrate and valerate in N-1 groups were significantly higher than those in both model and Sta group (P < 0.05). Thus, promoting the production of the intestinal SCFAs and inhibiting the expression of HMG-CoA reductase by L. plantarum N-1 may contribute to the improved lipid metabolism and thus lowering cholesterol level in rats. Our investigation indicated that L. plantarum N-1 has the potential to be developed into a functional food supplement for hypercholesterolemia treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of Data and Material

All other data are available from the corresponding authors upon reasonable request.

Code Availability

Not applicable.

References

  1. De Winter CF, Bastiaanse LP, Hilgenkamp TI, Evenhuis HM, Echteld MA (2012) Cardiovascular risk factors (diabetes, hypertension, hypercholesterolemia and metabolic syndrome) in older people with intellectual disability: results of the HA-ID study. Res Dev Disabil 33(6):1722–1731. https://doi.org/10.1016/j.ridd.2012.04.010

    Article  PubMed  Google Scholar 

  2. Clark AM, DesMeules M, Luo W, Duncan AS, Wielgosz A (2009) Socioeconomic status and cardiovascular disease: risks and implications for care. Nat Rev Cardiol 6(11):712–722. https://doi.org/10.1038/nrcardio.2009.163

    Article  PubMed  Google Scholar 

  3. Menge T, von Büdingen HC, Zamvil SS, Hartung HP, Kieseier BC, Stüve O (2005) Statine zur Behandlung von Erkrankungen des zentralen Nervensystems. Nervenarzt 76(4):426–437. https://doi.org/10.1007/s00115-004-1806-4

    Article  CAS  PubMed  Google Scholar 

  4. Sharma S, Kurpad AV, Puri S (2016) Potential of probiotics in hypercholesterolemia: A meta-analysis. Indian J Public Health 60(4):280–286. https://doi.org/10.4103/0019-557X.195859

    Article  PubMed  Google Scholar 

  5. Kim HS, Kim H, Lee H, Park B, Park S, Lee SH, Cho JH, Song H, Kim JH, Yoon KH, Choi IY (2016) Analysis and comparison of statin prescription patterns and outcomes according to clinical department. J Clin Pharm Ther 41(1):70–77. https://doi.org/10.1111/jcpt.12350

    Article  CAS  PubMed  Google Scholar 

  6. Collins R, Reith C, Emberson J, Armitage J, Baigent C, Blackwell L, Blumenthal R, Danesh J, Smith GD, DeMets D, Evans S, Law M, MacMahon S, Martin S, Neal B, Poulter N, Preiss D, Ridker P, Roberts I, Rodgers A, Sandercock P, Schulz K, Sever P, Simes J, Smeeth L, Wald N, Yusuf S, Peto R (2016) Interpretation of the evidence for the efficacy and safety of statin therapy. Lancet 388(10059):2532–2561. https://doi.org/10.1016/s0140-6736(16)31357-5

    Article  CAS  PubMed  Google Scholar 

  7. Liu A, Wu Q, Guo J, Ares I, Rodríguez JL, Martínez-Larrañaga MR, Yuan Z, Anadón A, Wang X, Martínez MA (2019) Statins: Adverse reactions, oxidative stress and metabolic interactions. Pharmacol Ther 195:54–84. https://doi.org/10.1016/j.pharmthera.2018.10.004

    Article  CAS  PubMed  Google Scholar 

  8. Nabi XH, Ma CY, Manaer T, Heizati M, Wulazibieke B, Aierken L (2016) Anti-atherosclerotic effect of traditional fermented cheese whey in atherosclerotic rabbits and identification of probiotics. BMC Complement Altern Med 16(1):309. https://doi.org/10.1186/s12906-016-1285-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ding W, Shi C, Chen M, Zhou J, Long R, Guo X (2017) Screening for lactic acid bacteria in traditional fermented Tibetan yak milk and evaluating their probiotic and cholesterol-lowering potentials in rats fed a high-cholesterol diet. J Funct Foods 32:324–332. https://doi.org/10.1016/j.jff.2017.03.021

    Article  CAS  Google Scholar 

  10. Liu Y, Zhao F, Liu J, Wang H, Han X, Zhang Y, Yang Z (2017) Selection of cholesterol-lowering lactic acid bacteria and its effects on rats fed with high-cholesterol diet. Curr Microbiol 74(5):623–631. https://doi.org/10.1007/s00284-017-1230-1

    Article  CAS  PubMed  Google Scholar 

  11. Park YH, Kim JG, Shin YW, Kim SH, Whang KY (2007) Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J Microbiol Biotechnol 17(4):655–662. https://doi.org/10.1007/s10295-006-0202-4

    Article  CAS  PubMed  Google Scholar 

  12. Pan DD, Zeng XQ, Yan YT (2011) Characterisation of Lactobacillus fermentum SM-7 isolated from koumiss, a potential probiotic bacterium with cholesterol-lowering effects. J Sci Food Agric 91(3):512–518. https://doi.org/10.1002/jsfa.4214

    Article  CAS  PubMed  Google Scholar 

  13. Stine JE, Guo H, Sheng X, Han X, Schointuch MN, Gilliam TP, Gehrig PA, Zhou C, Bae-Jump VL (2016) The HMG-CoA reductase inhibitor, simvastatin, exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer. Oncotarget 7(1):946–960. https://doi.org/10.18632/oncotarget.5834

  14. Garcia-Gonzalez N, Battista N, Prete R, Corsetti A (2021) Health-promoting role of Lactiplantibacillus plantarum isolated from fermented foods. Microorganisms 9(2):349. https://doi.org/10.3390/microorganisms9020349

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Shehata MG, El Sohaimy SA, El-Sahn MA, Youssef MM (2016) Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Ann Agric Sci 61(1):65–75. https://doi.org/10.1016/j.aoas.2016.03.001

    Article  Google Scholar 

  16. Le B, Yang SH (2018) Identification of a novel potential probiotic Lactobacillus plantarum FB003 isolated from salted-fermented shrimp and its effect on cholesterol absorption by regulation of NPC1L1 and PPARα. Probiotics Antimicrob Proteins 11(3):785–793. https://doi.org/10.1007/s12602-018-9469-9

    Article  CAS  Google Scholar 

  17. Aminlari L, Shekarforoush SS, Hosseinzadeh S, Nazifi S, Sajedianfard J, Eskandari MH (2019) Effect of probiotics Bacillus coagulans and Lactobacillus plantarum on lipid profile and feces bacteria of rats fed cholesterol-enriched diet. Probiotics Antimicrob Proteins 11(4):1163–1171. https://doi.org/10.1007/s12602-018-9480-1

    Article  CAS  PubMed  Google Scholar 

  18. Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Demchenko OA, Nechypurenko OV, Spivak MY (2017) Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA J 8(4):357–376. https://doi.org/10.1007/s13167-017-0117-3

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kazemian N, Mahmoudi M, Halperin F, Wu JC, Pakpour S (2020) Gut microbiota and cardiovascular disease: opportunities and challenges. Microbiome 8(1):36. https://doi.org/10.1038/s41564-018-0272-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Khare A, Gaur S (2020) Cholesterol-lowering effects of Lactobacillus Species. Curr Microbiol 77(4):638–644. https://doi.org/10.1007/s00284-020-01903-w

    Article  CAS  PubMed  Google Scholar 

  21. Zhang Q, Song X, Sun W, Wang C, Li C, He L, Wang X, Tao H, Zeng X (2021) Evaluation and application of different cholesterol-lowering lactic acid bacteria as potential meat starters. J Food Prot 84(1):63–72. https://doi.org/10.4315/jfp-20-225

    Article  CAS  PubMed  Google Scholar 

  22. Aguilar EC, Leonel AJ, Teixeira LG, Silva AR, Silva JF, Pelaez JM, Capettini LS, Lemos VS, Santos RA, Alvarez-Leite JI (2014) Butyrate impairs atherogenesis by reducing plaque inflammation and vulnerability and decreasing NFκB activation. Nutr Metab Cardiovasc Dis 24(6):606–613. https://doi.org/10.1016/j.numecd.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  23. Lambertz J, Weiskirchen S, Landert S, Weiskirchen R (2017) Fructose: a dietary sugar in crosstalk with microbiota contributing to the development and progression of non-alcoholic liver disease. Front Immunol 8:1159. https://doi.org/10.3389/fimmu.2017.01159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, Zhang C (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156. https://doi.org/10.1126/science.aao5774

    Article  CAS  PubMed  Google Scholar 

  25. Stine JE, Guo H, Sheng X, Han X, Schointuch MN, Gilliam TP, Gehrig PA, Zhou C, Bae-Jump VL (2016) The HMG-CoA reductase inhibitor, simvastatin, exhibits anti-metastatic and anti-tumorigenic effects in ovarian cancer. Oncotarget 7(1):946–960. https://doi.org/10.18632/oncotarget.5834

  26. Pan LL, Niu W, Fang X, Liang W, Li H, Chen W, Zhang H, Bhatia M, Sun J (2019) Clostridium butyricum strains suppress experimental acute pancreatitis by maintaining intestinal homeostasis. Mol Nutr Food Res e1801419. https://doi.org/10.1002/mnfr.201801419

  27. Haghshenas B, Haghshenas M, Nami Y, Khosroushahi AY, Hejazi MS (2015) Probiotic assessment of Lactobacillus plantarum 15HN and Enterococcus mundtii 50H isolated from traditional dairies microbiota. Adv Pharm Bull 6(1):37. https://doi.org/10.15171/apb.2016.007

  28. Hara H, Haga S, Aoyama Y, Kiriyama S (1999) Short-chain fatty acids suppress cholesterol synthesis in rat liver and intestine. J Nutr 129(5):942–948. https://doi.org/10.1093/jn/129.5.942

    Article  CAS  PubMed  Google Scholar 

  29. Kasahara K, Krautkramer KA, Org E, Romano KA, Kerby RL, Vivas EI, Mehrabian M, Denu JM, Bäckhed F, Lusis AJ, Rey FE (2018) Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol 3(12):1461–1471. https://doi.org/10.1038/s41564-018-0272-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kondo T, Kishi M, Fushimi T, Uga** S, Kaga T (2009) Vinegar intake reduces body weight, body fat mass, and serum triglyceride levels in obese Japanese subjects. Biosci Biotechnol Biochem 73(8):1837–1843. https://doi.org/10.1271/bbb.90231

    Article  CAS  PubMed  Google Scholar 

  31. Liu RM, Tian YY, Geng Q, Shi JY, Zhang Y, Sun Q (2017) Isolation, identification and functional properties of lactic acid bacteria derived from traditional cheese in Daocheng, Sichuan. China measurement & test 43(12):58–62 (in Chinese). https://doi.org/10.11857/j.issn.1674-5124.2017.12.011

  32. Lin MY, Yen CL (1999) Antioxidative ability of lactic acid bacteria. J Agric Food Chem 47(4):1460–1466. https://doi.org/10.1021/jf981149l

    Article  CAS  PubMed  Google Scholar 

  33. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT 28(1):25–30. https://doi.org/10.1016/s0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  34. Oyaizu M (1986) Studies on products of browning reaction antioxidative activities of products of browning reaction prepared from glucosamine. J Nutr Sci 44(6):307–316. https://doi.org/10.5264/eiyogakuzashi.44.307

    Article  CAS  Google Scholar 

  35. Anandharaj M, Sivasankari B (2014) Isolation of potential probiotic Lactobacillus oris HMI68 from mother’s milk with cholesterol-reducing property. J Biosci Bioeng 118(2):153–159. https://doi.org/10.1016/j.jbiosc.2014.01.015

    Article  CAS  PubMed  Google Scholar 

  36. Clinical Laboratory Standard Institute (2017) Performance standards for antimicrobial susceptibility testing, 27th edn. PA, USA

    Google Scholar 

  37. Haghshenas B, Haghshenas M, Nami Y, Khosroushahi AY, Hejazi MS (2016) Probiotic Assessment of Lactobacillus plantarum 15HN and Enterococcus mundtii 50H Isolated from Traditional Dairies Microbiota. Adv Pharm Bull 6(1):37. https://doi.org/10.15171/apb.2016.007

  38. **e N, Cui Y, Yin YN, Zhao X, Yang JW, Wang ZG, Fu N, Tang Y, Wang XH, Liu XW, Wang CL, Lu FG (2011) Effects of two Lactobacillus strains on lipid metabolism and intestinal microflora in rats fed a high-cholesterol diet. BMC Complement Altern Med 11:53. https://doi.org/10.1186/1472-6882-11-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ, Cummings OW, Ferrell LD, Liu YC, Torbenson MS, Unalp-Arida A, Yeh M, McCullough AJ, Sanyal AJ (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41(6):1313–1321. https://doi.org/10.1002/hep.20701

    Article  PubMed  Google Scholar 

  40. Huang YY, Guo J, Li HX, Yang AJ, Feng LK, Peng XX, Liu DM (2018) In vitro screening of lactic acid bacteria for cholesterol-lowering activity and the underlying mechanism. Food science 39(6): 88–94 (in Chinese). https://doi.org/10.7506/spkx1002-6630-201806015

  41. Jia YQ, Ye FY, Wang S, Zhang YQ, Bai SS (2012) Extraction and determination of short-chain fatty acids in biological samples. Research and exploration in laboratory 31(7): 274–276 (in Chinese). https://doi.org/CNKI:SUN:SYSY.0.2012-07-077

  42. Kumherová M, Veselá K, Kosová M, Mašata J, Horáčková Š, Šmidrkal J (2021) Novel potential probiotic Lactobacilli for prevention and treatment of vulvovaginal infections. Probiotics Antimicrob Proteins 13(1):163–172. https://doi.org/10.1007/s12602-020-09675-2

    Article  CAS  PubMed  Google Scholar 

  43. Śliżewska K, Chlebicz-Wójcik A, Nowak A (2021) Probiotic properties of new Lactobacillus strains intended to be used as feed additives for monogastric animals. Probiotics Antimicrob Proteins 13(1):146–162. https://doi.org/10.1007/s12602-020-09674-3

    Article  CAS  PubMed  Google Scholar 

  44. Yu Z, Zhang X, Li S, Li C, Li D, Yang Z (2013) Evaluation of probiotic properties of Lactobacillus plantarum strains isolated from Chinese sauerkraut. World J Microbiol Biotechnol 29(3):489–498. https://doi.org/10.1007/s11274-012-1202-3

    Article  CAS  PubMed  Google Scholar 

  45. Shi Y, Cui X, Gu S, Yan X, Li R, **a S, Chen H, Ge J (2019) Antioxidative and probiotic activities of lactic acid bacteria isolated from traditional artisanal milk cheese from Northeast China. Probiotics Antimicrob Proteins 11(4):1086–1099. https://doi.org/10.1007/s12602-018-9452-5

    Article  CAS  PubMed  Google Scholar 

  46. Jang HJ, Song MW, Lee NK, Paik HD (2018) Antioxidant effects of live and heat-killed probiotic Lactobacillus plantarum Ln1 isolated from kimchi. J Food Sci Technol 55(8):3174–3180. https://doi.org/10.1007/s13197-018-3245-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jung JH, Kim SJ, Lee JY, Yoon SR, You SY, Kim SH (2019) Multifunctional properties of Lactobacillus plantarum strains WiKim83 and WiKim87 as a starter culture for fermented food. Food Sci Nutr 7(8):2505–2516. https://doi.org/10.1002/fsn3.1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Zhang L, Zhang X, Liu C, Li C, Li S, Li T, Li D, Zhao Y, Yang Z (2013) Manufacture of Cheddar cheese using probiotic Lactobacillus plantarum K25 and its cholesterol-lowering effects in a mice model. World J Microbiol Biotechnol 29(1):127–135. https://doi.org/10.1007/s11274-012-1165-4

    Article  CAS  PubMed  Google Scholar 

  49. Li C, Nie SP, Ding Q, Zhu KX, Wang ZJ, **ong T, Gong J, **e MY (2014) Cholesterol-lowering effect of Lactobacillus plantarum NCU116 in a hyperlipidaemic rat model. J Funct Foods 8(1):340–347. https://doi.org/10.1016/j.jff.2014.03.031

    Article  CAS  Google Scholar 

  50. Lim FT, Lim SM, Ramasamy K (2017) Pediococcus acidilactici LAB4 and Lactobacillus plantarum LAB12 assimilate cholesterol and modulate ABCA1, CD36, NPC1L1 and SCARB1 in vitro. Benef Microbes 8(1):97–109. https://doi.org/10.3920/bm2016.0048

    Article  CAS  PubMed  Google Scholar 

  51. Peng Q, Zeng XF, Zhu JL, Wang S, Liu XT, Hou CL, Thacker PA, Qiao SY (2016) Effects of dietary Lactobacillus plantarum B1 on growth performance, intestinal microbiota, and short chain fatty acid profiles in broiler chickens. Poult Sci 95(4):893–900. https://doi.org/10.3382/ps/pev435

    Article  CAS  PubMed  Google Scholar 

  52. Zhang Q, Fan X, Ye R, Hu Y, Zheng T, Shi R, Cheng W, Lv X, Chen L, Liang P (2020) The Effect of simvastatin on gut microbiota and lipid metabolism in hyperlipidemic rats induced by a high-fat diet. Front Pharmacol 11:522. https://doi.org/10.3389/fphar.2020.00522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. He X, Zheng N, He J, Liu C, Feng J, Jia W, Li H (2017) Gut microbiota modulation attenuated the hypolipidemic effect of simvastatin in high-fat/cholesterol-diet fed mice. J Proteome Res 16(5):1900–1910. https://doi.org/10.1021/acs.jproteome.6b00984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Den Besten G, Van Eunen K, Groen AK, Venema K, Reijngoud DJ, Bakker BM (2013) The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res 54(9):2325–2340. https://doi.org/10.1194/jlr.R036012

    Article  CAS  Google Scholar 

  55. Chen L, Liu Y, Tang Z, Shi X, Song Z, Cao F, Wei P, Li M, Li X, Jiang D, Yan Y, Yang N (2021) Improvements in estrogen deficiency-induced hypercholesterolemia by Hypericum perforatum L. extract are associated with gut microbiota and related metabolites in ovariectomized (OVX) rats. Biomed Pharmacother 135:111131. https://doi.org/10.1016/j.biopha.2020.111131

  56. Fushimi T, Suruga K, Oshima Y, Fukiharu M, Tsukamoto Y, Goda T (2006) Dietary acetic acid reduces serum cholesterol and triacylglycerols in rats fed a cholesterol-rich diet. Br J Nutr 95(5):916–924. https://doi.org/10.1079/BJN20061740

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the Israeli Council for Higher Education (CHE) for its support.

Funding

This work was supported by the National Key Research and Development Projects (2019YFE0103800), Sichuan Science and Technology Program (2021ZHFP0045, 2021YFN0092, 2022YFN0021), International Research and Development Program of Sichuan (2019YFH0113, 2021YFH0060, 2021YFH0072), the Fundamental Research Funds for the Central Universities (2020CDLZ-17), and the National University Student Innovation Experimental Project [201913705030].

Author information

Authors and Affiliations

Authors

Contributions

Lei Tian and Rongmei Liu: data curation and writing; Rongmei Liu, Zhiwei Zhou, **aofang Xu, and Su Feng: investigation; Ariel Kushmaro and Robert S. Marks: supervision; Dan Wang: project administration; Qun Sun: conceptualization, writing-reviewing and editing.

Corresponding authors

Correspondence to Dan Wang or Qun Sun.

Ethics declarations

Ethics Approval

All animal experiments were approved by the Ethics Committee of College of Life Sciences, Sichuan University (protocol numbers: 20201224001).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, L., Liu, R., Zhou, Z. et al. Probiotic Characteristics of Lactiplantibacillus Plantarum N-1 and Its Cholesterol-Lowering Effect in Hypercholesterolemic Rats. Probiotics & Antimicro. Prot. 14, 337–348 (2022). https://doi.org/10.1007/s12602-021-09886-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09886-1

Keywords

Navigation