Log in

Identification of adult plant rust resistance genes in some pre and post-green revolution Indian bread-wheat varieties

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

Achieving durable resistance against wheat rust diseases is a primary goal of many wheat breeding programmes. This study aimed to characterize adult plant rust resistance in some old and new Indian bread-wheat varieties. Sixty-four bread wheat genotypes were evaluated to identify adult plant resistance (APR) to stripe rust and leaf rust during 2016-17 and 2017-18 under controlled environment. In these genotypes, APR was characterized using final disease score (FDS), average coefficient of infection (ACI), and area under disease progress curve (AUDPC). Majority of the genotypes were susceptible to moderately susceptible to stripe rust and moderately resistant to moderately susceptible to leaf rust. Leaf tip necrosis (LTN) and pseudo black chaff (PBC) were present in 41 and 33 genotypes, respectively. The three linked diagnostic molecular markers for APR genes, viz. Yr18/Lr34, Yr46/Lr67 and Lr68 were used to characterize the test genotypes and interestingly, 39 genotypes possessed at least one of the three resistance genes. None of the genotypes carried all the three genes. Lr68 was present in the highest frequency. Pre-green revolution tall Indian bread-wheat varieties, viz. NP101, NP836, NP850, NP856, NP876, and NP880 showed the presence of both Yr46/Lr67 and Lr68, whereas Yr18/Lr34 and Sr2/Yr30 were absent. Post-green revolution semi-dwarf wheats showed new combinations of APR with decreased frequency of Yr46/Lr67 and Lr68 genes. The results of this investigation suggest that the APR genes Yr46/Lr67 and Lr68 do not function additively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data availability

Not applicable.

References

  • Bansal, U. K., Hayden, M. J., Gill, M. B., & Bariana, H. S. (2010). Molecular map** of a seedling stripe rust resistance gene in wheat cultivar rubric. Euphytica, 171, 121–127. https://doi.org/10.1007/s10681-009-0007-4

    Article  Google Scholar 

  • Bhardwaj, S. C., Prasad, P., Gangwar, O. P., Khan, H., & Kumar, S. (2016). Wheat rust research-then and now. Indian Journal of Agricultural Sciences, 86(10), 1231–1244.

    Article  Google Scholar 

  • Bhardwaj, S., Prashar, M., Jain, S., Kumar, S., Sharma, Y., Sivasamy, M., & Kalappanavar, I. (2010a). Virulence of Puccinia triticina on Lr28 in wheat and its evolutionary relation to prevalent pathotypes in India. Cereal Research Communications, 38(1), 83–89. https://doi.org/10.1556/crc.38.2010.1.9

    Article  Google Scholar 

  • Bhardwaj, S. C., Prashar, M., Jain, S. K., Kumar, S., & Datta, D. (2010b). Adult plant resistance in some Indian wheat genotypes and postulation of leaf rust resistance genes. Indian Phytopathology, 63(2), 174–180.

    CAS  Google Scholar 

  • Bhardwaj, S. C., Singh, G. P., Gangwar, O. P., Prasad, P., & Kumar, S. (2019). Status of wheat rust research and progress in rust management-indian context. Agronomy, 9(12), 892. https://doi.org/10.3390/agronomy9120892

    Article  CAS  Google Scholar 

  • Bjarko, M. E., & Line, R. F. (1988). Heritability and number of genes controlling leaf rust resistance. Phytopathology, 78, 457–461.

    Article  Google Scholar 

  • Borghi, B. (2001). Italian wheat pool. In A. P. Bonjean & W. J. Angus (Eds.), The world wheat book: A history of wheat breeding (pp. 289–309). Intercept.

    Google Scholar 

  • Brown, G. N. (1997). The inheritance and expression of leaf chlorosis associated with gene Sr2 for adult plant resistance to wheat stem rust. Euphytica, 9, 67–71.

    Article  Google Scholar 

  • Dyck, P. L. (1991). Genetics of adult-plant leaf rust resistance in ‘Chinese spring’ and ‘Sturdy’ wheats. Crop Science, 31(2), 309–311. https://doi.org/10.2135/cropsci1991.0011183x003100020016x

    Article  Google Scholar 

  • Dyck, P. L., & Samborski, D. J. (1979). Adult-plant leaf rust resistance in PI 250413, an introduction of common wheat. Canadian Journal of Plant Science, 59(2), 329–332. https://doi.org/10.4141/cjps79-053

    Article  Google Scholar 

  • Ellis, J. G., Lagudah, E. S., Spielmeyer, W., & Dodds, P. N. (2014). The past, present and future of breeding rust resistant wheat. Frontiers in Plant Science, 5, 641. https://doi.org/10.3389/fpls.2014.00641

    Article  PubMed  PubMed Central  Google Scholar 

  • Gangwar, O. P., Kumar, S., Bhardwaj, S. C., Kashyap, P. L., Prasad, P., & Khan, H. (2019). Characterization of three new Yr9-virulences and identification of sources of resistance among recently developed Indian bread wheat germplasm. Journal of Plant Pathology, 101, 955–963. https://doi.org/10.1007/s42161-019-00302-w

    Article  Google Scholar 

  • Gangwar, O. P., Kumar, S., Bhardwaj, S. C., Prasad, P., Kashyap, P. L., Khan, H., … Savadi, S. (2021). Virulence and molecular diversity among Puccinia Striiformis f. sp. tritici pathotypes identified in India between 2015 and 2019. Crop Protection, 148,. https://doi.org/10.1016/j.cropro.2021.105717

  • Herrera-Foessel, S. A., Lagudah, E. S., Huerta-Espino, J., Hayden, M. J., Bariana, H. S., Singh, D., & Singh, R. P. (2011). New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theoretical and Applied Genetics, 122, 239–249. https://doi.org/10.1007/s00122-010-1439-x

    Article  PubMed  Google Scholar 

  • Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Rosewarne, G. M., Periyannan, S. K., Viccars, L., & Lagudah, E. S. (2012). Lr68: A new gene conferring slow rusting resistance to leaf rust in wheat. Theoretical and Applied Genetics, 124, 1475–1486. https://doi.org/10.1007/s00122-012-1802-1

    Article  CAS  PubMed  Google Scholar 

  • Herrera-Foessel, S. A., Singh, R. P., Lillemo, M., Huerta-Espino, J., Bhavani, S., Singh, S., … Lagudah, E. S. (2014). Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theoretical and Applied Genetics, 127, 781–789. https://doi.org/10.1007/s00122-013-2256-9

  • Huerta-Espino, J., Singh, R., Crespo-Herrera, L. A., Villaseñor-Mir, H. E., Rodriguez-Garcia, M. F., Dreisigacker, S., … Lagudah, E. (2020). Adult plant slow rusting genes confer high levels of resistance to rusts in bread wheat cultivars from Mexico. Frontiers in Plant Science, 11,. https://doi.org/10.3389/fpls.2020.00824

  • Huerta-Espino, J., Singh, R. P., German, S., McCallum, B. D., Park, R. F., Chen, W. Q., & Goyeau, H. (2011). Global status of wheat leaf rust caused by Puccinia Triticina. Euphytica, 179, 143–160. https://doi.org/10.1007/s10681-011-0361-x

    Article  Google Scholar 

  • Khan, H., Bhardwaj, S. C., Gangwar, O. P., Prasad, P., Kashyap, P. L., Savadi, S., & Rathore, R. (2017). Identifying some additional rust resistance genes in Indian wheat varieties using robust markers. Cereal Research Communications, 45(4), 633–646. https://doi.org/10.1556/0806.45.2017.041

    Article  CAS  Google Scholar 

  • Kolmer, J. A. (2015). A QTL on chromosome 5BL in wheat enhances leaf rust resistance of Lr46. Molecular Breeding, 35, 74. https://doi.org/10.1007/s11032-015-0274-9

    Article  CAS  Google Scholar 

  • Kolmer, J. A., Singh, R. P., Garvin, D. F., Viccars, L., William, H. M., Huerta-Espino, J., ... & Lagudah, E. S. (2008). Analysis of the Lr34/Yr18 rust resistance region in wheat germplasm. Crop Science, 48(5), 1841–1852. https://doi.org/10.2135/cropsci2007.08.0474

  • Kumar, S., Bhardwaj, S. C., Gangwar, O. P., Prasad, P., Chakrabarty, R., Kashyap, P. L., & Malaker, P. K. (2022). Characterization of five new pathotypes of Puccinia triticina identified from Northeast India, Nepal, and Bangladesh. Australasian Plant Pathology, 51(3), 315–325. https://doi.org/10.1007/s13313-022-00857-w

    Article  CAS  Google Scholar 

  • Lagudah, E. S., McFadden, H., Singh, R. P., Huerta-Espino, J., Bariana, H. S., & Spielmeyer, W. (2006). Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theoretical and Applied Genetics, 114, 21–30. https://doi.org/10.1007/s00122-006-0406-z

    Article  CAS  PubMed  Google Scholar 

  • Lata, C., Kumar, A., Gangwar, O. P., Prasad, P., Adhikari, S., Kumar, S., … Bhardwaj, S. C. (2021). Multiplex PCR assay for the detection of Lr24 and Lr68 in salt tolerant wheat genotypes. Cereal Research Communications, 50, 1019–1027. https://doi.org/10.1007/s42976-021-00218-1

  • Lillemo, M., Asalf, B., Singh, R. P., Huerta-Espino, J., Chen, X. M., He, Z. H., & Bjørnstad, Å. (2008). The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theoretical and Applied Genetics, 116, 1155–1166. https://doi.org/10.1007/s00122-008-0743-1

    Article  CAS  PubMed  Google Scholar 

  • Madenova, A., Kokhmetova, A., Kampitova, G., Atishova, M., & Purnhauser, L. (2015). Identification of the carriers of genes for resistance to wheat leaf rust using molecular markers. Biosciences Biotechnology Research Asia, 12(2), 1683–1690.

    Article  Google Scholar 

  • McCallum, B. D., & Hiebert, C. W. (2022). Interactions between Lr67 or Lr34 and other leaf rust resistance genes in wheat (Triticum aestivum). Frontiers in Plant Science, 13, 871970. https://doi.org/10.3389/fpls.2022.871970

    Article  PubMed  PubMed Central  Google Scholar 

  • McFadden, E. S. (1930). A successful transfer of Emmer characters to vulgare wheat. Journal of the American Society of Agronomy, 22, 1020–1034.

    Article  Google Scholar 

  • McIntosh, R. A. (1998). Breeding wheat for resistance to biotic stress. Euphytica, 100, 19–34.

    Article  Google Scholar 

  • McIntosh, R. A., Dubcovsky, J., Rogers, W. J., **a, X. C., & Raupp, W. J. (2020). Catalogue of Gene Symbols for Wheat – 2020 Supplement. http://wheat.pw.usda.gov/GG2/Triticum/wgc/2008. Accessed 24 Jan 2022.

  • McIntosh, R. A., Wellings, C. R., & Park, R. F. (1995). Wheat rusts: An atlas of resistance genes. CSIRO Publishing.

    Book  Google Scholar 

  • Mishra, A. N., Tiwari, K. N., Singh, V. K., Sivasamy, M., Pal, D., & Bhardwaj, S. C. (2021). Insights into the rust resistance base of common wheat (Triticum aestivum L.) in India. Indian Phytopathology, 74(2), 537–548. https://doi.org/10.1007/s42360-021-00374-8

    Article  Google Scholar 

  • Moore, J. W., Herrera-Foessel, S., Lan, C., Schnippenkoetter, W., Ayliffe, M., Huerta-Espino, J., … Lagudah, E. (2015). A recently evolved hexose transporter variant confers resistance to multiple pathogens in wheat. Nature Genetics, 47(12), 1494–1498. https://doi.org/10.1038/ng.3439

  • Peterson, R. F., Campbell, A. B., & Hannah, A. E. (1948). A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canadian Journal of Research, 26(5), 496–500.

    Article  Google Scholar 

  • Ponce-Molina, L. J., Huerta‐Espino, J., Singh, R. P., Basnet, B. R., Lagudah, E., Aguilar‐Rincón, V. H., & Lan, C. (2018). Characterization of adult plant resistance to leaf rust and stripe rust in Indian wheat cultivar ‘New Pusa 876.’ Crop Science, 58(2), 630–638.

    Article  CAS  Google Scholar 

  • Randhawa, M. S., Lan, C., Basnet, B. R., Bhavani, S., Huerta-Espino, J., Forrest, K. L., … Singh, R. P. (2018). Interactions among genes Sr2/Yr30, Lr34/Yr18/Sr57 and Lr68 confer enhanced adult plant resistance to rust diseases in common wheat (Triticum aestivum L.) line’arula’. Australian Journal of Crop Science, 12(6), 1023–1033. https://doi.org/10.21475/ajcs.18.12.06.PNE1305

  • Roelfs, A. P., Singh, R. P., & Saari, E. E. (1992). Rust diseases of wheat: concepts and methods of disease management (p. 81). CIMMYT.

    Google Scholar 

  • Rosewarne, G. M., Singh, R. P., Huerta-Espino, J., William, H. M., Bouchet, S., Cloutier, S., … Lagudah, E. S. (2006). Leaf tip necrosis, molecular markers and β1-proteasome subunits associated with the slow rusting resistance genes Lr46/Yr29. Theoretical and Applied Genetics, 112, 500–508. https://doi.org/10.1007/s00122-005-0153-6

  • Sheen, S. J., Ebeltoft, D. C., & Smith, G. S. (1968). Association and Inheritance of Black Chaff and stem rust reactions in Conley Wheat Crosses 1. Crop Science, 8(4), 477–480. https://doi.org/10.2135/cropsci1968.0011183X000800040025x

    Article  Google Scholar 

  • Singh, R. P. (1992). Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Science, 32(4), 874–878. https://doi.org/10.2135/cropsci1992.0011183x003200040008x

    Article  Google Scholar 

  • Singh, R. P., Herrera-Foessel, S., Huerta-Espino, J., Singh, S., Bhavani, S., Lan, C., & Basnet, B. R. (2014). Progress towards genetics and breeding for minor genes based resistance to Ug99 and other rusts in CIMMYT high-yielding spring wheat. Journal of Integrative Agriculture, 13(2), 255–261. https://doi.org/10.1016/S2095-3119(13)60649-8

    Article  CAS  Google Scholar 

  • Singh, R. P., Hodson, D. P., **, Y., Lagudah, E. S., Ayliffe, M. A., Bhavani, S., … Hovmøller, M. S. (2015). Emergence and spread of new races of wheat stem rust fungus: Continued threat to food security and prospects of genetic control. Phytopathology, 105(7), 872–884. https://doi.org/10.1094/PHYTO-01-15-0030-FI

  • Singh, R. P., & McIntosh, R. A. (1984). Complementary genes for reaction to Puccinia recondita tritici in Triticum aestivum. I. Genetic and linkage studies. Canadian Journal of Genetics and Cytology, 26(6), 723–735. https://doi.org/10.1139/g84-115

    Article  Google Scholar 

  • Singh, R. P., Nelson, J. C., & Sorrells, M. E. (2000). Map** Yr28 and other genes for resistance to stripe rust in wheat. Crop Science, 40(4), 1148–1155. https://doi.org/10.2135/cropsci2000.4041148x

    Article  CAS  Google Scholar 

  • Wellings, C. R. (2011). Global status of stripe rust: A review of historical and current threats. Euphytica, 179, 129–141. https://doi.org/10.1007/s10681-011-0360-y

    Article  Google Scholar 

  • William, M., Singh, R. P., Huerta-Espino, J., Islas, S. O., & Hoisington, D. (2003). Molecular marker map** of leaf rust resistance gene Lr46 and its association with stripe rust resistance gene Yr29 in wheat. Phytopathology, 93(2), 153–159. https://doi.org/10.1094/PHYTO.2003.93.2.153

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The authors acknowledge the financial support from the Indian Council of Agricultural Research.

Author information

Authors and Affiliations

Authors

Contributions

HK and SCB conceived the experiment. HK, OPG, PP and SK conducted the experiment. HK and SCB did data analysis. HK wrote the first draft. SCB, OPG and GPS edited and improved the article. All the authors read the final version of the manuscript and approved for submission.

Corresponding author

Correspondence to Hanif Khan.

Ethics declarations

Ethical approval

This investigation does not involve any studies with animals or human at any stage of experimentation.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, H., Bhardwaj, S.C., Gangwar, O.P. et al. Identification of adult plant rust resistance genes in some pre and post-green revolution Indian bread-wheat varieties. Phytoparasitica 52, 32 (2024). https://doi.org/10.1007/s12600-024-01153-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12600-024-01153-7

Keywords

Navigation