Log in

Application of extracts from Caribbean seaweeds improves plant growth and yields and increases disease resistance in tomato and sweet pepper plants

  • Published:
Phytoparasitica Aims and scope Submit manuscript

Abstract

The efficacy of alkaline extracts from Acanthophora spicifera, Gracilaria ornata, Codium taylorii, Caulerpa serrulata, and Sargassum vulgare was assessed both in vitro and in planta under greenhouse conditions. Seaweeds were collected from the coast of Trinidad, WI. Alkaline extracts were tested for their efficacy in promoting plant growth and performance in tomato (Solanum lycopersicum, Hybrid-61) and sweet pepper (Capsicum annuum, Amrit) and for their efficacy in controlling infections caused by Alternaria solani and Xanthomonas campestris pv. vesicatoria. Germination assays indicated that seed bio-priming with seaweed extracts lead to a significant increase in seed germination percentage (up to 21.7%), germination index (up to 21.86%) and seedling vigour index (up to 105.8%) compared to hydro-primed seeds. Mean germination time was also significantly reduced (up to 40.6%) in seaweed bio-primed seeds. Chlorophyll and carotenoid contents significantly increased (up to 18.3 and 42.5%, respectively) in seedlings that were bio-primed with seaweed extracts. Greenhouse trials showed that plants foliar sprayed with 0.5% v/v seaweed extract had significantly fewer incidences of bacterial spot (22.9–49.1% and 24.6–49.2% for sweet pepper and tomato, respectively) and early blight (32.8–48.3% and 31.9–47.5% for sweet pepper and tomato, respectively). Furthermore, seaweed extract treatments caused a significant increase in the fruit yield of tomato (118.2-181.8%) and sweet pepper (47.1–70.6%). In vitro antimicrobial assay revealed that all seaweed extracts had no direct antimicrobial effect against a panel of phytopathogens. However, upon foliar treatments with the extracts, the DNA levels of A. solani and X. campestris pv. vesicatoria were significantly lower compared to the controls. Seaweed extract-treated tomato and sweet pepper plants had significantly higher activities of chitinase, peroxidase, polyphenol oxidase, phenylalanine ammonia-lyase, glucanase and higher levels of total phenols. Concurrently, the upregulation of marker genes involved in the salicylic acid, jasmonic acid, and ethylene-mediated defence pathways was also observed in seaweed extract-treated plants. The above results point towards the elicitor-like activity of seaweed extracts on plants’ metabolic processes. This study, therefore, highlights the beneficial effects of extracts from Caribbean seaweeds and thus supports their potential use in plant systems as a sustainable crop input.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets used and/or analysed during the current study are available from the corresponding author upon reasonable request.

References

  • Ali, N., Farrell, A., Ramsubhag, A., & Jayaraj, J. (2016). The effect of Ascophyllum nodosum extract on the growth, yield and fruit quality of tomato grown under tropical conditions. Journal of Applied Phycology, 28(2), 1353–1362. https://doi.org/10.1007/s10811-015-0608-3

    Article  Google Scholar 

  • Ali, O., Ramsubhag, A., Daniram Benn, S., Jr, & Jayaraj, J. (2022). Transcriptomic changes induced by applications of a commercial extract of Ascophyllum nodosum on tomato plants. Scientific Reports, 12(1), 1–13. https://doi.org/10.1038/s41598-022-11263-z

    Article  CAS  Google Scholar 

  • Ali, O., Ramsubhag, A., & Jayaraj, J. (2018). Ascophyllum nodosum (Linnaeus) Le Jolis seaweed extract improves seed germination in tomato and sweet pepper under NaCl-induced salt stress. Tropical Agriculture, 95(July 2019), 141–148.

  • Ali, O., Ramsubhag, A., & Jayaraj, J. (2019). Biostimulatory activities of Ascophyllum nodosum extract in tomato and sweet pepper crops in a tropical environment. PLoS One, 14(5), 140–155. https://doi.org/10.1371/journal.pone.0216710

    Article  CAS  Google Scholar 

  • Ali, O., Ramsubhag, A., & Jayaraj, J. (2021a). Biostimulant properties of seaweed extracts in plants: Implications towards sustainable crop production. Plants, 10(3):1–27. https://doi.org/10.3390/plants10030531

  • Ali, O., Ramsubhag, A., & Jayaraj, J. (2021b). Phytoelicitor activity of Sargassum vulgare and Acanthophora spicifera extracts and their prospects for use in vegetable crops for sustainable crop production. Journal of Applied Phycology, 33(1), 639–651. https://doi.org/10.1007/s10811-020-02309-8

    Article  CAS  Google Scholar 

  • Aranda, P. S., Lajoie, D. M., & Jorcyk, C. L. (2012). Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis, 33(2). https://doi.org/10.1002/elps.201100335

  • Borad, V., & Sriram, S. (2008). Pathogenesis-related proteins for the plant protection. Asian Journal of Experimental Sciences, 22(3), 189–196.

    Google Scholar 

  • Bazoobandi, M., Rahimi, H., & Karimi-Shahri, M. R. (2020). Saffron crop protection. Saffron, 169–185. https://doi.org/10.1016/B978-0-12-818638-1.00010-1

  • Bekele, D., & Birhan, M. (2021). The impact of secondary macro nutrients on crop production. International Journal of Research Studies in Agricultural Sciences, 7, https://doi.org/10.20431/2454-6224.0705005

  • Berlin, A., Källström, H. N., Lindgren, A., & Olson, Å. (2018). Scientific evidence for sustainable plant disease protection strategies for the main arable crops in Sweden. A systematic map protocol. Environmental Evidence, 7. https://doi.org/10.1186/s13750-018-0141-3

  • Brent, K. J., Hollomon, D. W. (2007). Fungicide Resistance in Crop Pathogens: How Can it be Managed? FRAC Monograph 1. 2nd Ed. Brussels, CropLife International, Brussels: 55.

  • Choudhary, A., Kumar, A., & Kaur, N. (2020). ROS and oxidative burst: Roots in plant development. Plant Diversity, 42(1). https://doi.org/10.1016/j.pld.2019.10.002

  • Chaerani, R., & Voorrips, R. E. (2006). Tomato early blight (Alternaria solani):the pathogen, genetics, and breeding for resistance. Journal of General Plant Pathology, 72, 335–347.

    Article  Google Scholar 

  • Crouch, I. J., Beckett, R. P., & van Staden, J. (1990). Effect of seaweed concentrate on the growth and mineral nutrition of nutrient-stressed lettuce. Journal of Applied Phycology, 2(3), 269–272. https://doi.org/10.1007/BF02179784

    Article  Google Scholar 

  • Da Silva, M. B. P., Silva, V. N., & Vieira, L. C. (2021). Biopriming of sweet pepper and tomato seeds with ascophyllum nodosum. Revista Facultad Nacional de Agronomia Medellin, 74(1), 55–76. https://doi.org/10.15446/rfnam.v74n1.88240

    Article  Google Scholar 

  • Dookie, M., Ali, O., Ramsubhag, A., & Jayaraman, J. (2021). Flowering gene regulation in tomato plants treated with brown seaweed extracts. Scientia Horticulturae, 276. https://doi.org/10.1016/j.scienta.2020.109715

  • du Jardin, P. (2015). Plant biostimulants: Definition, concept, main categories and regulation. Scientia Horticulturae, 196:3–14. https://doi.org/10.1016/j.scienta.2015.09.021

  • Duncan, E. J., & Lee Lum, L. M. (2006). A checklist of the marine macroalgae of the Republic of Trinidad and Tobago. Caribbean Marine Studies, 7(3), 1–96.

    Google Scholar 

  • El Boukhari, M. E. M., Barakate, M., Bouhia, Y., & Lyamlouli, K. (2020). Trends in seaweed extract based biostimulants: Manufacturing process and beneficial effect on soil-plant systems. Plants, 9, 111–131.

    Article  Google Scholar 

  • El-Din, S. M. (2015). Utilization of seaweed extracts as bio-fertilizers to stimulate the growth of wheat seedlings. Egyptian Journal of Experimental Biology (Botany) 11(1)31–39

  • El-Sheekh M, Ismail M, Hamouda M (2016) Influence of Some Brown Seaweed Extracts on Germination and Cytological Responses of Trigonella foenum-graecum L. BioTechnol: An Indian Journal Research, 12(6), 104.

  • El Modafar, C., Elgadda, M., El Boutachfaiti, R., Abouraicha, E., Zehhar, N., Petit, E., Alaoui-Talibi, E., Courtois, Z., & Courtois, J. (2012). Induction of natural defence accompanied by salicylic acid-dependant systemic acquired resistance in tomato seedlings in response to bioelicitors isolated from green algae. Scientia Horticulturae, 138(5), 55–63. https://doi.org/10.1016/j.scienta.2012.02.011

    Article  CAS  Google Scholar 

  • Eugenia, M., Carvalho, A., Roberto, P., Dionisia, A., Novembre, L. C., Carvalho, M. E. A., Castro, P. R. C., Novembre, A. D. C., & Chamma, H. M. C. P. (2013). Seaweed extract improves the Vigor and provides the Rapid Emergence of Dry Bean Seeds. Journal of Agriculture and Environmental Sciences, 13, 8.

    Google Scholar 

  • Fan, D., Hodges, D. M., Critchley, A. T., & Prithiviraj, B. (2013). A commercial extract of Brown Macroalga (Ascophyllum nodosum) affects yield and the Nutritional Quality of Spinach in Vitro. Communications in Soil Science and Plant Analysis, 44(12), 1873–1884. https://doi.org/10.1080/00103624.2013.790404

    Article  CAS  Google Scholar 

  • Geiger, F., Bengtsson, J., Berendse, F., Weisser, W. W., Emmerson, M., Morales, M. B., Ceryngier, P., Liira, J., Tscharntke, T., Winqvist, C., Eggers, S., Bommarco, R., Pärt, T., Bretagnolle, V., Plantegenest, M., Clement, L. W., Dennis, C., Palmer, C., Oñate, J. J., & Inchausti, P. (2010). Persistent negative effects of pesticides on biodiversity and biological control potential on european farmland. Basic and Applied Ecology, 11(2). https://doi.org/10.1016/j.baae.2009.12.001

  • Hammerschmidt, R., Nuckles, E. M., & Kuć, J. (1982). Association of enhanced peroxidase activity with induced systemic resistance of cucumber to Colletotrichum lagenarium. Physiological Plant Pathology. https://doi.org/10.1016/0048-4059(82)90025-X

  • Hamouda, M. M., Saad-Allah, K. M., & Gad, D. (2022). Potential of seaweed extract on growth, physiological, cytological and biochemical parameters of wheat (Triticum aestivum L.) seedlings. Journal of Soil Science and Plant Nutrition. https://doi.org/10.1007/s42729-022-00774-3

    Article  Google Scholar 

  • Hernández-Herrera, R. M., Santacruz-Ruvalcaba, F., Ruiz-López, M. A., Norrie, J., & Hernández-Carmona, G. (2014). Effect of liquid seaweed extracts on growth of tomato seedlings (Solanum lycopersicum L.). Journal of Applied Phycology, 26(1), 619–628. https://doi.org/10.1007/s10811-013-0078-4

    Article  Google Scholar 

  • Hidangmayum, A., & Sharma, R. (2017). Effect of different concentration of commercial seaweed liquid extract of Ascophylum nodosum on germination of onion (Allium cepa L.). International Journal of Science and Research (IJSR), 6(7), 1488–1491. https://doi.org/10.21275/art20175686

    Article  Google Scholar 

  • Jannin, L., Arkoun, M., Etienne, P., Laîné, P., Goux, D., Garnica, M., Fuentes, M., Francisco, S. S., Baigorri, R., Cruz, F., Houdusse, F., Garcia-Mina, J. M., Yvin, J. C., Ourry, A., & Metabolisms, S. (2013). Brassica napus growth is promoted by Ascophyllum nodosum (L.) Le Jol. Seaweed extract: microarray analysis and physiological characterization of N. Journal of Plant Growth Regulation, 32(1), 31–52. https://doi.org/10.1007/s00344-012-9273-9

    Article  CAS  Google Scholar 

  • Jayaraj, J., Wan, A., Rahman, M., & Punja, Z. K. (2008). Seaweed extract reduces foliar fungal diseases on carrot. Crop Protection, 27(10), 1360–1366. https://doi.org/10.1016/j.cropro.2008.05.005

    Article  Google Scholar 

  • Jayaraj, J., Norrie, J., & Punja, Z. K. (2011). Commercial extract from the brown seaweed Ascophyllum nodosum reduces fungal diseases in greenhouse cucumber. Journal of Applied Phycology, 23(3), 353–361. https://doi.org/10.1007/s10811-010-9547-1

    Article  Google Scholar 

  • Khan, W., Rayirath, U. P., Subramanian, S., Jithesh, M. N., Rayorath, P., Hodges, D. M., Critchley, A. T., Craigie, J. S., Norrie, J., & Prithiviraj, B. (2009). Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation, 45(4), 112–134. https://doi.org/10.1007/s00344-009-9103-x

    Article  CAS  Google Scholar 

  • Khopade, M. (2015). A preliminary study on the effects of ozone on induction of resistance in Cicer arietinum and Trigonella foenum against acute ozone exposure. IOSR Journal of Biotechnology and Biochemistry, 1(5), 6–14.

    Google Scholar 

  • Klarzynski, O., Descamps, V., Plesse, B., Yvin, J. C., Kloareg, B., & Fritig, B. (2003). Sulfated fucan oligosaccharides elicit defense responses in tobacco and local and systemic resistance against tobacco mosaic virus. Molecular Plant-Microbe Interactions, 16(2), 115–122. https://doi.org/10.1094/MPMI.2003.16.2.115

    Article  CAS  PubMed  Google Scholar 

  • Kunkel, B. N., & Brooks, D. M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion Plant Biology, 5, 325–331. https://doi.org/10.1016/S1369-5266(02)00275-3

    Article  CAS  Google Scholar 

  • Lai, Y., Xu, B., He, L., Lin, M., Cao, L., Mou, S., Wu, Y., & He, S. (2011). Differential gene expression in pepper (Capsicum annuum) exposed to UV-B. Indian Journal of Experimental Biology, 49(6), 429–437.

    CAS  PubMed  Google Scholar 

  • Laing, W., & Christeller, J. (2004). Extraction of proteins from plant tissues. Current Protocols in Protein Science / Editorial Board John E Coligan … et Al ]. https://doi.org/10.1002/0471140864.ps0407s38

    Article  Google Scholar 

  • Mahuku, G. S. (2004). A simple extraction method suitable for PCR-based analysis of plant, fungal, and bacterial DNA. Plant Molecular Biology Reporter, 22(1), 71–81. https://doi.org/10.1007/BF02773351

    Article  CAS  Google Scholar 

  • Makhaye, G., Aremu, A. O., Gerrano, A. S., Tesfay, S., Du Plooy, C. P., & Amoo, S. O. (2021). Biopriming with seaweed extract and microbial-based commercial biostimulants influences seed germination of five Abelmoschus esculentus genotypes. Plants, 10(7). https://doi.org/10.3390/plants10071327

  • Malathi, S., & Mohan, S. (2013). Induction of defence-related enzymes in onion by combined application of fungal and bacterial biocontrol agents against Fusarium oxysporum f. sp. cepae. Archives of Phytopathology and Plant Protection, 46(2), 243–252. https://doi.org/10.1080/03235408.2012.737724

  • Maoka, T. (2020). Carotenoids as natural functional pigments. Journal of Natural Medicines, 74(1). https://doi.org/10.1007/s11418-019-01364-x

  • Michalak, I., Dmytryk, A., Schroeder, G., & Chojnacka, K. (2017). The application of homogenate and filtrate from baltic seaweeds in seedling growth tests. Applied Sciences (Switzerland), 7(3). https://doi.org/10.3390/app7030230

  • Mishra, M., Mahajan, N., Tamhane, V. A., Kulkarni, M. J., Baldwin, I. T., Gupta, V. S., & Giri, A. P. (2012). Stress inducible proteinase inhibitor diversity in Capsicum annuum BMC Plant Biology, 12(6), 54–66. https://doi.org/10.1186/1471-2229-12-217

    Article  CAS  Google Scholar 

  • Morgan, J. B., & Connolly, E. L. (2013). Plant – Soil interactions: nutrient uptake. Nature Education Knowledge, 4(8), 2

  • Nazeem, P. A., Achuthan, C. R., Babu, T. D., Parab, G. V., Girija, D., Keshavachandran, R., & Samiyappan, R. (2008). Expression of pathogenesis related proteins in black pepper (Piper nigrum L.) in relation to Phytophthora foot rot disease. Journal of Tropical Agriculture, 46(1–2), 33–39.

    Google Scholar 

  • Oñate-Sánchez, L., & Singh, K. B. (2002). Identification of arabidopsis ethylene-responsive element binding factors with distinct induction kinetics after pathogen infection. Plant Physiology, 128(4), 1313–1322. https://doi.org/10.1104/pp.010862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pan, S. Q., Ye, X. S., & Kuć, J. (1991). Association of β-1,3-glucanase activity and isoform pattern with systemic resistance to blue mould in tobacco induced by stem injection with Peronospora tabacina or leaf inoculation with tobacco mosaic virus. Physiological and Molecular Plant Pathology, 39(1), 167–177. https://doi.org/10.1016/0885-5765(91)90029-H

    Article  Google Scholar 

  • Rajendran, R., Jagmohan, S., Jayaraj, P., Ali, O., Ramsubhag, A., & Jayaraj, J. (2022). Effects of Ascophyllum nodosum extract on sweet pepper plants as an organic biostimulant in grow box home garden conditions. Journal of Applied Phycology, 34(1). https://doi.org/10.1007/s10811-021-02611-z

  • Ramirez-Estrada, K., Vidal-Limon, H., Hidalgo, D., Moyano, E., Golenioswki, M., Cusidó, R. M., & Palazon, J. (2016). Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules. https://doi.org/10.3390/molecules21020182

  • Ramkissoon, A., Ramsubhag, A., & Jayaraj, J. (2017). Phytoelicitor activity of three caribbean seaweed species on suppression of pathogenic infections in tomato plants. Journal of Applied Phycology, 29(6), 3235–3244. https://doi.org/10.1007/s10811-017-1160-0

    Article  Google Scholar 

  • Reddy, S. A., Bagyaraj, D. J., & Kale, R. D. (2012). Management of tomato bacterial spot caused by Xanthomonas campestris using vermicompost. Journal of Biopesticides5(1), 10–13

  • Rouphael, Y., & Colla, G. (2020). Editorial: Biostimulants in agriculture. Frontiers in Plant Science, 11. https://doi.org/10.3389/fpls.2020.00040

  • Saha, P., & Das, S. (2012). Assessment of yield loss due to early blight (Alternaria solani) in tomato. Indian Journal Plant Protection, 40, 195–198

  • Sangha, J. S., Kelloway, S., Critchley, A. T., & Prithiviraj, B. (2014). Seaweeds (Macroalgae) and their extracts as contributors of plant productivity and quality. The current status of our understanding. Advances in Botanical Research, 21(4), 132–133. https://doi.org/10.1016/B978-0-12-408062-1.00007-X

    Article  Google Scholar 

  • Shukla, P. S., Mantin, E. G., Adil, M., Bajpai, S., Critchley, A. T., & Prithiviraj, B. (2019). Ascophyllum nodosum-based biostimulants: Sustainable applications in agriculture for the stimulation of plant growth, stress tolerance, and disease management. Frontiers in Plant Science, 10, 401–415. https://doi.org/10.3389/fpls.2019.00655

  • Silva-Beltrán, N. P., Ruiz-Cruz, S., Cira-Chávez, L. A., Estrada-Alvarado, M. I., Ornelas-Paz, J. D. J., López-Mata, M. A., Del-Toro-Sánchez, C. L., Ayala-Zavala, J. F., & Márquez-Ríos, E. (2015). Total phenolic, flavonoid, tomatine, and tomatidine contents and antioxidant and antimicrobial activities of extracts of tomato plant. International Journal of Analytical Chemistry, 2(1), 11–21. https://doi.org/10.1155/2015/284071

    Article  CAS  Google Scholar 

  • Stadnik, M. J., & de Freitas, M. B. (2014). Algal polysaccharides as source of plant resistance inducers. Tropical Plant Pathology, 39(2). https://doi.org/10.1590/S1982-56762014000200001

  • Vandecasteele, M., Landschoot, S., Carrette, J., Verwaeren, J., Höfte, M., Audenaert, K., & Haesaert, G. (2018). Species prevalence and disease progression studies demonstrate a seasonal shift in the Alternaria population composition on potato. Plant Pathology, 67(2), 327–336. https://doi.org/10.1111/ppa.12734

    Article  CAS  Google Scholar 

  • Van Dijk, L. J. A., Ehrlén, J., & Tack, A. J. M. (2021). Direct and insect-mediated effects of pathogens on plant growth and fitness. Journal of Ecology, 109. https://doi.org/10.1111/1365-2745.13689

  • Van Oosten, M. J., Pepe, O., De Pascale, S., Silletti, S., & Maggio, A. (2017). The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chemical and Biological Technologies in Agriculture, 4, 5. https://doi.org/10.1186/s40538-017-0089-5.

  • Yakhin O. I., Lubyanov, A. A., Yakhin, I. A., Brown, P. H. (2017). Biostimulants in plant science: A global perspective. Front Plant Sci 7:23–27. https://doi.org/10.3389/fpls.2016.02049.

  • Zhang, Y. L., Li, D. W., Gong, Z. H., Wang, J. E., Yin, Y. X., & Ji, J. J. (2013). Genetic determinants of the defense response of resistant and susceptible pepper (Capsicum annuum) cultivars infected with Phytophthora capsici (oomycetes; Pythiaceae). Genetics and Molecular Research, 12(3), 3605–3621. https://doi.org/10.4238/2013.September.13.5

    Article  CAS  PubMed  Google Scholar 

  • Zulfiqar, F. (2021). Effect of seed priming on horticultural crops. Scientia Horticulturae, 286. https://doi.org/10.1016/j.scienta.2021.110197

Download references

Acknowledgements

This work was supported in part by the UWI-CRP Grant, UWI-RDI Fund and SARGOOD-FED-INTERREG V-Caraïbes Research Programme. The authors wish to thank the greenhouse staff at the Department of Life Sciences, The University of the West Indies for hel** with the experimental setup. Thanks to Mr Stephen Daniram Benn Jr. Ramnarine for critical reading of the manuscript.

Funding

This work was funded in part by the UWI-CRP Grant, UWI-RDI Fund and SARGOOD-FED-INTERREG V-Caraïbes Research Programme.

Author information

Authors and Affiliations

Authors

Contributions

Omar Ali: experimentation, methodology, data collection, curation and data analysis and writing the original manuscript.

Adesh Ramsubhag: analysis, methodology, supervision, review and editing of the manuscript.

Jayaraj Jayaraman: conceptualization, funding acquisition, project administration, methodology, review and editing of the manuscript.

Corresponding author

Correspondence to Jayaraj Jayaraman.

Ethics declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, O., Ramsubhag, A. & Jayaraman, J. Application of extracts from Caribbean seaweeds improves plant growth and yields and increases disease resistance in tomato and sweet pepper plants. Phytoparasitica 51, 727–745 (2023). https://doi.org/10.1007/s12600-022-01035-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12600-022-01035-w

Keywords

Navigation