Log in

Enhanced strength–plasticity synergy of copper composites by designing uniformly dispersed yttria nanoparticles and a heterogeneous grain structure

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Designing heterogeneous grain structure (HGS) has been proven to be an effective strategy for overcoming the strength-plasticity dilemma in copper and copper alloys. However, the construction of HGS in dispersion-strengthened copper (DSC) for enhancing strength-plasticity synergy remains challenging. Here, we proposed a novel method, multistep ball milling and reduction process followed by spark plasma sintering, to prepare DSC with an HGS to ameliorate the strength-plasticity dilemma in DSC. Micron- and nano-CuO and nano-Y2O3 powders were chosen as raw materials in this new method. The Cu-7 vol% Y2O3 composite, exhibiting a compressive yield strength of 438 MPa and a failure strain of 46.3%, exhibits a superior strength-plasticity tradeoff in comparison with other DSC materials. Systematic experiments indicate that the back-stress at the heterointerfaces between coarse grains and fine grains maybe not only raise the yield strength of Cu-Y2O3 composite, but also significantly enhance the strain hardening to increase the plasticity of the material. The new HGS designing route in this study offers a feasible pathway to develop DSC with a remarkable enhancement in strength and plasticity.

Graphical abstract

摘要

在铜及其合金中通过设计异质晶粒结构已被证明是缓解材料**塑互斥的有效策略。然而,在弥散**化铜基复合材料中构建异质晶粒结构以实现材料**塑协同**化仍充满挑战。本文以微米CuO、纳米CuO和纳米Y2O3粉作为原材料,采用多步球磨多步还原工艺结合放电等离子烧结技术制备的Cu-7 vol%Y2O3复合材料实现了具有纳米氧化钇弥散分布和基体呈异质晶粒结构的组织特征,其压缩屈服**度为438 MPa,最大压缩应变为46.3%,与其他弥散**化铜材料相比展现出良好的**度与塑性**衡性。通过对材料变形前后的组织结构进行表征与系统分析,异质晶粒之间界面处的背应力不仅可以提高Cu-Y2O3复合材料的屈服**度,还能显著增**应变硬化,从而提高材料的塑性。该研究为开发具有**塑**衡的弥散**化铜基复合材料提供了一种可行的方法。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Zhang XH, Zhang Y, Tian BH, Song KX, Liu P, Jia YL, Chen XH, An JC, Zhao Z, Liu Y, Volinsky AA, Li X, Yin T. Review of nano-phase effects in high strength and conductivity copper alloys. Nanotechnol Rev. 2019;8(1):383. https://doi.org/10.1515/ntrev-2019-0034.

    Article  CAS  Google Scholar 

  2. Han L, Wang J, Chen YY, Huang Y, Liu YC, Wang ZM. Fabrication and mechanical properties of WC nanoparticle dispersion-strengthened copper. Mater Sci Eng A. 2021;817: 141274. https://doi.org/10.1016/j.msea.2021.141274.

    Article  CAS  Google Scholar 

  3. Ma Y, Yang MX, Yuan FP, Wu XL. A review on heterogeneous nanostructures: a strategy for superior mechanical properties in Metals. Metals. 2019;9(5):598. https://doi.org/10.3390/met9050598.

    Article  CAS  Google Scholar 

  4. Cheng M, Zhang SR, Liu ZF, Cao F, Jiang YH, Chen ZN, Kang HJ, Guo EY, Liang SH, Wang TM. In-situ synthesis of TiB2 particulate reinforced copper matrix composites with ultrasonic vibration treatment. Mater Lett. 2023;335: 133823. https://doi.org/10.1016/j.matlet.2023.133823.

    Article  CAS  Google Scholar 

  5. Bahador A, Umeda J, Hamzah E, Yusof F, Li XC, Kondoh K. Synergistic strengthening mechanisms of copper matrix composites with TiO2 nanoparticles. Mater Sci Eng A. 2020;772: 138797. https://doi.org/10.1016/j.msea.2019.138797.

    Article  CAS  Google Scholar 

  6. Li Z, Zhang Y, Zhang ZB, Cui YT, Guo Q, Liu P, ** SB, Sha G, Ding KQ, Li ZQ, Fan TX, Urbassek HM, Yu Q, Zhu T, Zhang D, Wang YM. A nanodispersion-in-nanograins strategy for ultra-strong, ductile and stable metal nanocomposites. Nat Commun. 2022;13(1):5581. https://doi.org/10.1038/s41467-022-33261-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rong XD, Zhao DD, He CN, Shi CS, Liu EZ, Zhao NQ. Revealing the strengthening and toughening mechanisms of Al–CuO composite fabricated via in-situ solid-state reaction. Acta Mater. 2021;204: 116524. https://doi.org/10.1016/j.actamat.2020.116524.

    Article  CAS  Google Scholar 

  8. Luo SW, Yu WL, Song M, Yi JH, Guo BS, Yu ZT, Li W. Tailoring the interface with the in-situ formed chromium oxide and carbide for higher mechanical properties of copper matrix composites. Ceram Int. 2023;49(17):28107. https://doi.org/10.1016/j.ceramint.2023.06.060.

    Article  CAS  Google Scholar 

  9. Zhang GF, Zhou XF, Liu ZP, Mao Y. Challenges and strategies for graphene reinforced copper matrix composites. Chin J Rare Met. 2022;46(7):946. https://doi.org/10.13373/j.cnki.cjrm.XY20030005.

    Article  Google Scholar 

  10. Pu PP, Chen TJ. Nanostructured metals with an excellent synergy of strength and ductility: a review. Materials. 2022;15(19):6617. https://doi.org/10.3390/ma15196617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jiang Y, Gu RC, Zhang Y, Wang JT. Heterogeneous structure controlled by shear bands in partially recrystallized nano-laminated copper. Mater Sci Eng A. 2018;721:226. https://doi.org/10.1016/j.msea.2018.02.098.

    Article  CAS  Google Scholar 

  12. Jiang Y, Huang P, Jiang ZQ, Hou J, Xu Z, Wu EH, Li J. Gradient nanostructured tungsten and the thermal shock response. Tungsten. 2023;5(4):548. https://doi.org/10.1007/s42864-023-00211-7.

    Article  Google Scholar 

  13. Zhao YH, Top** T, Li Y, Lavernia EJ. Strength and ductility of Bi-modal Cu. Adv Eng Mater. 2011;13(9):865. https://doi.org/10.1002/adem.201100019.

    Article  CAS  Google Scholar 

  14. Li CL, Choi SW, Oh JM, Hong JK, Yeom JT, Kang JH, Mei QS, Park CH. Bimodal grain structures and tensile properties of a biomedical Co–20Cr–15W–10Ni alloy with different pre-strains. Rare Met. 2021;40(1):20. https://doi.org/10.1007/s12598-020-01566-3.

    Article  CAS  Google Scholar 

  15. Wu SH, Xue H, Yang C, Kuang J, Zhang P, Zhang JY, Li YJ, Roven HJ, Liu G, Sun J. Hierarchical structure in Al-Cu alloys to promote strength/ductility synergy. Scr Mater. 2021;202: 113996. https://doi.org/10.1016/j.scriptamat.2021.113996.

    Article  CAS  Google Scholar 

  16. Ding XX, Wang J, Liu D, Wang C, Jiang P, Qu H, Liu GH, Yuan FP, Wu XL. Heterostructuring an equiatomic CoNiFe medium-entropy alloy for enhanced yield strength and ductility synergy. Rare Met. 2022;41(8):2894. https://doi.org/10.1007/s12598-022-01986-3.

    Article  CAS  Google Scholar 

  17. Lu K. Making strong nanomaterials ductile with gradients. Science. 2014;345(6203):1455. https://doi.org/10.1126/science.1255940.

    Article  CAS  PubMed  Google Scholar 

  18. Li B, Niu CM, Zhang TL, Chen GY, Zhang G, Wang D, Zhou XY, Zhu JM. Advances of machining techniques for gradient structures in multi-principal-element alloys. Rare Met. 2022;41(12):4015. https://doi.org/10.1007/s12598-022-02075-1.

    Article  CAS  Google Scholar 

  19. Wang YM, Chen MW, Zhou FH, Ma E. High tensile ductility in a nanostructured metal. Nature. 2002;419(6910):912. https://doi.org/10.1038/nature01133.

    Article  CAS  PubMed  Google Scholar 

  20. Wang YM, Ma E. Three strategies to achieve uniform tensile deformation in a nanostructured metal. Acta Mater. 2004;52(6):1699. https://doi.org/10.1016/j.actamat.2003.12.022.

    Article  CAS  Google Scholar 

  21. Zhao YL, Wang T, Gao B, Gao ZH, Han JC, Zhang SZ, Huang QX. Towards enhanced strength-ductility in pure copper by fabricating hetero grain composite laminates. J Alloys Compd. 2022;928: 167192. https://doi.org/10.1016/j.jallcom.2022.167192.

    Article  CAS  Google Scholar 

  22. Groza JR, Gibeling JC. Principles of particle selection for dispersion-strengthened copper. Mater Sci Eng A. 1993;171(1):115. https://doi.org/10.1016/0921-5093(93)90398-X.

    Article  Google Scholar 

  23. Huang F, Wang H, Yang B, Liao T, Wang ZY. Uniformly dispersed Y2O3 nanoparticles in nanocrystalline copper matrix via multi-step ball milling and reduction process. Mater Lett. 2019;242:119. https://doi.org/10.1016/j.matlet.2019.01.120.

    Article  CAS  Google Scholar 

  24. Jiang Y, Gu RC, Peterlechner M, Liu YW, Wang JT, Wilde G. Impurity effect on recrystallization and grain growth in severe plastically deformed copper. Mater Sci Eng A. 2021;824: 141786. https://doi.org/10.1016/j.msea.2021.141786.

    Article  CAS  Google Scholar 

  25. Lv DD, Sun Y, Zhang JB, Guo SD, Liu BX. Effect of Y2O3 do** on preparation ultrafine/nano-tungsten powder and refinement mechanism. Tungsten. 2023;5(4):539. https://doi.org/10.1007/s42864-022-00172-3.

    Article  Google Scholar 

  26. Guo MX, Shen K, Wang MP. Strain softening behavior in a particle-containing copper alloy. Mater Sci Eng A. 2010;527(10):2478. https://doi.org/10.1016/j.msea.2010.01.042.

    Article  CAS  Google Scholar 

  27. Valiev RZ, Islamgaliev RK, Alexandrov IV. Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci. 2000;45(2):103. https://doi.org/10.1016/S0079-6425(99)00007-9.

    Article  CAS  Google Scholar 

  28. Li MQ, Zhai HX, Huang ZY, Liu XH, Zhou Y, Li SB, Li CW. Tensile behavior and strengthening mechanism in ultrafine TiC0.5 particle reinforced Cu–Al matrix composites. J Alloys Compd. 2015;628:186. https://doi.org/10.1016/j.jallcom.2014.10.123.

    Article  CAS  Google Scholar 

  29. Wei YJ, Li YQ, Zhu LC, Liu Y, Lei XQ, Wang G, Wu YX, Mi ZL, Liu JB, Wang HT, Gao HJ. Evading the strength–ductility trade-off dilemma in steel through gradient hierarchical nanotwins. Nat Commun. 2014;5(1):3580. https://doi.org/10.1038/ncomms4580.

    Article  CAS  PubMed  Google Scholar 

  30. Yang MX, Yan DS, Yuan FP, Jiang P, Ma E, Wu XL. Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength. Proc Natl Acad Sci. 2018;115(28):7224. https://doi.org/10.1073/pnas.1807817115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hamid FS, Elkady OA, Essa ARS, El-Nikhaily A, Elsayed A, Eessaa AK. Analysis of microstructure and mechanical properties of Bi-modal nanoparticle-reinforced Cu-matrix. Crystals. 2021;11(9):1081. https://doi.org/10.3390/cryst11091081.

    Article  CAS  Google Scholar 

  32. Fathy A, Shehata F, Abdelhameed M, Elmahdy M. Compressive and wear resistance of nanometric alumina reinforced copper matrix composites. Mater Des. 2012;36:100. https://doi.org/10.1016/j.matdes.2011.10.021.

    Article  CAS  Google Scholar 

  33. Akbarpour MR, Salahi E, Hesari FA, Yoon EY, Kim HS, Simchi A. Microstructural development and mechanical properties of nanostructured copper reinforced with SiC nanoparticles. Mater Sci Eng A. 2013;568:33. https://doi.org/10.1016/j.msea.2013.01.010.

    Article  CAS  Google Scholar 

  34. Zhang DD, He XY, Zhao H, Gao YL. Properties of TiCp/Cu composites fabricated by powder metallurgy and electrodeless copper plating. Mater Sci Technol. 2022;38(1):5. https://doi.org/10.1080/02670836.2021.2015838.

    Article  CAS  Google Scholar 

  35. Si PC, Duan CY, Li MQ, Zhao ZH, Zhao D, Chen YF, Wang Y. Tailorable metal–ceramic (Cu-TiC0.5) layered electrode with high mechanical property and conductivity. ACS Appl Mater Interfaces. 2019;11(47):44413. https://doi.org/10.1021/acsami.9b13219.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang DD, He XY, Liu Y, Bai F, Wang JG. The effect of in situ nano-sized particle content on the properties of TiCx/Cu composites. J Mater Res Technol. 2021;10:453. https://doi.org/10.1016/j.jmrt.2020.12.037.

    Article  CAS  Google Scholar 

  37. Asgharzadeh H, Eslami S. Effect of reduced graphene oxide nanoplatelets content on the mechanical and electrical properties of copper matrix composite. J Alloys Compd. 2019;806:553. https://doi.org/10.1016/j.jallcom.2019.07.183.

    Article  CAS  Google Scholar 

  38. Yang YX, Ling ZC, Yan CX, Shi QG, Feng ZX, Qu YD, Li T. Effect of ball-milling time on microstructure and mechanical properties of graphene/copper composite materials. Rare Met Mater Eng. 2017;46(1):207.

    Google Scholar 

  39. Liu Y, Tang XH, Zhou SF, Guo BS, Zhang ZG, Li W. Improving mechanical properties of Cu/Ti3AlC2 composites via in-situ decomposed gradient interfaces. Mater Sci Eng A. 2022;834: 142615. https://doi.org/10.1016/j.msea.2022.142615.

    Article  CAS  Google Scholar 

  40. Wang WJ, Zhai HX, Chen LL, Zhou Y, Huang ZY, Bei GP, Greil P. Sintering and properties of mechanical alloyed Ti3AlC2-Cu composites. Mater Sci Eng A. 2017;685:154. https://doi.org/10.1016/j.msea.2017.01.003.

    Article  CAS  Google Scholar 

  41. Li MQ, Zhai HX, Huang ZY, Liu XH, Zhou Y, Li SB, Li CW. Microstructure and mechanical properties of TiC0.5 reinforced copper matrix composites. Mater Sci Eng A. 2013;588:335. https://doi.org/10.1016/j.msea.2013.09.054.

    Article  CAS  Google Scholar 

  42. Liu Y, Blandin JJ, Kapelski G, Suéry M, Yang XJ. Interface characterization and mechanical properties of BMG/Cu composites prepared by coextrusion. Intermetallics. 2012;30:57. https://doi.org/10.1016/j.intermet.2012.03.039.

    Article  CAS  Google Scholar 

  43. Chen J, Niu PY, Wei T, Hao L, Liu YZ, Wang XH, Peng YL. Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J Alloys Compd. 2015;649:630. https://doi.org/10.1016/j.jallcom.2015.07.125.

    Article  CAS  Google Scholar 

  44. Zhang XJ, Dong PY, Zhang BG, Tang SY, Yang ZR, Chen Y, Yang WC. Preparation and characterization of reduced graphene oxide/copper composites incorporated with nano-SiO2 particles. J Alloys Compd. 2016;671:465. https://doi.org/10.1016/j.jallcom.2016.02.068.

    Article  CAS  Google Scholar 

  45. Hamid FS, El-Kady OAE, Essa ARS, El-Nikhaily AEG, Elsayed A, Abd-Elaziem W. Synthesis and characterization of titanium carbide and/or alumina nanoparticle reinforced copper matrix composites by spark plasma sintering. J Mater Eng Perform. 2022;31(7):5583. https://doi.org/10.1007/s11665-022-06639-1.

    Article  CAS  Google Scholar 

  46. Wang Y, Wang JG, Zou HH, Wang YT, Ran X. Microstructure and enhanced properties of copper-vanadium nanocomposites obtained by powder metallurgy. Materials. 2019;12(3):339. https://doi.org/10.3390/ma12030339.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Miller WS, Humphreys FJ. Strengthening mechanisms in particulate metal matrix composites. Scr Metall Mater. 1991;25(1):33. https://doi.org/10.1016/0956-716X(91)90349-6.

    Article  CAS  Google Scholar 

  48. Zhuo HO, Tang JC, Ye N. A novel approach for strengthening Cu–Y2O3 composites by in situ reaction at liquidus temperature. Mater Sci Eng A. 2013;584:1. https://doi.org/10.1016/j.msea.2013.07.007.

    Article  CAS  Google Scholar 

  49. Arsenault RJ, Shi N. Dislocation generation due to differences between the coefficients of thermal expansion. Mater Sci Eng. 1986;81:175. https://doi.org/10.1016/0025-5416(86)90261-2.

    Article  CAS  Google Scholar 

  50. Alizadeh M, Beni HA. Strength prediction of the ARBed Al/Al2O3/B4C nano-composites using Orowan model. Mater Res Bull. 2014;59:290. https://doi.org/10.1016/j.materresbull.2014.07.034.

    Article  CAS  Google Scholar 

  51. Sanaty-Zadeh A. Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater Sci Eng A. 2012;531:112. https://doi.org/10.1016/j.msea.2011.10.043.

    Article  CAS  Google Scholar 

  52. Nardone VC, Prewo KM. On the strength of discontinuous silicon carbide reinforced aluminum composites. Scr Metall. 1986;20(1):43. https://doi.org/10.1016/0036-9748(86)90210-3.

    Article  CAS  Google Scholar 

  53. Bao WP, Ren XP, Ma ZN. Study on the grain-boundary strengthening model of polycrystalline materials. J Plast Eng. 2008;15(97–100):109.

    Google Scholar 

  54. Clyne TW, Hull D. An Introduction to Composite Materials. 3rd ed. Cambridge: Cambridge University Press; 2019. p. 77.

    Book  Google Scholar 

  55. Shin SM, Zhu CY, Zhang C, Vecchio KS. Extraordinary strength-ductility synergy in a heterogeneous-structured β-Ti alloy through microstructural optimization. Mater Res Lett. 2019;7(11):467. https://doi.org/10.1080/21663831.2019.1652856.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key Research and Development Program of China (No. 2016YFB0301401), the Major Science and Technology R&D Project of Jiangxi Province (No. 20223AAG01009), the Qingjiang Young Talents Support Program of Jiangxi University of Science and Technology (No. JXUSTQJYX2020014), the Doctoral Scientific Research Foundation of Jiangxi University of Science and Technology (No. 205200100523) and the University Leading Talent Training Project of Jiangxi Province—Young Leading Talents (No. QN2023036).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fei Huang or Bin Yang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 6550 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XH., Yuan, HX., Huang, F. et al. Enhanced strength–plasticity synergy of copper composites by designing uniformly dispersed yttria nanoparticles and a heterogeneous grain structure. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02895-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02895-3

Keywords

Navigation