Log in

Post-modification engineering of cerium metal-organic frameworks for efficient visible light-driven water oxidation

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metal-organic frameworks (MOFs) are highly desirable for promising photocatalytic water splitting, but their practical application is greatly limited due to their unstable chemical properties and insufficient visible light response as well as low charge-carries utilization, especially in photocatalytic O2 production. Herein, we present a post-modification engineering to modulate cerium metal-organic frameworks (Ce-MOFs) for realizing efficient photocatalytic water oxidation to liberate O2 by visible light. The one-step partial oxidation strategy is adopted to modify pristine Ce-MOFs, yielding the new Ce-MOFs (MV-Ce-MOFs) with mixed valence of Ce3+/Ce4+. Creating the Ce nodes of a mixed valence state can effectively extend the optical absorption to the visible region, expose more catalytically active sites and inhibit the recombination of photoinduced charges. Consequently, the MV-Ce-MOFs exhibit high activity for photocatalytic O2 evolution under visible light, manifesting an impressive 1.6% apparent quantum efficiency (AQY) under monochromatic irradiation of 405 nm. The regulation engineering of MOF metal node valence heralds a new paradigm for designing MOF-based photocatalysts.

Graphical abstract

摘要

金属有机框架(MOFs)是一种非常理想的光催化水分解材料,但由于其化学性质不稳定、可见光响应不足以及较低的载流子利用率,限制了它的实际应用,尤其是在光催化O2的生成中。在此,我们提出了一种后改性工程来调控铈金属有机框架(Ce-MOFs),使其在可见光下实现光催化水氧化产生 O2。通过一步部分氧化策略改性原始的Ce-MOFs,从而得到具有Ce3+/Ce4+混合价态的新型Ce-MOFs (MV-Ce-MOFs)。金属节点混合价态的构建有效地拓展了其光吸收范围,暴露更多的催化活性位点,并有效地抑制了光生载流子的复合。因此,在可见光照射下,MV-Ce-MOFs展现出较高的光催化析氧活性,在405 nm的单色照射下表现出可观的表观量子效率(AQY)1.6%。MOF金属结点价态的调控工程为MOF基光催化剂的设计提供了新的思路。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Lakhera SK, Rajan A, Rugma TP, Bernaurdshaw N. A review on particulate photocatalytic hydrogen production system: progress made in achieving high energy conversion efficiency and key challenges ahead. Renew Sustain Energy Rev. 2021;152:111694. https://doi.org/10.1016/j.rser.2021.111694.

    Article  CAS  Google Scholar 

  2. Lin LH, Hisatomi T, Chen SS, Takata T, Domen K. Visible-light-driven photocatalytic water splitting: recent progress and challenges. Trends in Chemistry. 2020;2(9):813. https://doi.org/10.1016/j.trechm.2020.06.006.

    Article  CAS  Google Scholar 

  3. Chen F, Zhang YH, Huang HW. Layered photocatalytic nanomaterials for environmental applications. Chin Chem Lett. 2023;34(3):107523. https://doi.org/10.1016/j.cclet.2022.05.037.

    Article  CAS  Google Scholar 

  4. Qiu JY, Feng HZ, Chen ZH, Ruan SH, Chen YP, Xu TT, Su JY, Ha EN, Wang LY. Selective introduction of surface defects in anatase TiO2 nanosheets for highly efficient photocatalytic hydrogen generation. Rare Met. 2022;41(6):2074. https://doi.org/10.1007/s12598-021-01929-4.

    Article  CAS  Google Scholar 

  5. Dong W, Zhou SA, Ma Y, Chi DJ, Chen R, Long HM, Chun TJ, Liu SJ, Qian FP, Zhang K. N-doped C-coated MoO2/ZnIn2S4 heterojunction for efficient photocatalytic hydrogen production. Rare Met. 2023;42(4):1195. https://doi.org/10.1007/s12598-022-02196-7.

    Article  CAS  Google Scholar 

  6. Maeda K, Domen K. Photocatalytic water splitting: recent progress and future challenges. J Phys Chem Lett. 2010;1(18):2655. https://doi.org/10.1021/jz1007966.

    Article  CAS  Google Scholar 

  7. Fang YX, Hou YD, Fu XZ, Wang XC. Semiconducting polymers for oxygen evolution reaction under light illumination. Chem Rev. 2022;122(3):4204. https://doi.org/10.1021/acs.chemrev.1c00686.

    Article  CAS  PubMed  Google Scholar 

  8. Zhang XP, Wang HY, Zheng HQ, Zhang W, Cao R. O–O bond formation mechanisms during the oxygen evolution reaction over synthetic molecular catalysts. Chin J Catal. 2021;42(8):1253. https://doi.org/10.1016/S1872-2067(20)63681-6.

    Article  CAS  Google Scholar 

  9. Lan ZA, Fang YX, Zhang YF, Wang XC. Photocatalytic oxygen evolution from functional triazine-based polymers with tunable band structures. Angew Chem Int Ed. 2018;57(2):470. https://doi.org/10.1002/anie.201711155.

    Article  CAS  Google Scholar 

  10. **ao JD, Li R, Jiang HL. Metal-organic framework-based photocatalysis for solar fuel production. Small Methods. 2023;7(1):2201258. https://doi.org/10.1002/smtd.202201258.

    Article  CAS  Google Scholar 

  11. Wang SB, Wang XC. Multifunctional metal-organic frameworks for photocatalysis. Small. 2015;11(26):3097. https://doi.org/10.1002/smll.201500084.

    Article  CAS  PubMed  Google Scholar 

  12. Kolobov N, Goesten MG, Gascon J. Metal-organic frameworks: molecules or semiconductors in photocatalysis? Angew Chem Int Ed. 2021;60(50):26038. https://doi.org/10.1002/anie.202106342.

    Article  CAS  Google Scholar 

  13. Fang YX, Ma YW, Zheng MF, Yang PJ, Asiri AM, Wang XC. Metal-organic frameworks for solar energy conversion by photoredox catalysis. Coord Chem Rev. 2018;373(15):83. https://doi.org/10.1016/j.ccr.2017.09.013.

    Article  CAS  Google Scholar 

  14. Wu P, Li SY, ** FS, Li XF, Lv GQ, Ma WH. Research advances in titanium-based metal-organic frameworks materials in field of photocatalytic water-splitting hydrogen production. Chin J Rare Met. 2023;47(12):1624. https://doi.org/10.13373/j.cnki.cjrm.XY22120006.

    Article  Google Scholar 

  15. Ma Y, Fang HX, Chen R, Chen Q, Liu SJ, Zhang K, Li HJ. 2D-MOF/2D-MOF heterojunctions with strong hetero-interface interaction for enhanced photocatalytic hydrogen evolution. Rare Met. 2023;42(12):3993. https://doi.org/10.1007/s12598-023-02387-w.

    Article  CAS  Google Scholar 

  16. An Y, Li HL, Liu YY, Huang BB, Sun QL, Dai Y, Qin XY, Zhang XY. Photoelectrical, photophysical and photocatalytic properties of Al based MOFs: MIL-53(Al) and MIL-53-NH2(Al). J Solid State Chem. 2016;233:194. https://doi.org/10.1016/j.jssc.2015.10.037.

    Article  CAS  Google Scholar 

  17. Chi L, Xu Q, Liang XY, Wang JD, Su XT. Iron-based metal–organic frameworks as catalysts for visible light-driven water oxidation. Small. 2016;12(10):1351. https://doi.org/10.1002/smll.201503526.

    Article  CAS  PubMed  Google Scholar 

  18. Wang GZ, Liu YY, Huang BB, Qin XY, Zhang XY, Dai Y. A novel metal–organic framework based on bismuth and trimesic acid: synthesis, structure and properties. Dalton Trans. 2015;44(33):16238. https://doi.org/10.1039/C5DT03111G.

    Article  CAS  PubMed  Google Scholar 

  19. Wang GZ, Sun QL, Liu YY, Huang BB, Dai Y, Zhang XY, Qin XY. A bismuth-based metal–organic framework as an efficient visible-light-driven photocatalyst. Chem Eur J. 2015;21(6):2364. https://doi.org/10.1002/chem.201405047.

    Article  CAS  PubMed  Google Scholar 

  20. Hu ZG, Wang YX, Zhao D. The chemistry and applications of hafnium and cerium(iv) metal–organic frameworks. Chem Soc Rev. 2021;50(7):4629. https://doi.org/10.1039/D0CS00920B.

    Article  CAS  PubMed  Google Scholar 

  21. Rojas BS, Concepción P, Olloqui SJL, Moliner M, Corma A. Metalloenzyme-inspired Ce-MOF catalyst for oxidative halogenation reactions. ACS Appl Mater Interfaces. 2021;13(26):31021. https://doi.org/10.1021/acsami.1c07496.

    Article  CAS  Google Scholar 

  22. Lammert M, Wharmby MT, Smolders S, Bueken B, Lieb A, Lomachenko KA, Vos DD, Stock N. Cerium-based metal organic frameworks with UiO-66 architecture: synthesis, properties and redox catalytic activity. Chem Commun. 2015;51(63):12578. https://doi.org/10.1039/C5CC02606G.

    Article  CAS  Google Scholar 

  23. Wen MC, Kuwahara Y, Mori K, Zhang DQ, Li HX, Yamashita H. Synthesis of Ce ions doped metal-organic framework for promoting catalytic H2 production from ammonia borane under visible light irradiation. J Mater Chem A. 2015;3(27):14134. https://doi.org/10.1039/C5TA02320C.

    Article  CAS  Google Scholar 

  24. Melillo A, Cabrero AM, Navalón S, Álvaro M, Ferrer B, García H. Enhancing visible-light photocatalytic activity for overall water splitting in UiO-66 by controlling metal node composition. Appl Catal B. 2020;278(5):119345. https://doi.org/10.1016/j.apcatb.2020.119345.

    Article  CAS  Google Scholar 

  25. Wu XP, Gagliardi L, Truhlar DG. Cerium metal–organic framework for photocatalysis. J Am Chem Soc. 2018;140(25):7904. https://doi.org/10.1021/jacs.8b03613.

    Article  CAS  PubMed  Google Scholar 

  26. Wu XP, Gagliardi L, Truhlar DG. Metal do** in cerium metal-organic frameworks for visible-response water splitting photocatalysts. J Chem Phys. 2019;150(4):041701. https://doi.org/10.1063/1.5043538.

    Article  CAS  PubMed  Google Scholar 

  27. Liu K, You HP, Jia G, Zheng YH, Huang YJ, Song YH, Yang M, Zhang LH, Zhang HJ. Hierarchically nanostructured coordination polymer: facile and rapid fabrication and tunable morphologies. Cryst Growth Des. 2010;10(2):790. https://doi.org/10.1021/cg901170j.

    Article  CAS  Google Scholar 

  28. **ong YH, Chen SH, Ye FG, Su LJ, Zhang C, Shen SF, Zhao SL. Synthesis of a mixed valence state Ce-MOF as an oxidase mimetic for the colorimetric detection of biothiols. Chem Commun. 2015;51(22):4635. https://doi.org/10.1039/C4CC10346G.

    Article  CAS  Google Scholar 

  29. Lin LH, Ou HH, Zhang YF, Wang XC. Tri-s-triazine-based crystalline graphitic carbon nitrides for highly efficient hydrogen evolution photocatalysis. ACS Catal. 2016;6(6):3921. https://doi.org/10.1021/acscatal.6b00922.

    Article  CAS  Google Scholar 

  30. Maiti S, Pramanik A, Mahanty S. Extraordinarily high pseudocapacitance of metal organic framework derived nanostructured cerium oxide. Chem Commun. 2014;50(79):11717. https://doi.org/10.1039/C4CC05363J.

    Article  CAS  Google Scholar 

  31. **ao YT, Chen YJ, **e Y, Tian GH, Guo SE, Han TR, Fu HG. Hydrogenated CeO2-xSx mesoporous hollow spheres for enhanced solar driven water oxidation. Chem Commun. 2016;52(12):2521. https://doi.org/10.1039/C5CC09484D.

    Article  CAS  Google Scholar 

  32. Munoz MJ, Natividad M, Kubacka A, Tudela D, Fernandez M. Role of interface contact in CeO2-TiO2 photocatalytic composite materials. ACS Catal. 2014;4(1):63. https://doi.org/10.1021/cs400878b.

    Article  CAS  Google Scholar 

  33. Qiu XY, Zhu YF, Zhang XF, Zhang Y, Menisa LT, **a CH, Liu SQ, Tang ZY. Cerium-based metal–organic frameworks with UiO architecture for visible light-induced aerobic oxidation of benzyl alcohol. Solar RRL. 2020;4(8):1900449. https://doi.org/10.1002/solr.201900449.

    Article  CAS  Google Scholar 

  34. Singh S, Dosani T, Karakoti AS, Kumar A, Seal A, Self WT. A phosphate-dependent shift in redox state of cerium oxide nanoparticles and its effects on catalytic properties. Biomaterials. 2011;32(28):6745. https://doi.org/10.1016/j.biomaterials.2011.05.073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Heckert EG, Karakoti AS, Seal S, Self WT. The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials. 2008;29(18):2705. https://doi.org/10.1016/j.biomaterials.2008.03.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Lin YH, Xu C, Ren JS, Qu XG. Using Thermally regenerable cerium oxide nanoparticles in biocomputing to perform label-free, resettable, and colorimetric logic operations. Angew Chem Int Ed. 2012;51(50):12579. https://doi.org/10.1002/anie.201207587.

    Article  CAS  Google Scholar 

  37. Zhang CX, **e CF, Gao YY, Tao XP, Ding CM, Fan FT, Jiang HL. Charge separation by creating band bending in metal–organic frameworks for improved photocatalytic hydrogen evolution. Angew Chem Int Ed. 2022;61(28):e202204108. https://doi.org/10.1002/anie.202204108.

    Article  CAS  Google Scholar 

  38. Zhang Q, Zhang JH, Wang XH, Li LF, Li YF, Dai WL. In–N–in sites boosting interfacial charge transfer in carbon-coated hollow tubular In2O3/ZnIn2S4 heterostructure derived from In-MOF for enhanced photocatalytic hydrogen evolution. ACS Catal. 2021;11(10):6276. https://doi.org/10.1021/acscatal.0c05520.

    Article  CAS  Google Scholar 

  39. Zhang GG, Zang SH, Wang XC. Layered Co(OH)2 deposited polymeric carbon nitrides for photocatalytic water oxidation. ACS Catal. 2015;5(2):941. https://doi.org/10.1021/cs502002u.

    Article  CAS  Google Scholar 

  40. Liu YW, Cheng H, Lyu MJ, Fan SJ, Liu QH, Zhang WS, Zhi YD, Wang CM, **ao C, Wei SQ, Ye BJ, **e Y. Low overpotential in vacancy-rich ultrathin CoSe2 nanosheets for water oxidation. J Am Chem Soc. 2014;136(44):15670. https://doi.org/10.1021/ja5085157.

    Article  CAS  PubMed  Google Scholar 

  41. Zhang LZ, Yang C, ** ZL, Wang XC. Cobalt manganese spinel as an effective cocatalyst for photocatalytic water oxidation. Appl Catal B. 2018;224:886. https://doi.org/10.1016/j.apcatb.2017.11.023.

    Article  CAS  Google Scholar 

  42. Zhang GG, Huang CJ, Wang XC. Dispersing molecular cobalt in graphitic carbon nitride frameworks for photocatalytic water oxidation. Small. 2015;11(9–10):1215. https://doi.org/10.1002/smll.201402636.

    Article  CAS  PubMed  Google Scholar 

  43. Maegli AE, Pokrant S, Hisatomi T, Trottmann M, Domen K, Weidenkaff A. Enhancement of photocatalytic water oxidation by the morphological control of LaTiO2N and cobalt oxide catalysts. J Phys Chem C. 2014;118(30):16344. https://doi.org/10.1021/jp4084162.

    Article  CAS  Google Scholar 

  44. Pan ZM, Zheng Y, Guo FS, Niu PP, Wang XC. Decorating CoP and Pt nanoparticles on graphitic carbon nitride nanosheets to promote overall water splitting by conjugated polymers. Chemsuschem. 2017;10(1):87. https://doi.org/10.1002/cssc.201600850.

    Article  CAS  PubMed  Google Scholar 

  45. Jiao F, Frei H. Nanostructured cobalt oxide clusters in mesoporous silica as efficient oxygen-evolving catalysts. Angew Chem Int Ed. 2009;121(10):1873. https://doi.org/10.1002/ange.200805534.

    Article  Google Scholar 

  46. Maeda K, Wang XC, Nishihara Y, Lu D, Antonietti M, Domen K. Photocatalytic activities of graphitic carbon nitride powder for water reduction and oxidation under visible light. J Phys Chem C. 2009;113(12):4940. https://doi.org/10.1021/jp809119m.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Natural Science Foundation of Fujian Province (No. 2022J05269), the Research Project of Ningde Normal University (No. 2020Y016), the Education & Research Project for Young and Middle-aged Teachers of Fujian (No. JAT200698), the National Natural Science Foundation of China (No. 22302154 and 22372085).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ruo-Wen Liang or Hong-Hui Ou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 971 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LZ., Chen, L., Yan, GY. et al. Post-modification engineering of cerium metal-organic frameworks for efficient visible light-driven water oxidation. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02844-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02844-0

Keywords

Navigation