Log in

Ceramic-based meta-material absorber with high-temperature stability

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

With the continuous exploration of uncharted and extreme environments, enhanced temperature robustness of passive devices has become particularly important. In this study, a ceramic-based meta-material absorber with exceptional temperature stability is developed using a fusion design approach that combines rare metal-based tungsten bronze structural ceramics and meta-materials. Specifically, the absorbance of the meta-material array based on Mie resonance exceeds 49.0% in both waveguides and free space, approaching the theoretical limit. According to impedance analysis, the absorption performance can be distinctly correlated with the dielectric loss (Qf). Notably, the high-temperature robustness is verified to still be effective at 400 °C. These advancements in our design allow for the use of monolithic materials in fabricating temperature-stable perfect absorbers, providing greater freedom in the dielectric performance and expanding their potential applications, including in space exploration and 5G millimeter-wave scenarios.

Graphical abstract

摘要

随着人类对未知和极端环境的不断探索,无线通信系统中无源器件温度稳定性的提升变得尤为重要。本文将超材料设计与稀有金属基陶瓷性能优化相结合,提出一种创新协同设计方法,开发出了具有高温度稳定性的陶瓷基超材料吸波体。基于Mie谐振理论,所设计超材料在波导和自由空间中的吸收率可超过49.0%,接**单体材料的吸波理论极限,且在室温到400 °C温度范围内,吸波性能基本不变。进一步的,结合特征阻抗分析,量化分析了超材料的吸收性能与介质损耗的关联机制。本工作提供了一种利用单体陶瓷材料制备高温度稳定超材料吸波体的新思路,同时在材料等效介电性能上有很高的设计自由度,可望拓展其潜在太空探索、高温隐身、探测等领域应用。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mahon S. The 5G effect on RF filter technologies. IEEE Trans Semicond Manufact. 2017;30:494. https://doi.org/10.1109/TSM.2017.2757879.

    Article  Google Scholar 

  2. Du C, Guo HH, Zhou D, Chen HT, Zhang J, Liu WF, Su JZ, Liu HW. Dielectric resonator antennas based on high quality factor MgAl2O4 transparent dielectric ceramics. J Mater Chem C. 2020;8(42):14880. https://doi.org/10.1039/D0TC02713H.

    Article  CAS  Google Scholar 

  3. Luo WJ, Wang XB, Wang S, Wang XQ, Liu ZT, Li LX, Hu F, Wen YZ, Zhou J. Miniaturization of dielectric ceramic-based metamaterial perfect absorber. Appl Phys Lett. 2022;120:013502. https://doi.org/10.1063/5.0076685.

    Article  CAS  Google Scholar 

  4. Liu XM, Lan CW, Bi K, Li B, Zhao Q, Zhou J. Dual band metamaterial perfect absorber based on Mie resonances. Appl Phys Lett. 2016;109:062902. https://doi.org/10.1063/1.4960802.

    Article  CAS  Google Scholar 

  5. Zheludev NI, Kivshar YS. From metamaterials to metadevices. Nat Mater. 2012;11(11):917. https://doi.org/10.1038/nmat3431.

    Article  CAS  PubMed  Google Scholar 

  6. Liu Y, Zhang X. Metamaterials: a new frontier of science and technology. Chem Soc Rev. 2011;40(5):2494. https://doi.org/10.1039/C0CS00184H.

    Article  CAS  PubMed  Google Scholar 

  7. Smith DR, Pendry JB, Wiltshire MCK. Metamaterials and negative refractive index. Science. 2004;305(5685):788. https://doi.org/10.1126/science.109679.

    Article  CAS  PubMed  Google Scholar 

  8. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ. Perfect metamaterial absorber. Phys Rev Lett. 2008;100(20):207402. https://doi.org/10.1103/PhysRevLett.100.207402.

    Article  CAS  PubMed  Google Scholar 

  9. Li JH, Hu GW, Shi L, He N, Li DQ, Shang QY, Zhang Q, Fu HG, Zhou LL, ** in ultrathin hyperbolic metamaterials. Nat Commun. 2021;12:6425. https://doi.org/10.1038/s41467-021-26818-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ju ZZ, Wen J, Shi L, Yu BB, Deng M, Zhang DW, Hao WM, Wang J, Chen SQ, Chen L. Ultra-broadband high-efficiency airy optical beams generated with all-silicon metasurfaces. Adv Opt Mater. 2020;9(1):2001284. https://doi.org/10.1002/adom.202001284.

    Article  CAS  Google Scholar 

  11. Jiang XW, Hao H, Yang Y, Zhou EH, Zhang SJ, Wei P, Cao MH, Yao ZH, Liu HX. Structure and enhanced dielectric temperature stability of BaTiO3-based ceramics by Ca ion B site-do**. J Materiomics. 2021;7(2):295. https://doi.org/10.1016/j.jmat.2020.09.001.

    Article  Google Scholar 

  12. Liu Q, Hao H, Guo QH, Shen ZH, Wang J, Cao MH, Yao ZH, Liu HX. Enhanced breakdown strength of BaTiO3-based multilayer ceramic capacitor by structural optimization. Rare Met. 2023;42(8):2552. https://doi.org/10.1007/s12598-023-02277-1.

    Article  CAS  Google Scholar 

  13. Zhou XX, Tang YC, Li HZ, Hao YJ, Xue MP, Pei J, Peng XY, Zhang BP. BiAlO3-modified BiFeO3-BaTiO3 high Curie temperature lead-free piezoelectric ceramics with enhanced performance. Rare Met. 2023;42(11):3839. https://doi.org/10.1007/s12598-023-02407-9.

    Article  CAS  Google Scholar 

  14. Bermudez-Garcia A, Voarino P, Raccurt O. Environments, needs and opportunities for future space photovoltaic power generation: a review. Appl Energy. 2021;290:116757. https://doi.org/10.1016/j.apenergy.2021.116757.

    Article  Google Scholar 

  15. Wan WX, Wang C, Li CL, Wei Y. China’s first mission to Mars. Nat Astron. 2020;4:721. https://doi.org/10.1038/s41550-020-1148-6.

    Article  Google Scholar 

  16. Ghidini T. Materials for space exploration and settlement. Nat Mater. 2018;17:846. https://doi.org/10.1038/s41563-018-0184-4.

    Article  CAS  PubMed  Google Scholar 

  17. Zhang G, Qi P, Wang X, Lu Y, Li X, Tu R, Bangsaruntip S, Mann D, Zhang L, Dai H. Selective etching of metallic carbon nanotubes by gas-phase reaction. Science. 2006;314(5801):974. https://doi.org/10.1126/science.113378.

    Article  CAS  PubMed  Google Scholar 

  18. Sun Y, Tan W, Li HQ, Li JS, Chen H. Experimental demonstration of a coherent perfect absorber with PT phase transition. Phys Rev Lett. 2014;112(14):143903. https://doi.org/10.1103/PhysRevLett.112.143903.

    Article  CAS  PubMed  Google Scholar 

  19. Zhao Q, Zhou J, Zhang FL, Lippens D. Mie resonance-based dielectric metamaterials. Mater Today. 2009;12(12):60. https://doi.org/10.1016/S1369-7021(09)70318-9.

    Article  CAS  Google Scholar 

  20. Zhao Q, **ao ZQ, Zhang FL, Ma JM, Qiao M, Meng YG, Lan CW, Li B, Zhou J, Zhang P, Shen NH, Koschny T, Soukoulis CM. Tailorable zero-phase delay of subwavelength particles toward miniaturized wave manipulation devices. Adv Mater. 2015;27(40):6187. https://doi.org/10.1002/adma.201502298.

    Article  CAS  PubMed  Google Scholar 

  21. Hu QQ, Chai L, Liang K, Jiang YX, Yang G, Zhang LB, Yin LJ, Wang X, Liu T, Lu HP, Deng LJ. Effective corrosion protection of magnetic microwave absorber with designed macromolecular network barrier. Rare Met. 2023;42(2):558. https://doi.org/10.1007/s12598-022-02141-8.

    Article  CAS  Google Scholar 

  22. Li ZC, Yu XY, Miao W, Zhang ZJ. Thermal stability and sputtering resistance under irradiation of yttria dispersed ferrum films. Rare Met. 2011;30(6):258. https://doi.org/10.1007/s12598-011-0378-2.

    Article  CAS  Google Scholar 

  23. Ding SJ, Xu LD, Cai XC, Yu SX, Wen KK, Yu H, Chen Z, Sun BR, **n SW, Shen TD. Exceptional thermal stability of ultrafine-grained long-period stacking ordered Mg alloy. Rare Met. 2022;41(5):1537. https://doi.org/10.1007/s12598-021-01889-9.

    Article  CAS  Google Scholar 

  24. Qian SB, Liu G, Yan M, Wu C. Lightweight, self-cleaning and refractory FeCo@MoS2 PVA aerogels: from electromagnetic wave-assisted synthesis to flexible electromagnetic wave absorption. Rare Met. 2023;42(4):1294. https://doi.org/10.1007/s12598-022-02191-y.

    Article  CAS  Google Scholar 

  25. Liu XM, Lan CW, Li B, Zhao Q, Zhou J. Dual band metamaterial perfect absorber based on artificial dielectric “molecules”. Sci Rep. 2016;6:28906. https://doi.org/10.1038/srep28906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. **ong Z, Tang B, Yang CT, Zhang S. Correlation between structures and microwave dielectric properties of Ba3.75Nd9.5-xSmxTi17.5(Cr1/2Nb1/2)0.5O54 ceramics. J Alloys Compd. 2018;740:492. https://doi.org/10.1016/j.jallcom.2017.10.072.

    Article  CAS  Google Scholar 

  27. **ong Z, Tang B, Fang ZX, Yang CT, Zhang S. Crystal structure, Raman spectroscopy and microwave dielectric properties of Ba3.75Nd9.5Ti18-z(Al1/2Nb1/2)zO54 ceramics. J Alloys Compd. 2017;723:580. https://doi.org/10.1016/j.jallcom.2017.06.258.

    Article  CAS  Google Scholar 

  28. Wang J, Qian LY, Guo YS, Richard W, Hou XH, Liu YY. R2O3+Er2O3 stabilized ZrO2 for TBC application. Chin J Rare Met. 2022;46(7):853. https://doi.org/10.13373/j.cnki.cjrm.XY21020011.

    Article  Google Scholar 

  29. Wang G, Fu Q, Shi H, Tian F, Guo P, Yan L, Yu S, Zheng Z, Luo W. Novel thermally stable, high quality factor Ba4(Pr0.4Sm0.6)28/3Ti18yGa4y/3O54 microwave dielectric ceramics. J Am Ceram Soc. 2019;103(4):2520. https://doi.org/10.1111/jace.16930.

    Article  CAS  Google Scholar 

  30. Chen HT, Tang B, Gao AQ, Duan SX, Yang H, Li YX, Li H, Zhang S. Aluminum substitution for titanium in Ba3.75Nd9.5Ti18O54 microwave dielectric ceramics. J Mater Sci Mater Electron. 2015;26:405. https://doi.org/10.1007/s10854-014-2414-0.

    Article  CAS  Google Scholar 

  31. Li LX, Wang XB, Luo WJ, Wang S, Yang T, Zhou J. Internal-strain-controlled tungsten bronze structural ceramics for 5G millimeter-wave metamaterials. J Mater Chem C. 2021;9:14359.

    Article  CAS  Google Scholar 

  32. Aladadi YT, Alkanhal MAS. Classification and characterization of electromagnetic materials. Sci Rep. 2020;10:11406. https://doi.org/10.1038/s41598-020-68298-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu XM, BiK LiB, Zhao Q, Zhou J. Metamaterial perfect absorber based on artificial dielectric atoms. Opt Express. 2016;24(18):20454. https://doi.org/10.1364/OE.24.020454.

    Article  CAS  PubMed  Google Scholar 

  34. Woltersdorff W. Über die optischen Konstanten dünner Metallschichten im langwelligen Ultrarot. Z Phys. 1934;91:230. https://doi.org/10.1007/BF01341647.

    Article  CAS  Google Scholar 

  35. Pham PHQ, Zhang WD, Quach NV, Li JF, Zhou WW, Scarmardo D, Brown ER, Burke PJ. Broadband impedance match to two-dimensional materials in the terahertz domain. Nat Commun. 2017;8:2233. https://doi.org/10.1038/s41467-017-02336-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. King R. Transmission-line theory and its application. J Appl Phys. 1943;14(11):577. https://doi.org/10.1063/1.1714936.

    Article  Google Scholar 

  37. Oliveira LNL, Campos RVB, Gouveia DX, Silva MAS, Sombra ASB. Microw Opt Technol Lett. 2016;58(6):1473. https://doi.org/10.1002/mop.29816.

    Article  Google Scholar 

  38. Krupka J, Derzakowski K, Riddle B, Baker-Jarvis J. A dielectric resonator for measurements of complex permittivity of low loss dielectric materials as a function of temperature. Meas Sci Technol. 1998;9(10):1751. https://doi.org/10.1088/0957-0233/9/10/015.

    Article  CAS  Google Scholar 

  39. Luo WJ, Wang XB, Chen XC, Zheng SY, Zhao SQ, Wen YZ, Li LX, Zhou J. Perfect absorption based on a ceramic anapole metamaterial. Mater Horiz. 2023;10(5):1769.

    Article  CAS  PubMed  Google Scholar 

  40. Liu XM, Zhao Q, Lan CW, Zhou J. Isotropic Mie resonance-based metamaterial perfect absorber. Appl Phys Lett. 2013;103(3):031910. https://doi.org/10.1063/1.4813914.

    Article  CAS  Google Scholar 

  41. Luo WJ, Li LX, Yu SH, Zhang BW, Qian JL. Raman, EPR and structural studies of novel CuZrNb2O8 ceramic for LTCC applications. Ceram Int. 2019;45(12):15314. https://doi.org/10.1016/j.ceramint.2019.05.022.

    Article  CAS  Google Scholar 

  42. Lewin L. The electrical constants of a material loaded with spherical particles. J Inst Electr Eng. 1947;94:65. https://doi.org/10.1049/JI-3-2.1947.0013.

    Article  Google Scholar 

  43. Mie G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys. 1908;330(3):377. https://doi.org/10.1002/andp.19083300302.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Key R&D Program of China (No. 2022YFB3806000), the National Natural Science Foundation of China (Nos. 52332006, 92163129, 52072203 and 52202370), and China Postdoctoral Science Foundation (No. 2023T160359). The authors gratefully acknowledge Ceyear Technologies Co., Ltd. for their help in the experiments. Wei-Jia Luo thanks Yi-Fei Chen for the checking and modification of language.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Zheng Wen or Ji Zhou.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, XC., Luo, WJ., Zhao, RN. et al. Ceramic-based meta-material absorber with high-temperature stability. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02791-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02791-w

Keywords

Navigation