Log in

A widely used nonionic surfactant with desired functional groups as aqueous electrolyte additives for stabilizing Zn anode

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Aqueous Zn-ion batteries (AZIBs) have emerged as potential candidates for Li-ion batteries due to their intrinsic safety and high capacity. However, metallic Zn anodes encounter dendrite growth and water-induced corrosion, rendering poor stability and severe irreversibility at the electrode/electrolyte interface during cycling. To stabilize the Zn anode, we report a low-cost and effective nonionic surfactant, Tween-20 polymer, as an electrolyte additive for AZIBs. For Tween-20, sequential oxyethylene groups tended to be preferentially adsorbed on the Zn electrode to form a shielding layer for regulating uniform Zn nucleation. Moreover, the hydrophobic hendecyl chains prevented H2O-induced corrosion on the Zn anode surface. Benefiting from the desired functional groups, when only trace amounts of Tween-20 (0.050 g·L−1) were used, the Zn anode displayed good cycling stability over 2170 h at 10 mA·cm−2 and a high average Coulombic efficiency of 98.94% over 1000 cycles. The Tween-20 polymer can also be effectively employed in MnO2/Zn full batteries. Considering their toxicity, price and amount of usage, these surfactant additives provide a promising strategy for realizing the stability and reversibility of high-performance Zn anodes.

Graphical Abstract

摘要

水系锌离子电池 (AZIBs) 因其固有的安全性和高的比容量成为锂离子电池的潜在候选者之一。然而,金属锌负极在循环过程中会发生枝晶生长和自腐蚀等现象,从而导致电极/电解质界面差的稳定性和不可逆性。为了稳定金属锌负极,本文报道了一种低成本、有效的的非离子表面活性剂 (Tween-20) 作为AZIBs电解液添加剂。在Tween-20中,有序的氧乙烯基团倾向于优先吸附在锌电极上,形成可调控锌均匀成核的屏蔽层。此外,疏水性的十六烷基链能够有效地阻止锌电极表面的腐蚀。因此,在使用微量Tween-20 (0.05 g·L−1) 时,锌负极在10 mA·cm−2 电流密度下能够实现较长的稳定循环 (2170 h), 且在1000次循环内**均库仑效率高达98.94%。与此同时,Tween-20聚合物也可以有效地应用于MnO2/Zn全电池。综合考量Tween-20的毒性、经济性和添加剂用量,该表面活性添加剂为开发高可逆、高稳定锌金属负极提供了一种好的策略

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhang SL, Fan QN, Liu Y, ** SB, Liu XF, Wu ZB, Hao JN, Pang WK, Zhou TF, Guo ZP. Dehydration–triggered ionic channel engineering in potassium niobate for Li/K–ion storage. Adv. Mater. 2020;32(22):2000380. https://doi.org/10.1002/adma.202000380

    Article  CAS  Google Scholar 

  2. Zhu XF, Li X, Liang TQ, Liu XH, Ma JM. Electrolyte perspective on stabilizing LiNi0.8Co0.1Mn0.1O2 cathode for lithium-ion batteries. Rare Metals. 2023;42(2):387. https://doi.org/10.1007/s12598-022-02101-2

  3. Ma H, Yu JQ, Chen MF, Han X, Chen JZ, Liu B, Shi SQ. Amino–enabled desolvation sieving effect realizes dendrite-inhibiting thin separator for durable aqueous zinc–ion batteries. Adv. Funct. Mater. 2023;33(52):2307384. https://doi.org/10.1002/adfm.202307384

    Article  CAS  Google Scholar 

  4. Ruan PC, Liang SQ, Lu BG, Fan HJ, Zhou J. Design strategies for high-energy-density aqueous zinc batteries. Angew. Chem. Int. Ed. 2022;61(17):e202200598. https://doi.org/10.1002/anie.202200598

    Article  CAS  Google Scholar 

  5. Guo S, Qin LP, Zhang TS, Zhou M, Zhou J, Fang GZ, Liang SQ. Fundamentals and perspectives of electrolyte additives for aqueous zinc-ion batteries. Energy Storage Mater. 2021;34:545. https://doi.org/10.1016/j.ensm.2020.10.019

    Article  Google Scholar 

  6. Zhao YL, Zhu YH, Zhang XB. Challenges and perspectives for manganese-based oxides for advanced aqueous zinc–ion batteries. InfoMat. 2019;2(2):237. https://doi.org/10.1002/inf2.12042

    Article  CAS  Google Scholar 

  7. Li T C, Fang DL, Zhang JT, Pam M E, Leong Z Y, Yu JZ, Li XL, Yan D, Yang HY. Recent progress in aqueous zinc-ion batteries: a deep insight into zinc metal anodes. J. Mater. Chem. A. 2021;9(10):6013. https://doi.org/10.1039/d0ta09111a

    Article  CAS  Google Scholar 

  8. Blanc L E, Kundu D, Nazar L F. Scientific challenges for the implementation of Zn-ion batteries. Joule. 2020;4(4):771. https://doi.org/10.1016/j.joule.2020.03.002

    Article  CAS  Google Scholar 

  9. Chen M, Zhang SC, Zou ZG, Zhong SL, Ling WQ, Geng J, Liang FA, Peng XX, Gao Y, Yu FG. Review of vanadium-based oxide cathodes as aqueous zinc-ion batteries. Rare Metals. 2023;42(9):2868. https://doi.org/10.1007/s12598-023-02303-2

    Article  CAS  Google Scholar 

  10. Kang LT, Cui MW, Jiang FY, Gao YF, Luo HJ, Liu JJ, Liang W, Zhi CY. Nanoporous CaCO3 coatings enabled uniform zn strip**/plating for long-life zinc rechargeable aqueous batteries. Adv. Energy Mater. 2018;8(25):1801090. https://doi.org/10.1002/aenm.201801090

    Article  CAS  Google Scholar 

  11. Zhang Q, Ma YL, Lu Y, Zhou XZ, Lin L, Li L, Yan ZH, Zhao Q, Zhang K, Chen J. Designing anion-type water-free Zn2+ solvation structure for robust Zn metal anode. Angew. Chem. Int. Ed. 2021;133(43):23545. https://doi.org/10.1002/anie.202109682

    Article  CAS  Google Scholar 

  12. Wan F, Zhang LL, Dai X, Wang XY, Niu ZQ, Chen J. Aqueous rechargeable zinc/sodium vanadate batteries with enhanced performance from simultaneous insertion of dual carriers. Nat. Commun. 2018;9(1):1656. https://doi.org/10.1038/s41467-018-04060-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Qiu HY, Du XF, Zhao JW, Wang YT, Ju JW, Chen Z, Hu ZL, Yan DP, Zhou XH, Cui GL. Zinc anode-compatible in-situ solid electrolyte interphase via cation solvation modulation. Nat. Commun. 2019;10(1):5374. https://doi.org/10.1038/s41467-019-13436-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhao XY, Liang XQ, Li Y, Chen QG, Chen MH. Challenges and design strategies for high performance aqueous zinc ion batteries. Energy Storage Mater. 2021;42:533. https://doi.org/10.1016/j.ensm.2021.07.044

    Article  Google Scholar 

  15. Lei SY, Feng JX, Chen YC, Zheng D, Liu WX, Shi WH, Wu FF, Cao XH. Advance in reversible Zn anodes promoted by 2D materials. Rare Metals. 2024;43:1350. https://doi.org/10.1007/s12598-023-02478-8

    Article  CAS  Google Scholar 

  16. Yan MD, Dong N, Zhao XS, Sun Y, Pan HL. Tailoring the stability and kinetics of zn anodes through trace organic polymer additives in dilute aqueous electrolyte. ACS Energy Lett. 2021;6(9):3236. https://doi.org/10.1021/acsenergylett.1c01418

    Article  CAS  Google Scholar 

  17. Chen MF, Yang M, Han X, Chen JZ, Zhang PX, Wong CP. Suppressing rampant and vertical deposition of cathode intermediate product via pH regulation toward large‐capacity and high‐durability Zn//MnO2 batteries. Adv. Mater. 2024;36(4):2304997. https://doi.org/10.1002/adma.202304997

    Article  CAS  Google Scholar 

  18. Wang PJ, Liang SQ, Chen C, **e XS, Chen JW, Liu ZH, Tang Y, Lu BG, Zhou J. Spontaneous construction of nucleophilic carbonyl‐containing interphase towards ultra‐stable zinc metal anodes. Adv. Mater. 2022;34(33):2202733. https://doi.org/10.1002/adma.202202733

    Article  CAS  Google Scholar 

  19. Zhang MH, Hua HM, Dai PP, He Z, Han LH, Tang PW, Yang J, Lin PX, Zhang YF, Zhan DP, Chen JK, Qiao Y, Li C C, Zhao JB, Yang Y. Dynamically interfacial pH-buffering effect enabled by N-Methylimidazole molecules as spontaneous proton pumps toward highly reversible zinc-metal anodes. Adv. Mater. 2023;35(15):e2208630. https://doi.org/10.1002/adma.202208630

    Article  CAS  PubMed  Google Scholar 

  20. GGan Y, Wang C, Li JY, Zheng JJ, Wan HZ, Wang H. Stability optimization strategy of aqueous zinc ion batteries. Chin. J. Rare Met.. 2022,46(6):753. https://doi.org/10.13373/j.cnki.cjrm.XY21100036

  21. Li L, Jia SF, Cao MH, Ji YQ, Qiu HW, Zhang D. Progress in research on metal-based materials in stabilized Zn anodes. Rare Metals. 2024;43(1):20. https://doi.org/10.1007/s12598-023-02441-7

    Article  CAS  Google Scholar 

  22. Sun P, Ma L, Zhou WH, Qiu MJ, Wang ZL, Chao DL, Mai WJ. Simultaneous regulation on solvation shell and electrode interface for dendrite-free zn ion batteries achieved by a low-cost glucose additive. Angew. Chem. Int. Ed. 2021;60(33):18247. https://doi.org/10.1002/anie.202105756

    Article  CAS  Google Scholar 

  23. He P, Chen Q, Yan MY, Xu X, Zhou L, Mai LQ, Nan CW. Building better zinc-ion batteries: a materials perspective. EnergyChem. 2019;1(3):100022. https://doi.org/10.1016/j.enchem.2019.100022

    Article  Google Scholar 

  24. Zhou M, Chen HZ, Chen ZH, Hu ZH, Wang N, ** YS, Yu X, Meng H. Nonionic surfactant coconut diethanol amide inhibits the growth of zinc dendrites for more stable zinc-ion batteries. ACS Appl. Energy Mater. 2022;5(6):7590. https://doi.org/10.1021/acsaem.2c01048

    Article  CAS  Google Scholar 

  25. Shang Y, Kundu D. Understanding and performance of the zinc anode cycling in aqueous zinc-ion batteries and a roadmap for the future. Batteries & Supercaps. 2022;5(5):e202100394. https://doi.org/10.1002/batt.202100394

    Article  CAS  Google Scholar 

  26. Qiu MJ, Sun P, Qin AM, Cui GF, Mai WJ. Metal-coordination chemistry guiding preferred crystallographic orientation for reversible zinc anode. Energy Storage Mater. 2022;49:463. https://doi.org/10.1016/j.ensm.2022.04.018

    Article  Google Scholar 

  27. Huang JX, Fu Z, Sun CF, Deng WZ. Surfactant additives containing hydrophobic fluorocarbon chains and hydrophilic sulfonate anion for highly reversible Zn anode. Molecules. 2023;28(10):4177. https://doi.org/10.3390/molecules28104177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guan KL, Tao L, Yang R, Zhang HN, Wang NZ, Wan HZ, Cui J, Zhang J, Wang HB, Wang H. Anti‐corrosion for reversible zinc anode via a hydrophobic interface in aqueous zinc batteries. Adv. Energy. Mater. 2022;12(9): 2103557. https://doi.org/10.1002/aenm.202103557

    Article  CAS  Google Scholar 

  29. Zhao FJ, **g ZF, Guo XX, Li JW, Dong HB, Tan YS, Liu LX, Zhou YQ, Owen R, Shearing P R, Brett D J L, He GJ, Parkin I P. Trace amounts of fluorinated surfactant additives enable high performance zinc-ion batteries. Energy Storage Mater. 2022;53:638. https://doi.org/10.1016/j.ensm.2022.10.001

    Article  Google Scholar 

  30. Cao H, Huang XM, Liu Y, Hu Q, Zheng QJ, Huo Y, **e FY, Zhao JX, Lin DM. An efficient electrolyte additive of tetramethylammonium sulfate hydrate for dendritic-free zinc anode for aqueous Zinc-ion batteries. J. Colloid. Interf. Sci. 2022;627:367. https://doi.org/10.1016/j.jcis.2022.07.081

    Article  CAS  Google Scholar 

  31. Lin YX, Mai ZX, Liang HK, Li Y, Yang GZ, Wang CX. Dendrite-free Zn anode enabled by anionic surfactant-induced horizontal growth for highly-stable aqueous Zn-ion pouch cells. Energy Environ Sci. 2023;16(2):687. https://doi.org/10.1039/d2ee03528f

    Article  CAS  Google Scholar 

  32. Hao JN, Li B, Li XL, Zeng XH, Zhang SL, Yang FH, Liu SL, Li D, Wu C, Guo ZP. An in-depth study of zn metal surface chemistry for advanced aqueous Zn-ion batteries. Adv. Mater. 2020;32(34):e2003021. https://doi.org/10.1002/adma.202003021

    Article  CAS  PubMed  Google Scholar 

  33. Li T C, Lim Y V, **e XS, Li X L, Li GJ, Fang DL, Li YF, Ang Y S, Ang L K, Yang H Y. ZnSe modified zinc metal anodes: toward enhanced zincophilicity and ionic diffusion. Small. 2021;1(1):2101728. https://doi.org/10.1002/smll.202101728

    Article  CAS  Google Scholar 

  34. Zhang SJ, Hao JN, Luo D, Zhang PF, Zhang BK, Davey K, Lin Z, Qiao SZ. Dual‐function electrolyte additive for highly reversible Zn anode. Adv. Energy Mater. 2021;11(37):2102010. https://doi.org/10.1002/aenm.202102010

    Article  CAS  Google Scholar 

  35. Zhang Q, Luan JY, Fu L, Wu SG, Tang YG, Ji XB, Wang HY. The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive. Angew. Chem. Int. Ed. 2019;58(44):15841. https://doi.org/10.1002/anie.201907830

    Article  CAS  Google Scholar 

  36. Zhao ZM, Zhao JW, Hu ZL, Li JD, Li JJ, Zhang YJ, Wang C, Cui GL. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ. Sci. 2019;12(6):1938. https://doi.org/10.1039/c9ee00596j

    Article  CAS  Google Scholar 

  37. Qin HY, Kuang W, Hu N, Zhong XM, Huang D, Shen F, Wei ZW, Huang YP, Xu J, He HB. Building Metal-molecule interface towards stable and reversible Zn metal anodes for aqueous rechargeable zinc batteries. Adv. Funct. Mater. 2022;32(47):2206695. https://doi.org/10.1002/adfm.202206695

    Article  CAS  Google Scholar 

  38. Huang C, Zhao X, Liu S, Hao YS, Tang QL, Hu AP, Liu ZX, Chen XH. Stabilizing zinc anodes by regulating the electrical double layer with saccharin anions. Adv. Mater. 2021;33(38):e2100445. https://doi.org/10.1002/adma.202100445

    Article  CAS  PubMed  Google Scholar 

  39. Cao J, Zhang DD, Gu C, Wang X, Wang SM, Zhang XY, Qin JQ, Wu ZS. Manipulating crystallographic orientation of zinc deposition for dendrite-free zinc ion batteries. Adv. Energy Mater. 2021;11(29):2101299. https://doi.org/10.1002/aenm.202101299

    Article  CAS  Google Scholar 

  40. Zheng JX, Deng Y, Yin JF, Tang T, Garcia-Mendez R, Zhao Q, Archer L A. Textured electrodes: manipulating built-in crystallographic heterogeneity of metal electrodes via severe plastic deformation. Adv. Mater. 2022;34(1):e2106867. https://doi.org/10.1002/adma.202106867

    Article  CAS  PubMed  Google Scholar 

  41. Zheng JX, Zhao Q, Tang T, Yin JF, Quilty C D, Renderos G D, Liu XT, Deng Y, Wang L, Bock D C, Jaye C, Zhang DH, Takeuchi E S, Takeuchi K J, Marschilok A C, Archer L A. Reversible epitaxial electrodeposition of metals in battery anodes. Science. 2019;366:645. https://doi.org/10.1126/science.aax68

    Article  CAS  PubMed  Google Scholar 

  42. Bayaguud A, Luo X, Fu YP, Zhu CB. Cationic Surfactant-type electrolyte additive enables three-dimensional dendrite-free zinc anode for stable zinc-ion batteries. ACS Energy Lett. 2020;5(9):3012. https://doi.org/10.1021/acsenergylett.0c01792

    Article  CAS  Google Scholar 

  43. Pei A, Zheng GY, Shi FF, Li YZ, Cui Y. Nanoscale nucleation and growth of electrodeposited lithium metal. Nano Lett. 2017;17(2):1132. https://doi.org/10.1021/acs.nanolett.6b04755

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 22102157 and U1910208), the Natural Science Foundation of Shanxi Province of China (Nos. 20210302124097 and 20210302124663), the Opening Foundation of Shanxi Provincial Key Laboratory for High Performance Battery Materials and Devices (No. 2022HPBMD02002), the Graduate Student Innovation Program of North University of China (No. 20221871) and the Natural Science Foundation of Hubei Province of China (No. 2022CFB577).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yue-**an Song, Hui-Juan Guo or Jun-Fei Liang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2854 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, YX., Wang, XF., Liu, CB. et al. A widely used nonionic surfactant with desired functional groups as aqueous electrolyte additives for stabilizing Zn anode. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02754-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02754-1

Keywords

Navigation