Log in

Enhanced activation of peroxymonosulfate on layered molybdenum disulfide loaded with Co–La bimetallic oxide for efficient degradation of chloramphenicol

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

The use of transition metal-activated peroxymonosulfate (PMS) as an advanced oxidation technology has gained recognition. This study developed a catalyst using cobalt–lanthanum bimetallic oxide supported on layered molybdenum disulfide (MoS2) as a carrier. The Co–La/MoS2 catalyst was synthesised through coprecipitation, followed by calcination with an optimised metal ratio of Co:La = 2:1 to activate PMS and degrade trace chloramphenicol (CAP) in water. The chemical composition of the catalyst was confirmed using X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). At catalyst and PMS dosages of 0.1 and 0.5 g·L−1, respectively, the degradation rate of CAP was 95% within 30 min. The catalyst exhibited strong resistance to most interfering anions and maintained a high degradation rate at pH 3–11. Liquid chromatography–mass spectrometry analysis revealed the potential degradation pathways of CAP in the Co–La/MoS2 (2:1)/PMS system. For other pollutants, such as oxytetracycline, complete degradation was achieved within 20 min, demonstrating the broad applicability of the Co–La/MoS2 (2:1)/PMS system for the degradation and removal of antibiotic organic contaminants. This study offers a feasible approach for the degradation of antibiotic organic pollutants, including CAP, in natural water bodies.

Graphical abstract

摘要

过渡金属活化的过氧单硫酸盐作为一种先进的氧化技术得到了广泛的应用。本研究开发了一种以层状二硫化钼为载体的钴镧双金属氧化物催化剂。通过共沉淀法合成Co - La/MoS2催化剂, 然后以Co:La = 2:1的优化金属比煅烧, 激活过氧单硫酸盐并降解水中痕量氯霉素。用x射线衍射和x射线光电子能谱法确定了催化剂的化学成分。在催化剂和过氧单硫酸盐用量分别为0.1和0.5 g·L−1时, 氯霉素在30分钟内的降解率为95%。催化剂对大多数干扰阴离子具有较**的抗性, 在pH范围 3-11内保持较高的降解率。液相色谱-质谱分析揭示了Co-La /MoS2 (2:1)/PMS体系中CAP的潜在降解途径。对于其他污染物, 如土霉素, 在20分钟内完全降解, 证明了Co-La /MoS2 (2:1)/PMS系统在降解和去除抗生素有机污染物方面的广泛适用性。本研究为天然水体中包括氯霉素的抗生素有机污染物降解提供了一条可行的途径。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Li JD, Fang W, Yu CL, Zhou WQ, Zhu LH, **e Y. Ag-based semiconductor photocatalysts in environmental purification. Appl Surf Sci. 2015;358:46. https://doi.org/10.1016/j.apsusc.2015.07.139.

    Article  CAS  Google Scholar 

  2. Umapathi R, Park B, Sonwal S, Rani GM, Cho YJ, Huh YS. Advances in optical-sensing strategies for the on-site detection of pesticides in agricultural foods. Trends Food Sci Technol. 2022;119:69. https://doi.org/10.1016/j.tifs.2021.11.018.

    Article  CAS  Google Scholar 

  3. Ashraf A, Liu GJ, Yousaf B, Arif M, Ahmed R, Irshad S, Cheema AI, Rashid A, Gulzaman H. Recent trends in advanced oxidation process-based degradation of erythromycin: pollution status, eco-toxicity and degradation mechanism in aquatic ecosystems. Sci Total Environ. 2021;772:145389. https://doi.org/10.1016/j.scitotenv.2021.145389.

    Article  CAS  PubMed  Google Scholar 

  4. Geng C, Huang Y, Li B, et al. Point-of-care testing of chloramphenicol in food production using smartphone-based electrochemical detector. J Anal Test. 2023;7:33. https://doi.org/10.1007/s41664-022-00238-8.

    Article  Google Scholar 

  5. Yao JY, Yu Y, Qu RJ, Chen J, Huo ZL, Zhu F, Wang ZY. Fe-activated peroxymonosulfate enhances the degradation of dibutyl phthalate on ground quartz sand. Environ Sci Technol. 2020;54(14):9052. https://doi.org/10.1021/acs.est.0c00793.

    Article  CAS  PubMed  Google Scholar 

  6. Chu WH, Krasner SW, Gao NY, Templeton MR, Yin DQ. Contribution of the antibiotic chloramphenicol and its analogues as precursors of dichloroacetamide and other disinfection byproducts in drinking water. Environ Sci Technol. 2016;50(1):388. https://doi.org/10.1021/acs.est.5b04856.

    Article  CAS  PubMed  Google Scholar 

  7. Nguyen LM, Nguyen NTT, Nguyen TTT, Nguyen TT, Nguyen DTC, Tran TV. Occurrence, toxicity and adsorptive removal of the chloramphenicol antibiotic in water: a review. Environ Chem Lett. 2022;20(3):1929. https://doi.org/10.1007/s10311-022-01416-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nidheesh PV, Gandhimathi R, Ramesh ST. Degradation of dyes from aqueous solution by Fenton processes: a review. Environ Sci Pollut Res. 2013;20(4):2099. https://doi.org/10.1007/s11356-012-1385-z.

    Article  CAS  Google Scholar 

  9. Aguiar A, Ferraz A, Contreras D, Rodríguez J. Mecanismo e aplicaes da reao de fenton assistida por compostos fenólicos redutores de ferro. Quim Nova. 2007;30(3):623. https://doi.org/10.1590/S0100-40422007000300023.

    Article  CAS  Google Scholar 

  10. Torrades F, Garcia-Hortal JA, Garcia-Montano J. Mineralization of hetero bi-functional reactive dye in aqueous solution by Fenton and photo-Fenton reactions. Environ Technol. 2015;36(16):2035. https://doi.org/10.1080/09593330.2015.1019931.

    Article  CAS  PubMed  Google Scholar 

  11. Torrades F, Garcia-Montano J. Using central composite experimental design to optimize the degradation of real dye wastewater by Fenton and photo-Fenton reactions. Dyes Pigment. 2014;100:184. https://doi.org/10.1016/j.dyepig.2013.09.004.

    Article  CAS  Google Scholar 

  12. Pu JY, Wan JQ, Wang Y, Ma YW. Different Co-based MOFs templated synthesis of Co3O4 nanoparticles to degrade RhB by activation of oxone. RSC Adv. 2016;6(94):91791. https://doi.org/10.1039/c6ra15590a.

    Article  CAS  Google Scholar 

  13. Pang XT, Guo Y, Zhang YT, Xu BB, Qi F. LaCoO3 perovskite oxide activation of peroxymonosulfate for aqueous 2-phenyl-5-sulfobenzimidazole degradation: effect of synthetic method and the reaction mechanism. Chem Eng J. 2016;304:897. https://doi.org/10.1016/j.cej.2016.07.027.

    Article  CAS  Google Scholar 

  14. Zou J, Ma J, Chen LW, Li XC, Guan YH, **e PC, Pan C. Rapid acceleration of ferrous iron/peroxymonosulfate oxidation of organic pollutants by promoting Fe(III)/Fe(II) cycle with hydroxylamine. Environ Sci Technol. 2013;47(20):11685. https://doi.org/10.1021/es4019145.

    Article  CAS  PubMed  Google Scholar 

  15. Guo S, Wang HJ, Yang W, Fida H, You LM, Zhou K. Scalable synthesis of Ca-doped alpha-Fe2O3 with abundant oxygen vacancies for enhanced degradation of organic pollutants through peroxymonosulfate activation. Appl Catal B-Environ. 2020;262:118250. https://doi.org/10.1016/j.apcatb.2019.118250.

    Article  CAS  Google Scholar 

  16. Liu Y, Wang JL. Multivalent metal catalysts in Fenton/Fenton-like oxidation system: a critical review. Chem Eng J. 2023;466:143147. https://doi.org/10.1016/j.cej.2023.143147.

    Article  CAS  Google Scholar 

  17. Anipsitakis GP, Dionysiou DD. Radical generation by the interaction of transition metals with common oxidants. Environ Sci Technol. 2004;38(13):3705. https://doi.org/10.1021/es035121o.

    Article  CAS  PubMed  Google Scholar 

  18. Ji YF, Dong CX, Kong DA, Lu JH. New insights into atrazine degradation by cobalt catalyzed peroxymonosulfate oxidation: kinetics, reaction products and transformation mechanisms. J Hazard Mater. 2015;285:491. https://doi.org/10.1016/j.jhazmat.2014.12.026.

    Article  CAS  PubMed  Google Scholar 

  19. Ghanbari F, Moradi M. Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants: review. Chem Eng J. 2017;310:41. https://doi.org/10.1016/j.cej.2016.10.064.

    Article  CAS  Google Scholar 

  20. Lin J, Zhang KT, Jiang LK, Hou JF, Yu X, Feng MB, Ye CS. Removal of chloramphenicol antibiotics in natural and engineered water systems: review of reaction mechanisms and product toxicity. Sci Total Environ. 2022;850:158059. https://doi.org/10.1016/j.scitotenv.2022.158059.

    Article  CAS  PubMed  Google Scholar 

  21. Gupta D, Chauhan V, Kumar R. A comprehensive review on synthesis and applications of molybdenum disulfide (MoS2) material: past and recent developments. Inorg Chem Commun. 2020;121:108200. https://doi.org/10.1016/j.inoche.2020.108200.

    Article  CAS  Google Scholar 

  22. Subbaiah YPV, Saji KJ, Tiwari A. Atomically thin MoS2: a versatile nongraphene 2D material. Adv Funct Mater. 2016;26(13):2046. https://doi.org/10.1002/adfm.201504202.

    Article  CAS  Google Scholar 

  23. Han SA, Bhatia R, Kim SW. Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides. Nano Converg. 2015;2:17. https://doi.org/10.1186/s40580-015-0048-4.

    Article  CAS  Google Scholar 

  24. Liu ZZ, Luo YX, Yang P, Yang HK, Chen YQ, Shao Q, Wu F, **e PC, Ma J. Cobalt-doped molybdenum disulfide for efficient sulfite activation to remove As(III): preparation, efficacy, and mechanisms. J Hazard Mater. 2023;452:131311. https://doi.org/10.1016/j.jhazmat.2023.131311.

    Article  CAS  PubMed  Google Scholar 

  25. Yu L, Yu Y, Li JY, Chen P. Development and characterization of yttrium-ferric binary composite for treatment of highly concentrated arsenate wastewater. J Hazard Mater. 2019;361:348. https://doi.org/10.1016/j.jhazmat.2018.07.068.

    Article  CAS  PubMed  Google Scholar 

  26. Liotta LF, Di Carlo G, Pantaleo G, Venezia AM, Deganello G. Co3O4/CeO2 composite oxides for methane emissions abatement: relationship between Co3O4-CeO2 interaction and catalytic activity. Appl Catal B-Environ. 2006;66(3):217. https://doi.org/10.1016/j.apcatb.2006.03.018.

    Article  CAS  Google Scholar 

  27. Su J, Lyu T, Yi H, Bi L, Pan G. Superior arsenate adsorption and comprehensive investigation of adsorption mechanism on novel Mn-doped La2O2CO3 composites. Chem Eng J. 2020;391:123623. https://doi.org/10.1016/j.cej.2019.123623.

    Article  CAS  Google Scholar 

  28. Kong J. Molybdenum disulfide single crystal (0002) plane XPS spectra. Surf Sci Spectra. 2000;7(1):69. https://doi.org/10.1116/1.1287819.

    Article  CAS  Google Scholar 

  29. Ma F, Ding ZW, Chu W, Hao SX, Qi T. Preparation of LaxCoO3 (x = Mg, Ca, Sr, Ce) catalysts and their performance for steam reforming of ethanol to hydrogen. Chin J Catal. 2014;35(10):1768. https://doi.org/10.1016/S1872-2067(14)60182-0.

    Article  CAS  Google Scholar 

  30. Ramohlola KE, Iwuoha EI, Hato MJ, Modibane KD. Instrumental techniques for characterization of molybdenum disulphide nanostructures. J Anal Methods Chem. 2020;2020:8896698. https://doi.org/10.1155/2020/8896698.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kwon J, Dai M, Halls MD, Langereis E, Chabal YJ, Gordon RG. In situ infrared characterization during atomic layer deposition of lanthanum oxide. J Phys Chem C. 2009;113(2):654. https://doi.org/10.1021/jp806027m.

    Article  CAS  Google Scholar 

  32. Gao HY, Huang CH, Mao L, Shao B, Shao J, Yan ZY, Tang M, Zhu BZ. First direct and unequivocal electron spin resonance spin-trap** evidence for pH-dependent production of hydroxyl radicals from sulfate radicals. Environ Sci Technol. 2020;54(21):14046. https://doi.org/10.1021/acs.est.0c04410.

    Article  CAS  PubMed  Google Scholar 

  33. Wang JL, Wang SZ. Reactive species in advanced oxidation processes: formation, identification and reaction mechanism. Chem Eng J. 2020;401:126158. https://doi.org/10.1016/j.cej.2020.126158.

    Article  CAS  Google Scholar 

  34. Wang JL, Wang SZ. Effect of inorganic anions on the performance of advanced oxidation processes for degradation of organic contaminants. Chem Eng J. 2021;411:128392. https://doi.org/10.1016/j.cej.2020.128392.

    Article  CAS  Google Scholar 

  35. Tsuneda S, Ishihara Y, Hamachi M, Hirata A. Inhibition effect of chlorine ion on hydroxyl radical generation in UV-H2O2 process. Water Sci Technol. 2002;46(11):33. https://doi.org/10.2166/wst.2002.0713.

    Article  CAS  PubMed  Google Scholar 

  36. Zhou XC, Chen SQ, Zhou MJ, Li M, Lan S, Feng T. Highly efficient cobalt-based amorphous catalyst for peroxymonosulfate activation toward wastewater remediation. Rare Met. 2023;42(4):1160. https://doi.org/10.1007/s12598-022-02220-w.

    Article  CAS  Google Scholar 

  37. Zhong QF, Lin QT, Huang RL, Fu HY, Zhang XF, Luo HY, **ao RB. Oxidative degradation of tetracycline using persulfate activated by N and Cu codoped biochar. Chem Eng J. 2020;380:122608. https://doi.org/10.1016/j.cej.2019.122608.

    Article  CAS  Google Scholar 

  38. Xu C, Zhou Q, Huang WY, Yang K, Zhang YC, Liang TX, Liu ZQ. Constructing Z-scheme β-Bi2O3/ZrO2 heterojunctions with 3D mesoporous SiO2 nanospheres for efficient antibiotic remediation via synergistic adsorption and photocatalysis. Rare Met. 2022;41(6):2094. https://doi.org/10.1007/s12598-021-01897-9.

    Article  CAS  Google Scholar 

  39. Bronzato JD, Bronzato JD, Brito AMM, Bettini J, Passini MRZ, Gomes BPFA, Nantes IL. Degradation of ciprofloxacin by green cobalt oxide quantum dots. Appl Surf Sci. 2023;609:155193. https://doi.org/10.1016/j.apsusc.2022.155193.

    Article  CAS  Google Scholar 

  40. Cao JY, **g Y, Du ZX, Chu W, Li JJ, Cen WL. WC/BiOCl binary composite photocatalyst for accelerating interfacial charge separation and sulfamethoxazole degradation. Appl Surf Sci. 2021;570:151201. https://doi.org/10.1016/j.apsusc.2021.151201.

    Article  CAS  Google Scholar 

  41. Qian LA, Yan S, Yong XY, Selvaraj M, Ghramh HA, Assiri MA, Zhang XY, Awasthi MK, Zhou J. Effective degradation of chloramphenicol in wastewater by activated peroxymonosulfate with Fe-rich porous biochar derived from petrochemical sludge. Chemosphere. 2023;310:136839. https://doi.org/10.1016/j.chemosphere.2022.136839.

    Article  CAS  PubMed  Google Scholar 

  42. Wu HH, Gao YR, Xu X, Li X, Cui J, Lin AJ. Efficient activation of peroxydisulfate by FeNC for chloramphenicol degradation: Performance and mechanisms. J Clean Prod. 2022;380:134981. https://doi.org/10.1016/j.jclepro.2022.134981.

    Article  CAS  Google Scholar 

  43. Wu Y, Mao S, Liu C, Pei FB, Wang FY, Hao QL, **a MZ, Lei W. Enhanced degradation of chloramphenicol through peroxymonosulfate and visible light over Z-scheme photocatalysts: synergetic performance and mechanism insights. J Colloid Interface Sci. 2022;608:322. https://doi.org/10.1016/j.jcis.2021.09.197.

    Article  CAS  PubMed  Google Scholar 

  44. Yang YJ, Xu L, Wang JL. An enhancement of singlet oxygen generation from dissolved oxygen activated by three-dimensional graphene wrapped nZVI-doped amorphous Al species for chloramphenicol removal in the Fenton-like system. Chem Eng J. 2021;425:131497. https://doi.org/10.1016/j.cej.2021.131497.

    Article  CAS  Google Scholar 

  45. Cheng F, Zhou P, Liu Y, Huo XW, Zhang J, Yuan Y, Zhang H, Lai B, Zhang YL. Graphene oxide mediated Fe(III) reduction for enhancing Fe(III)/H2O2 Fenton and photo-Fenton oxidation toward chloramphenicol degradation. Sci Total Environ. 2021;797:149097. https://doi.org/10.1016/j.scitotenv.2021.149097.

    Article  CAS  PubMed  Google Scholar 

  46. Xu HD, Sheng YQ. New insights into the degradation of chloramphenicol and fluoroquinolone antibiotics by peroxymonosulfate activated with FeS: performance and mechanism. Chem Eng J. 2021;414:128823. https://doi.org/10.1016/j.cej.2021.128823.

    Article  CAS  Google Scholar 

  47. Zhong D, Zhou ZY, Ma WC, Ma J, Lv WS, Feng WA, Du X, He F. Study on degradation of chloramphenicol by H2O2/PMS double-oxidation system catalyzed by pipe deposits from water networks. J Environ Chem Eng. 2022;10(3):107529. https://doi.org/10.1016/j.jece.2022.107529.

    Article  CAS  Google Scholar 

  48. Meng X, Liu ZM, Wang SJ, Kong FG. Synergistic degradation of chloramphenicol by an ultrasound-enhanced Fenton-like sponge iron system. Water. 2021;13(24):3561. https://doi.org/10.3390/w13243561.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2019YFC1804400) and the Double First-Class University Plan (No. C176220100042).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shu-**ng Zhou, Tian-** Lv or Guang-Zhi Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 15041 kb)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, YN., Zhang, YQ., Gao, SS. et al. Enhanced activation of peroxymonosulfate on layered molybdenum disulfide loaded with Co–La bimetallic oxide for efficient degradation of chloramphenicol. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02737-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02737-2

Navigation