Log in

Development of Ti–V–Cr–Mn–Mo–Ce high-entropy alloys for high-density hydrogen storage in water bath environments

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

The V-based body-centered cubic (BCC)-type hydrogen storage alloys have attracted significant attention due to their high theoretical hydrogen storage capacity of 3.80 wt%. However, their practical application faces challenges related to low dehydriding capacity and poor activation performance. To overcome these challenges, a BCC-type Ti–V–Cr–Mn–Mo–Ce high-entropy alloy (HEA) with an effectively dehydriding capacity of 2.5 wt% above 0.1 MPa was prepared. By introduction of Mo and conducting heat treatment, the precipitation of Ti-rich phase in HEA was successfully suppressed, resulting in improved compositional uniformity and dehydriding capacity. Consequently, the effective dehydriding capacity increased significantly from 0.60 wt% to 2.50 wt% at 65 °C, surpassing that of other types of hydrogen storage alloys under the same conditions. Moreover, the addition of 1 wt% Ce enabled initial hydrogen absorption at 25 °C without the need for activation at 400 °C. Furthermore, Ce do** reduced the dehydriding activation energy of the Ti–V–Cr–Mn–Mo–Ce HEA from 52.71 to 42.82 kJ·mol−1. Additionally, the enthalpy value of dehydrogenation decreased from 46.89 to 17.96 kJ·mol−1, attributed to a decrease in the hysteresis factor from 0.68 to 0.52. These findings provide valuable insights for optimizing the hydrogen storage property of HEA.

Graphical Abstract

摘要

钒基体心立方(BCC)型储氢合金因其高达3.80 wt%的理论储氢容量而备受关注。然而, 在实际应用存在着脱氢率低和活化困难等难题。为此, 制备了一种BCC型TiVCrMnMoCe高熵合金(HEA), 该合金在0.1 MPa以上的有效脱氢量达到2.5 wt%。通过引入Mo和热处理, 成功抑制了HEA中富Ti相的析出, 改善了HEA成分均匀性和脱氢能力。在65°C时, HEA有效脱氢量由0.60 wt%提高到2.50 wt%, 在相同条件下优于其他类型储氢合金的有效脱氢量。此外, 添加1 wt%的Ce可以使得HEA无需在400°C下进行活化, 而在25°C下能直接吸氢。Ce的掺杂使得HEA的脱氢活化能从52.71降低到42.82 kJ·mol−1。脱氢焓值从46.89降低到17.96 kJ·mol−1, 这是由于滞后系数从0.68降低到0.52。研究结果为优化HEA的储氢性能提供了指导.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Rosi LN, Eckert J, Eddaoudi M, Vodak DT, Kim J, Keeffe MO, Yaghi OM. Hydrogen storage in microporous metal-organic frameworks. Science. 2003;300:1127. https://doi.org/10.1126/science.1083440.

    Article  CAS  PubMed  Google Scholar 

  2. Wang L, Zhang LT, Lu X, Wu FY, Sun X, ZhaoH LQ. Surprising cocktail effect in high entropy alloys on catalyzing magnesium hydride for solid-state hydrogen storage. Chem Eng J. 2023;465:142766.

    Article  CAS  Google Scholar 

  3. Lin HJ, Lu YS, Zhang LT, Liu HZ, Edalati K, Révész Á. Recent advances in metastable alloys for hydrogen storage: a review. Rare Met. 2022;41(6):1797. https://doi.org/10.1007/s12598-021-01917-8.

    Article  CAS  Google Scholar 

  4. Zheng J, Zhou H, Wang CG, Ye EY, Xu JW, Loh XJ, Li ZB. Current research progress and perspectives on liquid hydrogen rich molecules in sustainable hydrogen storage. Energy Storage Mater. 2021;35:695. https://doi.org/10.1016/j.ensm.2020.12.007.

    Article  Google Scholar 

  5. Qiao WF, Yin DM, Zhao SL, Ding N, Liang L, Wang CL, Wang LM, He M, Cheng Y. Effects of Cu do** on the hydrogen storage performance of Ti–Mn-based, AB2-type alloys. Chem Eng J. 2023;465:142837. https://doi.org/10.1016/j.cej.2023.142837.

    Article  CAS  Google Scholar 

  6. Liu SY, Liu JY, Liu XF, Shang JX, Xu L, Yu RH, Shui JL. Hydrogen storage in incompletely etched multilayer Ti2CTx at room temperature. Nat Nanotechnol. 2021;16(3):331. https://doi.org/10.1038/s41565-020-00818-8.

    Article  CAS  PubMed  Google Scholar 

  7. Liu HZ, Zhang LF, Ma HY, Lu CL, Luo H, Wang XH, Huang XT, Lan ZQ, Guo J. Aluminum hydride for solid-state hydrogen storage: Structure, synthesis, thermodynamics, kinetics, and regeneration. J Energy Chem. 2021;52:428. https://doi.org/10.1016/j.jechem.2020.02.008.

    Article  CAS  Google Scholar 

  8. Li JX, He XY, **ong W, Wang L, Li BQ, Li J, Zhou SJ, Yan HZ. Phase forming law and electrochemical properties of A2B7-type La–Y–Ni-based hydrogen storage alloys with different La/Y ratios. J Rare Earths. 2023;41(2):268. https://doi.org/10.1016/j.jre.2022.04.024.

    Article  CAS  Google Scholar 

  9. Wang MX, Wang YG, Kong HY, **e QF, Wu CL, Wang Y, Chen YG, Yan YG. Development of Fe-containing BCC hydrogen storage alloys with high vanadium concentration. J Alloy Compd. 2023;958:170294. https://doi.org/10.1016/j.jallcom.2023.170294.

    Article  CAS  Google Scholar 

  10. Wu DF, Li R, Chen PY, Zhou Q, Tang RH, **ao FM. Properties and structure of Ti-Mn based high-capacity solid low pressure hydrogen storage alloys. Chin J Rare Met. 2023;47(3):357. https://doi.org/10.13373/j.cnki.cjrm.XY21100007.

    Article  CAS  Google Scholar 

  11. Zhou L, Li WX, Hu HZ, Zeng HF, Chen QJ. Ce-doped TiZrCrMn alloys for enhanced hydrogen storage. Energy Fuels. 2022;36(7):3997. https://doi.org/10.1021/acs.energyfuels.2c00011.

    Article  CAS  Google Scholar 

  12. Liu JJ, Li K, Cheng HH, Yan K, Wang Y, Liu Y, ** HM, Zheng Z. New insights into the hydrogen storage performance degradation and Al functioning mechanism of LaNi5-xAlx alloys. Int J Hydrogen Energy. 2017;42(39):24904. https://doi.org/10.1016/j.ijhydene.2017.07.213.

    Article  CAS  Google Scholar 

  13. Wan HY, Yang X, Zhou SM, Ran L, Lu YF, Chen YA, Wang JF, Pan FS. Enhancing hydrogen storage properties of MgH2 using FeCoNiCrMn high entropy alloy catalysts. J Mater Sci Technol. 2023;149:88. https://doi.org/10.1016/j.jmst.2022.11.033.

    Article  CAS  Google Scholar 

  14. Li ZY, Sun LX, Xu F, Luo YM, **a YP, Wei S, Zhang CC, Cheng RG, Ye CF, Liu MY, Zeng JL, Cao Z, Pan HG. Modulated noble metal/2D MOF heterostructures for improved hydrogen storage of MgH2. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02496-6.

    Article  Google Scholar 

  15. Duan XQ, Li GX, Zhang WH, Luo H, Tang HM, Xu L, Sheng P, Wang XH, Huang XT, Huang CK, Lan ZQ, Zhou WZ, Guo J, Ismail MB, Liu HZ. Ti3AlCN MAX for tailoring MgH2 hydrogen storage material: from performance to mechanism. Rare Met. 2023;42(6):1923. https://doi.org/10.1007/s12598-022-02231-7.

    Article  CAS  Google Scholar 

  16. Zhang HB, Ye JC, Wu XG, Hu XW, Hu HZ, Ma CM, Chen QJ. Effect of La do** on kinetic and thermodynamic performances of Ti1.2CrMn alloy upon de/hydrogenation. ACS Omega. 2022;7(45):40807. https://doi.org/10.1021/acsomega.2c03367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hu HZ, **ao HQ, Li J, Ma CM, Yi LC, Chen QJ. Hydrogen storage in Mo substituted low-V alloys treated by melt-spin process. Chem Eng J. 2023;455:140970. https://doi.org/10.1016/j.cej.2022.140970.

    Article  CAS  Google Scholar 

  18. Kong LJ, Cheng B, Wan D, Xue YF. A review on BCC-structured high-entropy alloys for hydrogen storage. Front Mater. 2023;10:1135864. https://doi.org/10.3389/fmats.2023.1135864.

    Article  Google Scholar 

  19. Chen JT, Li ZY, Huang HX, Lv YJ, Liu BG, Li YT, Wu Y, Yuan JG, Wang YJ. Superior cycle life of TiZrFeMnCrV high entropy alloy for hydrogen storage. Script Materialia. 2022;212:114548. https://doi.org/10.1016/j.scriptamat.2022.114548.

    Article  CAS  Google Scholar 

  20. Wang YT, Wang YH. High-entropy alloys in catalyses and supercapacitors: progress, prospects. Nano Energy. 2022;104:107958. https://doi.org/10.1016/j.nanoen.2022.107958.

    Article  CAS  Google Scholar 

  21. Sahlberg M, Karlsson D, Zlotea C, Jansson U. Superior hydrogen storage in high entropy alloys. Sci Rep. 2016;6(1):36770. https://doi.org/10.1038/srep36770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Liu JJ, Xu J, Sleiman S, Chen XY, Zhu S, Cheng HH, Huot J. Hydrogen storage properties of V0.3Ti0.3Cr0.25Mn0.1Nb0.05 high entropy alloy. Int J Hydrogen Energy. 2021;46(61):28709. https://doi.org/10.1016/j.ijhydene.2022.06.013.

    Article  CAS  Google Scholar 

  23. Kunce I, Polanski M, Bystrzycki J. Structure and hydrogen storage properties of a high entropy ZrTiVCrFeNi alloy synthesized using laser engineered net sha** (LENS). Int J Hydrogen Energy. 2013;38(27):12180. https://doi.org/10.1016/j.ijhydene.2013.05.071.

    Article  CAS  Google Scholar 

  24. Serrano L, Moussa M, Yao JY, Silva G, Bobet JL, Santos SF, Cardoso KR. Development of Ti–V–Nb–Cr–Mn high entropy alloys for hydrogen storage. J Alloy Compd. 2023;945:169289. https://doi.org/10.1016/j.jallcom.2023.169289.

    Article  CAS  Google Scholar 

  25. Yu XB, Wu Z, **a BJ, Xu NX. Enhancement of hydrogen storage capacity of Ti–V–Cr–Mn BCC phase alloys. J Alloy Compd. 2004;372(1–2):272. https://doi.org/10.1016/j.jallcom.2003.09.153.

    Article  CAS  Google Scholar 

  26. Wan CB, Ju X, Qi Y, Fan C, Wang SM, Liu XP, Jiang LJ. A study on crystal structure and chemical state of TiCrVMn hydrogen storage alloys during hydrogen absorption-desorption cycling. Int J Hydrogen Energy. 2009;34(21):8944. https://doi.org/10.1016/j.ijhydene.2009.08.060.

    Article  CAS  Google Scholar 

  27. Hu HZ, Ma CM, Chen QJ. Improved hydrogen storage properties of Ti2CrV alloy by Mo substitutional do**. Int J Hydrogen Energy. 2022;47(23):11929. https://doi.org/10.1016/j.ijhydene.2022.01.212.

    Article  CAS  Google Scholar 

  28. Li W, Zhang B, Yuan JG, Yan OH, Ying W. Effect of Mo content on the microstructures and electrochemical performances of La0.75Mg0.25Ni3.2−xCo0.2Al0.1Mox (x = 0, 0.10, 0.15, 0.20) hydrogen storage alloys. J Alloys Compd. 2017;692:817. https://doi.org/10.1016/j.jallcom.2016.09.113.

    Article  CAS  Google Scholar 

  29. Young K, Ouchi T, Reichman B, Koch J, Fetcenko MA. Effects of Mo additive on the structure and electrochemical properties of low-temperature AB5 metal hydride alloys. J Alloy Compd. 2011;509(9):3995. https://doi.org/10.1016/j.jallcom.2010.12.205.

    Article  CAS  Google Scholar 

  30. Young K, Ouchi T, Huang B, Reichman B, Fetcenko MA. Effect of molybdenum content on structural, gaseous storage, and electrochemical properties of C14-predominant AB2 metal hydride alloys. J Power Sources. 2011;196(20):8815. https://doi.org/10.1016/j.jpowsour.2011.06.010.

    Article  CAS  Google Scholar 

  31. Matsunaga T, Kon M, Washio K, Shinozawa T, Ishikiriyama M. TiCrVMo alloys with high dissociation pressure for high-pressure MH tank. Int J Hydrogen Energy. 2009;34(3):1458. https://doi.org/10.1016/j.ijhydene.2008.11.061.

    Article  CAS  Google Scholar 

  32. Rietveld HM. A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr. 1969;2(2):65. https://doi.org/10.1107/S0021889869006558.

    Article  CAS  Google Scholar 

  33. Liu JJ, Xue J, Slieman S, Chen XY, Zhu S, Cheng HH, Huot J. Microstructure and hydrogen storage properties of Ti–V–Cr based BCC-type high entropy alloys. Int J Hydrogen Energy. 2021;46(56):28709. https://doi.org/10.1016/j.ijhydene.2021.06.137.

    Article  CAS  Google Scholar 

  34. Liu XP, Jiang LJ, Li ZN, Huang Z, Wang SM. Improve plateau property of Ti32Cr46V22 BCC alloy with heat treatment and Ce additive. J Alloy Compd. 2009;471(1–2):L36. https://doi.org/10.1016/j.jallcom.2008.04.004.

    Article  CAS  Google Scholar 

  35. Hang ZM, **ao XZ, Li SQ, Ge HW, Chen CP, Chen LX. Influence of heat treatment on the microstructure and hydrogen storage properties of Ti10V77Cr6Fe6Zr alloy. J Alloy Compd. 2012;529:128. https://doi.org/10.1016/j.jallcom.2012.03.044.

    Article  CAS  Google Scholar 

  36. Yan YG, Chen YG, Liang H, Zhou XX, Wu CL, Tao MD. Effect of Ce on the structure and hydrogen storage properties of V5.5Ti22.5Cr16.1Fe6.4. J Alloys Compd. 2007;429:301. https://doi.org/10.1016/j.jallcom.2006.04.057.

    Article  CAS  Google Scholar 

  37. Liu XP, Cuevas F, Jiang LJ, Latroche M, Li ZN, Wang SM. Improvement of the hydrogen storage properties of Ti–Cr–V–Fe BCC alloy by Ce addition. J Alloy Compd. 2009;476:403. https://doi.org/10.1016/j.jallcom.2008.09.042.

    Article  CAS  Google Scholar 

  38. Ha T, Kim JH, Sun C, Lee YD, Kim DI, Suh JY, Jang JI, Lee J, Kim Y, Shim JH. Crucial role of Ce particles during initial hydrogen absorption of AB-type hydrogen storage alloys. Nano Energy. 2023;112:108483. https://doi.org/10.1016/j.nanoen.2023.108483.

    Article  CAS  Google Scholar 

  39. He XY, Zhang X, Li BQ, Zhou SJ, Zhao YY, Wang L, Xu J, Yan HZ. Capacity degradation mechanism of ternary La–Y–Ni-based hydrogen storage alloys. Chem Eng J. 2023;465:142840. https://doi.org/10.1016/j.cej.2023.142840.

    Article  CAS  Google Scholar 

  40. Xue XY, Ma CM, Liu YR, Wang H, Chen QJ. Impacts of Ce dopants on the hydrogen storage performance of Ti–Cr–V alloys. J Alloy Compd. 2023;934:167947. https://doi.org/10.1016/j.jallcom.2022.167947.

    Article  CAS  Google Scholar 

  41. Zhang HW, Fu L, Qi JB, Ji ZG. Effects of do** with yttrium on the hydrogen storage performances of the La2Mg17 alloy surface. J Power Sources. 2019;417:76. https://doi.org/10.1016/j.jpowsour.2019.02.023.

    Article  CAS  Google Scholar 

  42. Li JG, Guo YR, Jiang XJ, Li S, Li XG. Hydrogen storage performances, kinetics and microstructure of Ti1.02Cr1.0Fe0.7-xMn0.3Alx alloy by Al substituting for Fe. Renew energy. 2020;153:1140. https://doi.org/10.1016/j.renene.2020.02.035.

    Article  CAS  Google Scholar 

  43. Wu YF, Jiang LJ, Zhao W, Guo XM, Zhao XS, Li ZN, Liu XP, Wang SM. Hydrogenation properties of (V0.85Fe0.15)100-xMx-Ce BCC solid solution alloys with M = Cr. Mo, Al. Rare Metals. 2023;42(1):313. https://doi.org/10.1007/s12598-015-0676-1.

    Article  CAS  Google Scholar 

  44. Ma XF, Ding X, Chen RR, Gao XF, Su YQ, Cui HZ. Enhanced hydrogen storage properties of ZrTiVAl1-xFex high-entropy alloys by modifying the Fe content. RSC Adv. 2022;12(18):11272. https://doi.org/10.1039/D2RA01064J.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thai TT, Wei Z, Yuan ZM, Han ZG, Feng DC, Wang XY. Influences of La addition on the hydrogen storage performances of TiFe-base alloy. J Phys Chem Solids. 2021;157:110176. https://doi.org/10.1016/j.jpcs.2021.110176.

    Article  CAS  Google Scholar 

  46. Hu JT, Zhang JJ, **ao HY, **e L, Sun GG, Shen HH, Li PC, Zhang JW, Zu XT. A first-principles study of hydrogen storage of high entropy alloy TiZrVMoNb. Int J Hydrogen Energy. 2021;46(40):21050. https://doi.org/10.1016/j.ijhydene.2021.03.200.

    Article  CAS  Google Scholar 

  47. Edalati P, Floriano R, Mohammadi FGLBG, Mohammadi A, Ma ZL, Li HW, Contieri RJ. Reversible room temperature hydrogen storage in high-entropy alloy TiZrCrMnFeNi. Script Materialia. 2020;178:387.

    Article  CAS  Google Scholar 

  48. Floriano R, Zepon G, Edalati K, Fontana GLBG, Contieri RJ. Hydrogen storage in TiZrNbFeNi high entropy alloys, designed by thermodynamic calculations. Int J Hydrogen Energy. 2020;45(58):33759. https://doi.org/10.1016/j.ijhydene.2020.09.047.

    Article  CAS  Google Scholar 

  49. Liu JJ, Xu J, Slieman S, Ravalison F, Zhu W, Liu HF, Cheng HH, Huot J. Hydrogen storage properties of V0.3Ti0.3Cr0.25Mn0.1Nb0.05 high entropy alloy. Int J Hydrogen Energy. 2022;47(61):25724. https://doi.org/10.1016/j.ijhydene.2022.06.013.

    Article  CAS  Google Scholar 

  50. Marco MO, Li YT, Li HW, Edalati K, Florinao R. Mechanical synthesis and hydrogen storage characterization of MgVCr and MgVTiCrFe high-entropy alloy. Adv Eng Mater. 2020;22(2):1901079. https://doi.org/10.1002/adem.201901079.

    Article  CAS  Google Scholar 

  51. Cardoso KR, Roche V, Jorge AM, Antiqueira FJ, Zepon G, Champion Y. Hydrogen storage in MgAlTiFeNi high entropy alloy. J Alloys Compd. 2021;858:158357.

    Article  CAS  Google Scholar 

  52. Kumar A, Yadav TP, Mukhopadhyay NK. Notable hydrogen storage in Ti–Zr–V–Cr–Ni high entropy alloy. Int J Hydrogen Energy. 2022;47(54):22893. https://doi.org/10.1016/j.ijhydene.2022.05.107.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key R&D Program of China (No. 2022YFB3504700), the National Natural Science Foundation of China (No. 92061125), and Jiangxi Natural Science Foundation (No. 20212ACB213009).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chuan-Ming Ma or Qing-Jun Chen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 2535 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, HZ., **ao, HQ., He, XC. et al. Development of Ti–V–Cr–Mn–Mo–Ce high-entropy alloys for high-density hydrogen storage in water bath environments. Rare Met. (2024). https://doi.org/10.1007/s12598-024-02618-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12598-024-02618-8

Keywords

Navigation