Log in

Research status and perspectives of MXene-based materials for aqueous zinc-ion batteries

  • Mini Review
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Aqueous zinc-ion batteries (AZIBs) as green battery systems have attracted widespread attention in large-scale electrochemical energy storage devices, owing to their high safety, abundant Zn materials, high theoretical specific capacity and low redox potential. Nevertheless, there are some thorny issues in AZIBs that hinder their practical application, such as low intrinsic electron conductivity, slow ion migration kinetics, zinc dendrites and side reactions. MXene-based materials with superior conductivity, large polar surface and abundant active sites can simultaneously serve as cathode materials, electrolyte additive and protection layer of anode to regulate redox reactions of AZIBs. Although various materials have been used to improve electrochemical performances of AZIBs, there is a lack of in-depth discussion on the regulation mechanism of MXene-based materials for AZIBs. In this review, we elaborate the research progress of MXene-based materials in AZIBs, including their application in cathode materials and inhibition of zinc dendrites. Finally, the future prospects and development directions of MXene-based materials that may improve performance of AZIBs are prospected.

Graphical abstract

摘要

水性锌离子电池(AZIBs)作为一种绿色电池系统,由于其高安全性、丰富的锌材料、高理论比容量和低氧化还原电位,在大型电化学储能装置中引起了广泛关注。然而,AZIBs中存在一些阻碍其实际应用的棘手问题,如本征电子电导率低、离子迁移动力学慢、锌枝晶和副反应。MXene基材料具有优异的导电性、大的比表面积和丰富的活性位点,可以同时作为**极材料、电解质添加剂和阳极保护层来调节AZIBs的氧化还原反应。尽管已经使用了各种材料来提高AZIBs的电化学性能,但缺乏对MXene基材料对AZIBs的调节机制的深入讨论。在这篇综述中,我们详细介绍了MXene基材料在AZIBs中的研究进展,包括它们在**极材料中的应用和对锌枝晶的抑制。最后,对 MXene基材料在提高AZIBs性能方面的前景和进行了展望。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Xu X, Nie S, Ding HY, Hou FF. Environmental pollution and kidney diseases. Nat Rev Nephrol. 2018;14(5):313. https://doi.org/10.1038/nrneph.2018.11.

    Article  CAS  PubMed  Google Scholar 

  2. Tian YS, Zeng GB, Rutt A, Shi T, Kim H, Wang JY, Koettgen J, Sun YZ, Ouyang B, Chen T, Lun ZY, Rong ZQ, Persson K, Ceder G. Promises and challenges of next-generation “beyond li-ion” batteries for electric vehicles and grid decarbonization. Chem Rev. 2021;121(3):1623. https://doi.org/10.1021/acs.chemrev.0c00767.

    Article  CAS  PubMed  Google Scholar 

  3. Ozin GA. You can’t have an energy revolution without transforming advances in materials, chemistry and catalysis into policy change and action. Energy Environ Sci. 2015;8(6):1682. https://doi.org/10.1039/c5ee00907c.

    Article  CAS  Google Scholar 

  4. Chen LN, Yan MY, Mei ZW, Mai LQ. Research progress and prospect of aqueous zinc ion battery. J Inorg Mater. 2017;32(3):225.

    Article  Google Scholar 

  5. Yang P, Sun P, Mai WJ. Electrochromic energy storage devices. Mater Today. 2016;19(7):394. https://doi.org/10.1016/j.mattod.2015.11.007.

    Article  CAS  Google Scholar 

  6. Wang SY, Zhu KJ, Yang LY, Li HZ, Wang SY, Tang SS, Zhang M, Abliz A, Zhao FJ. Synthesis and study of V2O5/rGO nanocomposite as a cathode material for aqueous zinc ion battery. Ionics. 2020;26(11):5607. https://doi.org/10.1007/s11581-020-03705-3.

    Article  CAS  Google Scholar 

  7. Goodenough JB. Changing outlook for rechargeable batteries. ACS Catal. 2017;7(2):1132. https://doi.org/10.1021/acscatal.6b03110.

    Article  CAS  Google Scholar 

  8. Su SM, Ma JB, Zhao L, Lin K, Li QD, Lv S, Kang FY, He YB. Progress and perspective of the cathode/electrolyte interface construction in all-solid-state lithium batteries. Carbon Energy. 2021;3(6):866. https://doi.org/10.1002/cey2.129.

    Article  CAS  Google Scholar 

  9. Xu CJ, Li BH, Du HD, Kang FY. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Ed. 2011;51(4):933. https://doi.org/10.1002/anie.201106307.

    Article  CAS  Google Scholar 

  10. Zhang N, Chen XY, Yu M, Niu ZQ, Cheng FY, Chen J. Materials chemistry for rechargeable zinc-ion batteries. Chem Soc Rev. 2020;49(13):4203. https://doi.org/10.1039/c9cs00349e.

    Article  CAS  PubMed  Google Scholar 

  11. Du YH, Liu XY, Wang XY, Sun JC, Lu QQ, Wang JZ, Omar A, Mikhailova D. Freestanding strontium vanadate/carbon nanotube films for long-life aqueous zinc-ion batteries. Rare Met. 2022;41(2):415. https://doi.org/10.1007/s12598-021-01777-2.

    Article  CAS  Google Scholar 

  12. Jia XX, Liu CF, Neale ZG, Yang J, Cao GZ. Active materials for aqueous zinc ion batteries: synthesis, crystal structure, morphology, and electrochemistry. Chem Rev. 2020;120(15):7795. https://doi.org/10.1021/acs.chemrev.9b00628.

    Article  CAS  PubMed  Google Scholar 

  13. Xu CJ, Li BH, Du HD, Kang FY. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew Chem Int Edit. 2012;51(4):933. https://doi.org/10.1002/anie.201106307.

    Article  CAS  Google Scholar 

  14. Melief CJM. Smart delivery of vaccines. Nat Mater. 2018;17(6):482. https://doi.org/10.1038/s41563-018-0085-6.

    Article  CAS  PubMed  Google Scholar 

  15. Liu WB, Zhang XY, Huang YF, Jiang BZ, Chang ZW, Xu CJ, Kang FY. β-MnO2 with proton conversion mechanism in rechargeable zinc ion battery. J Energy Chem. 2020;56:365. https://doi.org/10.1016/j.jechem.2020.07.027.

    Article  CAS  Google Scholar 

  16. Shen X, Wang X, Zhou Y, Shi Y, Zhao L, ** H, Di J, Li Q. Highly reversible aqueous Zn-MnO2 battery by supplementing Mn2+ mediated MnO2 deposition and dissolution. Adv Funct Mater. 2021;31(27):2101579. https://doi.org/10.1002/adfm.202101579.

    Article  CAS  Google Scholar 

  17. Jie CG, Chen C, Li YD, Gen LL, Tian RY, Liang Z. Synergistic interlayer and defect engineering of hydrated vanadium oxide toward stable Zn-ion batteries. Chem Eng J. 2022;450:138367. https://doi.org/10.1016/j.cej.2022.138367.

    Article  CAS  Google Scholar 

  18. Yu X, Hu F, Guo ZQ, Liu L, Song GH, Zhu K. High-performance Cu0.95V2O5 nanoflowers as cathode materials for aqueous zinc-ion batteries. Rare Met. 2022;41(1):29. https://doi.org/10.1007/s12598-021-01771-8.

    Article  CAS  Google Scholar 

  19. Yang GZ, Li Q, Ma KX, Hong C, Wang CX. The degradation mechanism of vanadium oxide-based aqueous zinc-ion batteries. J Mater Chem A. 2020;8(16):8084. https://doi.org/10.1039/d0ta00615g.

    Article  CAS  Google Scholar 

  20. Li YX, Zhao JX, Hu Q, Hao TW, Cao H, Huang XM, Liu Y, Zhang Y, Lin D, Tang YY, Cai YQ. Prussian blue analogs cathodes for aqueous zinc ion batteries. Mater Today Energy. 2022;29:101095. https://doi.org/10.1016/j.mtener.2022.101095.

    Article  CAS  Google Scholar 

  21. Cui HL, Wang TR, Huang ZD, Liang GJ, Chen Z, Chen A, Wang DH, Yang Q, Hong H, Fan J, Zhi C. High-voltage organic cathodes for zinc-ion batteries through electron cloud and solvation structure regulation. Angew Chem Int Ed. 2022;61(30):e2022034. https://doi.org/10.1002/anie.202203453.

    Article  CAS  Google Scholar 

  22. Li J, Huang L, Lv H, Wang J, Wang G, Chen L, Liu Y, Guo W, Yu F, Gu T. Novel organic cathode with conjugated N-heteroaromatic structures for high-performance aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2022;14(34):38844. https://doi.org/10.1021/acsami.2c10539.

    Article  CAS  PubMed  Google Scholar 

  23. Peng Z, Li Y, Ruan P, He Z, Dai L, Liu S, Wang L, Chan JS, Lu B, Zhou J. Metal-organic frameworks and beyond: the road toward zinc-based batteries. Coord Chem Rev. 2023;488:215190. https://doi.org/10.1016/j.ccr.2023.215190.

    Article  CAS  Google Scholar 

  24. Qian L, Wei T, Ma K, Yang G, Wang C. Boosting the cyclic stability of aqueous zinc-ion battery based on Al-doped V10O24·12H2O cathode materials. ACS Appl Mater Interfaces. 2019;11(23):20888. https://doi.org/10.1021/acsami.9b05362.

    Article  CAS  Google Scholar 

  25. Yuan T, Zhang J, Pu X, Chen Z, Tang C, Zhang X, Ai X, Huang Y, Yang H, Cao Y. Novel alkaline Zn/Na0.44MnO2 dual-ion battery with a high capacity and long cycle lifespan. ACS Appl Mater Interfaces. 2018;10(40):34108. https://doi.org/10.1021/acsami.8b08297.

    Article  CAS  PubMed  Google Scholar 

  26. Cao T, Zhang F, Chen M, Shao T, Li Z, Xu Q, Cheng D, Liu H, **a Y. Cubic manganese potassium hexacyanoferrate regulated by controlling of the water and defects as a high-capacity and stable cathode material for rechargeable aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2021;13(23):26924. https://doi.org/10.1021/acsami.1c04129.

    Article  CAS  PubMed  Google Scholar 

  27. Zeng YX, Lai ZZ, Han Y, Zhang HZ, **e SL, Lu XH. Oxygen-vacancy and surface modulation of ultrathin nickel cobaltite nanosheets as a high-energy cathode for advanced zn-ion batteries. Adv Mater. 2018;30(33):1802396. https://doi.org/10.1002/adma.201802396.

    Article  CAS  Google Scholar 

  28. Jiang W, Wang W, Shi H, Hu R, Hong J, Tong Y, Ma J, **g LC, Peng J, Xu Z. Homogeneous regulation of arranged polymorphic manganese dioxide nanocrystals as cathode materials for high-performance zinc-ion batteries. J Colloid Interface Sci. 2023;647:124. https://doi.org/10.1016/j.jcis.2023.05.148.

    Article  CAS  PubMed  Google Scholar 

  29. Kim SH, Kim JM, Ahn DB, Lee SY. Cellulose nanofiber/carbon nanotube-based bicontinuous ion/electron conduction networks for high-performance aqueous zn-ion batteries. Small. 2020;16(44):2002837. https://doi.org/10.1002/smll.202002837.

    Article  CAS  Google Scholar 

  30. Dan D, Cong H, Jilei L, ** H. Amino-functionalized carbon nanotubes stimulating γ-MnO2 to achieve high-performance zinc-ion batteries. Electrochim Acta. 2023;456:142461. https://doi.org/10.1016/j.electacta.2023.142461.

    Article  CAS  Google Scholar 

  31. Liu Y, **e L, Zhang W, Dai Z, Wei W, Luo S, Chen X, Chen W, Rao F, Wang L, Huang Y. Conjugated system of PEDOT:PSS-induced self-doped PANI for flexible zinc-ion batteries with enhanced capacity and cyclability. ACS Appl Mater Interfaces. 2019;11(34):30943. https://doi.org/10.1021/acsami.9b09802.

    Article  CAS  PubMed  Google Scholar 

  32. Yao H, Li Q, Zhang M, Tao Z, Yang Y. Prolonging the cycle life of zinc-ion battery by introduction of [Fe(CN)6]4- to PANI via a simple and scalable synthetic method. Chem Eng J. 2019;392:123653. https://doi.org/10.1016/j.cej.2019.123653.

    Article  CAS  Google Scholar 

  33. Lu Q, Liu C, Du Y, Wang X, Ding L, Omar A, Mikhailova D. Uniform Zn deposition achieved by Ag coating for improved aqueous zinc-ion batteries. ACS Appl Mater Interfaces. 2021;13(14):16869. https://doi.org/10.1021/acsami.0c22911.

    Article  CAS  PubMed  Google Scholar 

  34. Yin Y, Wang S, Zhang Q, Song Y, Chang N, Pan Y, Zhang H, Li X. Dendrite-free zinc deposition induced by tin-modified multifunctional 3D host for stable zinc-based flow battery. Adv Mater. 2019;32(6):1906803. https://doi.org/10.1002/adma.201906803.

    Article  CAS  Google Scholar 

  35. Xueyuan L, Honggang W, Zhu T, Jianhui Z, Ying L, Lan J, Dongjiang Y, **angming L, Litao K. A quasi-gel SiO2/sodium alginate (SA) composite electrolyte for long-life zinc-manganese aqueous batteries. J Inorg Mater. 2020;35(8):909.

    Article  Google Scholar 

  36. Zhang H, Liu X, Li HH, Qin BS, Passerini S. High-voltage operation of a V2O5 cathode in a concentrated gel polymer electrolyte for high-energy aqueous zinc batteries. ACS Appl Mater Interfaces. 2020;12(13):15305. https://doi.org/10.1021/acsami.0c02102.

    Article  CAS  PubMed  Google Scholar 

  37. Naguib M, Kurtoglu M, Presser V, Lu J, Niu J, Heon M, Hultman L, Gogotsi Y, Barsoum MW. Two-dimensional nanocrystals: two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Adv Mater. 2011;23(37):4207. https://doi.org/10.1002/adma.201190147.

    Article  Google Scholar 

  38. Hussain I, Lamiel C, Javed MS, Ahmad M, Sahoo S, Chen X, Qin N, Iqbal S, Gu S, Li YX, Chatzichristodoulou C, Zhang KL. MXene-based heterostructures: current trend and development in electrochemical energy storage devices. Progr Energy Combust Sci. 2023;97:27. https://doi.org/10.1016/j.pecs.2023.101097.

    Article  Google Scholar 

  39. Javed MS, Mateen A, Ali S, Zhang X, Hussain I, Imran M, Shah SSA, Han W. The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small. 2022;18(26):2201989. https://doi.org/10.1002/smll.202201989.

    Article  CAS  Google Scholar 

  40. Song Y, Li J, Qiao R, Dai X, **g W, Song J, Chen Y, Guo S, Sun J, Tan Q, Liu Y. Binder-free flexible zinc-ion batteries: one-step potentiostatic electrodeposition strategy derived Ce doped-MnO2 cathode. Chem Eng J. 2022;431:133387. https://doi.org/10.1016/j.cej.2021.133387.

    Article  CAS  Google Scholar 

  41. Gan Y, Wang C, Li JY, Zheng JJ, Wan HZ, Wang H. Stability optimization strategy of aqueous zinc ion batteries. Chin J Rare Met. 2022;46(6):753. https://doi.org/10.13373/j.cnki.cjrm.XY21100036.

    Article  Google Scholar 

  42. Li F, Sheng H, Ma H, Qi Y, Shao M, Yuan J, Li W, Lan W. Structural engineering of vanadium oxide cathodes by Mn2+ preintercalation for high-performance aqueous zinc-ion batteries. ACS Appl Energy Mater. 2023;6(11):6201. https://doi.org/10.1021/acsaem.3c00710.

    Article  CAS  Google Scholar 

  43. Xu J, Zhang Y, Liu CF, Cheng HH, Cai XX, Jia DZ, Lin H. Al3+ introduction hydrated vanadium oxide induced high performance for aqueous zinc-ion batteries. Small. 2022;18(47):2204180. https://doi.org/10.1002/smll.202204180.

    Article  CAS  Google Scholar 

  44. Javed MS, Mateen A, Ali S, Zhang X, Hussain I, Imran M, Shah SSA, Han W. The emergence of 2D MXenes based Zn-ion batteries: recent development and prospects. Small. 2022. https://doi.org/10.1002/smll.202201989.

    Article  PubMed  Google Scholar 

  45. Jiang G, Zheng N, Chen X, Ding G, Li Y, Sun F, Li Y. In-situ decoration of MOF-derived carbon on nitrogen-doped ultrathin MXene nanosheets to multifunctionalize separators for stable Li-S batteries. Chem Eng J. 2019;373:1309. https://doi.org/10.1016/j.cej.2019.05.119.

    Article  CAS  Google Scholar 

  46. **e SY, Li X, Li Y, Liang QH, Dong LB. Material design and energy storage mechanism of Mn-based cathodes for aqueous zinc-ion batteries. Chem Rec. 2022;22(10):e202200201. https://doi.org/10.1002/tcr.202200201.

    Article  CAS  PubMed  Google Scholar 

  47. Tang Y, Zheng S, Xu Y, **ao X, Xue H, Pang H. Advanced batteries based on manganese dioxide and its composites. Energy Storage Mater. 2018;12:284. https://doi.org/10.1016/j.ensm.2018.02.010.

    Article  Google Scholar 

  48. Huang J, Wang Z, Hou M, Dong X, Liu Y, Wang Y, **a Y. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery. Nat Commun. 2018;9(1):2906. https://doi.org/10.1038/s41467-018-04949-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhu XD, Cao ZY, Wang W, Li HJ, Dong JC, Gao SP, Xu DX, Li L, Shen JF, Ye MX. Superior-performance aqueous zinc-ion batteries based on the in situ growth of MnO2 nanosheets on V2CTX MXene. ACS Nano. 2021;15(2):2971. https://doi.org/10.1021/acsnano.0c09205.

    Article  CAS  PubMed  Google Scholar 

  50. Shi MJ, Wang B, Chen C, Lang JW, Yan C, Yan XB. 3D high-density MXene@MnO2 microflowers for advanced aqueous zinc-ion batteries. J Mater Chem A. 2020;8(46):24635. https://doi.org/10.1039/d0ta09085a.

    Article  CAS  Google Scholar 

  51. Shi M, Wang B, Shen Y, Jiang J, Zhu W, Su Y, Narayanasamy M, Angaiah S, Yan C, Peng Q. 3D assembly of MXene-stabilized spinel ZnMn2O4 for highly durable aqueous zinc-ion batteries. Chem Eng J. 2020;399:125627. https://doi.org/10.1016/j.cej.2020.125627.

    Article  CAS  Google Scholar 

  52. Kim Y, Park Y, Kim M, Lee J, Kim KJ, Choi JW. Corrosion as the origin of limited lifetime of vanadium oxide-based aqueous zinc ion batteries. Nat Commun. 2022;13:2371. https://doi.org/10.1038/s41467-022-29987-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wang LL, Huang KW, Chen JT, Zheng JR. Ultralong cycle stability of aqueous zinc-ion batteries with zinc vanadium oxide cathodes. Sci Adv. 2019;5(10):eaax4279. https://doi.org/10.1126/sciadv.aax4279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Pan Q, Dong R, Lv HZ, Sun XQ, Song Y, Liu XX. Fundamental understanding of the proton and zinc storage in vanadium oxide for aqueous zinc-ion batteries. Chem Eng J. 2021;419:129491. https://doi.org/10.1016/j.cej.2021.129491.

    Article  CAS  Google Scholar 

  55. Shi Z, Ru Q, Pan Z, Zheng M, Chi LF, Wei L. Flexible free-standing VO2/MXene conductive films as cathodes for quasi-solid-state zinc-ion batteries. ChemElectroChem. 2021;8(6):1091. https://doi.org/10.1002/celc.202100036.

    Article  CAS  Google Scholar 

  56. Kou WZ, Yu L, Wang Q, Yang YJ, Yang TH, Geng HB, Miao XW, Gao BA, Yang G. Enhanced Zn2+ transfer dynamics via a 3D bird nest-like VO2/MXene heterojunction for ultrahigh-rate aqueous zinc-ion batteries. J Power Sour. 2022;520:230872. https://doi.org/10.1016/j.jpowsour.2021.230872.

    Article  CAS  Google Scholar 

  57. Li QL, Zhang QC, Liu CL, Zhou ZY, Li CW, He B, Man P, Wang XN, Yao YG. Anchoring V2O5 nanosheets on hierarchical titanium nitride nanowire arrays to form core–shell heterostructures as a superior cathode for high-performance wearable aqueous rechargeable zinc-ion batteries. J Mater Chem A. 2019;7(21):12997. https://doi.org/10.1039/c9ta03330k.

    Article  CAS  Google Scholar 

  58. Wang TH, Li SW, Weng XE, Gao L, Yan Y, Zhang N, Qu XH, Jiao LF, Liu YC. Ultrafast 3D hybrid-ion transport in porous V2O5 cathodes for superior-rate rechargeable aqueous zinc batteries. Adv Energy Mater. 2023;13(18):2204358. https://doi.org/10.1002/aenm.202204358.

    Article  CAS  Google Scholar 

  59. Xu GS, Zhang YJ, Gong ZW, Lu T, Pan LK. Three-dimensional hydrated vanadium pentoxide/MXene composite for high-rate zinc-ion batteries. J Colloid Interface Sci. 2021;593:417. https://doi.org/10.1016/j.jcis.2021.02.090.

    Article  CAS  PubMed  Google Scholar 

  60. Zhao F, Gong S, Xu H, Li M, Li L, Qi J, Wang H, Wang Z, Hu Y, Fan X, Li C, Liu J. In situ constructing amorphous V2O5@Ti3C2Tx heterostructure for high-performance aqueous zinc-ion batteries. J Power Sour. 2022;544:231883. https://doi.org/10.1016/j.jpowsour.2022.231883.

    Article  CAS  Google Scholar 

  61. Wu Y, Xu XM, Zhu CY, Liu PC, Yang SZ, **n HL, Cai R, Yao LB, Nie M, Lei SY, Gao P, Sun LT, Mai LQ, Xu F. In situ visualization of structural evolution and fissure breathing in (de)lithiated H2V3O8 nanorods. Acs Energy Lett. 2019;4(9):2081. https://doi.org/10.1021/acsenergylett.9b01381.

    Article  CAS  Google Scholar 

  62. Liang P, Xu T, Zhu K, Rao Y, Zheng H, Wu M, Chen J, Liu J, Yan K, Wang J, Zhang R. Heterogeneous interface-boosted zinc storage of H2V3O8 nanowire/Ti3C2Tx MXene composite toward high-rate and long cycle lifespan aqueous zinc-ion batteries. Energy Storage Mater. 2022;50:63. https://doi.org/10.1016/j.ensm.2022.05.010.

    Article  Google Scholar 

  63. Kwon G, Ko Y, Kim Y, Kim K, Kang K. Versatile redox-active organic materials for rechargeable energy storage. Acc Chem Res. 2021;54(23):4423. https://doi.org/10.1021/acs.accounts.1c00590.

    Article  CAS  PubMed  Google Scholar 

  64. Grzeskiewicz AM, Stefanski T, Kubicki M. Weak intermolecular interactions in a series of bioactive oxazoles. Molecules. 2021;26(10):3024. https://doi.org/10.3390/molecules26103024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries. Nat Rev Chem. 2020;4(3):1272. https://doi.org/10.1038/s41570-020-0160-9.

    Article  CAS  Google Scholar 

  66. Chen Y, Li HY, Tang M, Zhuo SM, Wu YC, Wang EJ, Wang SM, Wang CL, Hu WP. Capacitive conjugated ladder polymers for fast-charge and discharge sodium-ion batteries and hybrid supercapacitors. J Mater Chem A. 2019;7(36):20891. https://doi.org/10.1039/c9ta07546a.

    Article  CAS  Google Scholar 

  67. Tang M, Jiang C, Liu SY, Li X, Chen Y, Wu YC, Ma J, Wang CL. Small amount COFs enhancing storage of large anions. Energy Storage Mater. 2020;27:35. https://doi.org/10.1016/j.ensm.2020.01.015.

    Article  Google Scholar 

  68. Kamysbayev V, Filatov AS, Hu H, Rui X, Lagunas F, Wang D, Klie RF, Talapin DV. Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes. Science. 2020;369(6506):979. https://doi.org/10.1126/science.aba8311.

    Article  CAS  PubMed  Google Scholar 

  69. Lu CX, Li AR, Zhai TF, Niu CR, Duan HP, Guo L, Zhou W. Interface design based on Ti3C2 MXene atomic layers of advanced battery-type material for supercapacitors. Energy Storage Mater. 2020;26:472. https://doi.org/10.1016/j.ensm.2019.11.021.

    Article  Google Scholar 

  70. Li TF, Yao LL, Liu QL, Gu JJ, Luo RC, Li JH, Yan XD, Wang WQ, Liu P, Chen B, Zhang W, Abbas W, Naz R, Zhang D. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angew Chem Int Ed Engl. 2018;57(21):6115. https://doi.org/10.1002/anie.201800887.

    Article  CAS  PubMed  Google Scholar 

  71. Liu Y, Dai Z, Zhang W, Jiang Y, Peng J, Wu D, Chen B, Wei W, Chen X, Liu Z, Wang Z, Han F, Ding D, Wang L, Li L, Yang Y, Huang Y. Sulfonic-group-grafted Ti3C2Tx MXene: a silver bullet to settle the instability of polyaniline toward high-performance Zn-ion batteries. ACS Nano. 2021;15(5):9065. https://doi.org/10.1021/acsnano.1c02215.

    Article  CAS  PubMed  Google Scholar 

  72. Wang XS, Liu YN, Wei ZY, Hong JZ, Liang HB, Song MX, Zhou Y, Huang XX. MXene-boosted imine cathodes with extended conjugated structure for aqueous zinc-ion batteries. Adv Mater. 2022;34(50):2206812. https://doi.org/10.1002/adma.202206812.

    Article  CAS  Google Scholar 

  73. Yu LL, Liu BJ, Wang YY, Yu F, Ma J. Recent progress on MXene-derived material and its’ application in energy and environment. J Power Sources. 2021;490:229250. https://doi.org/10.1016/j.jpowsour.2020.229250.

    Article  CAS  Google Scholar 

  74. Li XM, Yan XL, Hu XY, Feng R, Zhou M, Wang LP. Hollow Cu-Co/N-doped carbon spheres derived from ZIFs as an e fficient catalyst for peroxymonosulfate activation. Chem Eng J. 2020;397:125533. https://doi.org/10.1016/j.cej.2020.125533.

    Article  CAS  Google Scholar 

  75. Tan ZL, Wei JX, Liu Y, Zaman FU, Rehman W, Hou LR, Yuan CZ. V2CTx MXene and its derivatives: synthesis and recent progress in electrochemical energy storage applications. Rare Met. 2022;41(3):775. https://doi.org/10.1007/s12598-021-01821-1.

    Article  CAS  Google Scholar 

  76. Liu Y, Jiang Y, Hu Z, Peng J, Lai WH, Wu DL, Zuo SW, Zhang J, Chen B, Dai ZW, Yang YG, Huang Y, Zhang W, Zhao W, Zhang W, Wang L, Chou SL. In-situ electrochemically activated surface vanadium valence in V2C MXene to achieve high capacity and superior rate performance for Zn-ion batteries. Adv Funct Mater. 2021;31(8):2008033. https://doi.org/10.1002/adfm.202008033.

    Article  CAS  Google Scholar 

  77. Wang YY, Yang M, Ma DT, Chen MF, Chen JZ, He TS, Zhang PX. In-situ electrochemical etching of V4AlC3 MAX to V2O5/C composite as Zn-ion storage host. Chem Eng J. 2023;451:138809. https://doi.org/10.1016/j.cej.2022.138809.

    Article  CAS  Google Scholar 

  78. Tian Y, An YL, Wei H, Wei CL, Tao Y, Li Y, ** BJ, **ong SL, Feng JK, Qian YT. Micron-sized nanoporous vanadium pentoxide arrays for high-performance gel zinc-ion batteries and potassium batteries. Chem Mater. 2020;32(9):4054. https://doi.org/10.1021/acs.chemmater.0c00787.

    Article  CAS  Google Scholar 

  79. Chen Y, Ma D, Shen S, Deng P, Zhao Z, Yang M, Wang Y, Mi H, Zhang P. New insights into high-rate and super-stable aqueous zinc-ion batteries via the design concept of voltage and solvation environment coordinated control. Energy Storage Mater. 2023;56:600. https://doi.org/10.1016/j.ensm.2023.01.049.

    Article  Google Scholar 

  80. Narayanasamy M, Kirubasankar B, Shi M, Velayutham S, Wang B, Angaiah S, Yan C. Morphology restrained growth of V2O5 by the oxidation of V-MXenes as a fast diffusion controlled cathode material for aqueous zinc ion batteries. Chem Commun. 2020;56(47):6412. https://doi.org/10.1039/d0cc01802c.

    Article  CAS  Google Scholar 

  81. Zhao RZ, Elzatahry A, Chao DL, Zhao DY. Making MXenes more energetic in aqueous battery. Matter. 2022;5(1):8. https://doi.org/10.1016/j.matt.2021.12.005.

    Article  CAS  Google Scholar 

  82. Simon P. Two-dimensional MXene with controlled interlayer spacing for electrochemical energy Storage. ACS Nano. 2017;11(3):2393. https://doi.org/10.1021/acsnano.7b01108.

    Article  CAS  PubMed  Google Scholar 

  83. Zhu XD, Cao ZY, Li XL, Pei LY, Jones J, Zhou YN, Dong P, Wang LP, Ye MX, Shen JF. Ion-intercalation regulation of MXene-derived hydrated vanadates for high-rate and long-life Zn-ion batteries. Energy Storage Mater. 2022;45:568. https://doi.org/10.1016/j.ensm.2021.12.002.

    Article  Google Scholar 

  84. Li ZL, Wei YF, Liu YY, Yan S, Wu MY. Dual strategies of metal preintercalation and in situ electrochemical oxidization operating on MXene for enhancement of ion/electron transfer and zinc-ion storage capacity in aqueous zinc-ion batteries. Adv Sci. 2023;10(8):2206860. https://doi.org/10.1002/advs.202206860.

    Article  CAS  Google Scholar 

  85. Zhao ZM, Zhao JW, Hu ZL, Li JD, Li JJ, Zhang YJ, Wang C, Cui GL. Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase. Energy Environ Sci. 2019;12(6):1938. https://doi.org/10.1039/c9ee00596j.

    Article  CAS  Google Scholar 

  86. **ng Z, Xu G, Han J, Chen G, Lu B, Liang S, Zhou J. Facing the capacity fading of vanadium-based zinc-ion batteries. Trends Chem. 2023;5(5):380. https://doi.org/10.1016/j.trechm.2023.02.008.

    Article  CAS  Google Scholar 

  87. Han DL, Wu SC, Zhang SW, Deng YQ, Cui CJ, Zhang LA, Long Y, Li H, Tao Y, Weng Z, Yang QH, Kang FY. A corrosion-resistant and dendrite-free zinc metal anode in aqueous systems. Small. 2020;16(29):2001736. https://doi.org/10.1002/smll.202001736.

    Article  CAS  Google Scholar 

  88. Zuo Y, Wang K, Pei P, Wei M, Liu X, **ao Y, Zhang P. Zinc dendrite growth and inhibition strategies. Mater Today Energy. 2021;20:100692. https://doi.org/10.1016/j.mtener.2021.100692.

    Article  CAS  Google Scholar 

  89. Mao C, Chang Y, Zhao X, Dong X, Geng Y, Zhang N, Dai L, Wu X, Wang L, He Z. Functional carbon materials for high-performance Zn metal anodes. J Energy Chem. 2022;75:135. https://doi.org/10.1016/j.jechem.2022.07.034.

    Article  CAS  Google Scholar 

  90. Hu W, Ju JG, Deng NP, Liu MY, Liu WC, Zhang YX, Fan LL, Kang WM, Cheng BW. Recent progress in tackling Zn anode challenges for Zn ion batteries. J Mater Chem A. 2021;9(46):25750. https://doi.org/10.1039/d1ta08184e.

    Article  CAS  Google Scholar 

  91. Li HP, Zhao RZ, Zhou WH, Wang LP, Li W, Zhao DY, Chao DL. Trade-off between zincophilicity and zincophobicity: toward stable zn-based aqueous batteries. JACS Au. 2023;3(8):2107. https://doi.org/10.1021/jacsau.3c00292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chen X, Shi X, Ruan P, Tang Y, Sun Y, Wong WY, Lu B, Zhou J. Construction of an artificial interfacial layer with porous structure toward stable zinc-metal anodes. Small Science. 2023;3(6):2300007. https://doi.org/10.1002/smsc.202300007.

    Article  CAS  Google Scholar 

  93. Wei CL, Tao Y, An YL, Tian Y, Zhang YC, Feng JK, Qian YT. Recent advances of emerging 2D MXene for stable and dendrite-free metal anodes. Adv Funct Mater. 2020;30(45):2004613. https://doi.org/10.1002/adfm.202004613.

    Article  CAS  Google Scholar 

  94. Zhang NN, Huang S, Yuan ZS, Zhu JC, Zhao ZF, Niu ZQ. Direct self-assembly of MXene on Zn anodes for dendrite-free aqueous zinc-ion batteries. Angew Chem Int Ed Engl. 2021;60(6):2861. https://doi.org/10.1002/anie.202012322.

    Article  CAS  PubMed  Google Scholar 

  95. Tan LW, Wei CL, Zhang YC, An YL, **ong SL, Feng JK. Long-life and dendrite-free zinc metal anode enabled by a flexible, green and self-assembled zincophilic biomass engineered MXene based interface. Chem Eng J. 2022;431:134277. https://doi.org/10.1016/j.cej.2021.134277.

    Article  CAS  Google Scholar 

  96. Zhang YZ, Cao ZJ, Liu SJ, Du ZG, Cui YL, Gu JN, Shi YZ, Li B, Yang SB. Charge-enriched strategy based on MXene-based polypyrrole layers toward dendrite-free zinc metal anodes. Adv Energy Mater. 2022;12(13):2103979. https://doi.org/10.1002/aenm.202103979.

    Article  CAS  Google Scholar 

  97. Hart JL, Hantanasirisakul K, Lang AC, Anasori B, Pinto D, Pivak Y, van Omme JT, May SJ, Gogotsi Y, Taheri ML. Control of MXenes’ electronic properties through termination and intercalation. Nat Commun. 2019;10(1):522. https://doi.org/10.1038/s41467-018-08169-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Gao J, Zhang X, Wang M, Qiu J, Zhang H, Chen X, Wang Y, Wei Y. Uniform zinc deposition regulated by a nitrogen-doped MXene artificial solid electrolyte interlayer. Small. 2023;19(30):2300633. https://doi.org/10.1002/smll.202300633.

    Article  CAS  Google Scholar 

  99. Zhu X, Li X, Essandoh MLK, Tan J, Cao Z, Zhang X, Dong P, Ajayan PM, Ye M, Shen J. Interface engineering with zincophilic MXene for regulated deposition of dendrite-free Zn metal anode. Energy Storage Mater. 2022;50:243. https://doi.org/10.1016/j.ensm.2022.05.022.

    Article  Google Scholar 

  100. An Y, Tian Y, Liu C, **ong SL, Feng JK, Qian YT. Rational design of sulfur-doped three-dimensional Ti3C2Tx MXene/ZnS heterostructure as multifunctional protective layer for dendrite-free zinc-ion batteries. ACS Nano. 2021;15(9):15259. https://doi.org/10.1021/acsnano.1c05934.

    Article  CAS  PubMed  Google Scholar 

  101. Tian Y, An YL, Yang Y, Xu BJ. Robust nitrogen/selenium engineered MXene/ZnSe hierarchical multifunctional interfaces for dendrite-free zinc-metal batteries. Energy Storage Mater. 2022;49:122. https://doi.org/10.1016/j.ensm.2022.03.045.

    Article  Google Scholar 

  102. Zhu CY, Li PZ, Xu GY, Cheng H, Gao G. Recent progress and challenges of Zn anode modification materials in aqueous Zn-ion batteries. Coord Chem Rev. 2023;485(15):215142. https://doi.org/10.1016/j.ccr.2023.215142.

    Article  CAS  Google Scholar 

  103. Dong YF, Tang ZX, Liang P, Wan HZ, Wang H, Wang L, Shu HB, Chao DL. 2D-VN2 MXene as a novel anode material for Li, Na and K ion batteries: insights from the first-principles calculations. J Colloid Interface Sci. 2021;593:51. https://doi.org/10.1016/j.jcis.2021.03.018.

    Article  CAS  PubMed  Google Scholar 

  104. Zhao RZ, Dong XS, Liang P, Li HP, Zhang TS, Zhou WH, Wang BY, Yang ZD, Wang X, Wang LP, Sun ZH, Bu FX, Zhao ZW, Li W, Zhao DY, Chao DL. Prioritizing hetero-metallic interfaces via thermodynamics inertia and kinetics zincophilia metrics for tough Zn-based aqueous batteries. Adv Mater. 2023;35(17):2209288. https://doi.org/10.1002/adma.202209288.

    Article  CAS  Google Scholar 

  105. Tian Y, An YL, Wei CL, ** BJ, **ong SL, Feng JK, Qian YT. Flexible and free-standing Ti3C2Tx MXene@Zn paper for dendrite-free aqueous zinc metal batteries and nonaqueous lithium metal batteries. ACS Nano. 2019;13(10):11676. https://doi.org/10.1021/acsnano.9b05599.

    Article  CAS  PubMed  Google Scholar 

  106. Tian Y, An YL, Liu CK, **ong SL, Feng JK, Qian YT. Reversible zinc-based anodes enabled by zincophilic antimony engineered MXene for stable and dendrite-free aqueous zinc batteries. Energy Storage Mater. 2021;41:343. https://doi.org/10.1016/j.ensm.2021.06.019.

    Article  Google Scholar 

  107. Li XL, Li Q, Hou Y, Yang Q, Chen Z, Huang ZD, Liang GJ, Zhao YW, Ma LT, Li M, Huang Q, Zhi CY. Toward a practical Zn powder anode: Ti3C2Tx MXene as a lattice-match electrons/ions redistributor. ACS Nano. 2021;15(9):14631. https://doi.org/10.1021/acsnano.1c04354.

    Article  CAS  PubMed  Google Scholar 

  108. Yi RJ, Shi XD, Tang Y, Yang YQ, Zhou P, Lu BG, Zhou J. Carboxymethyl chitosan-modified zinc anode for high-performance zinc-iodine battery with narrow operating voltage. Small Struct. 2023. https://doi.org/10.1002/sstr.202300020.

    Article  Google Scholar 

  109. Pan QW, Zheng YW, Kota S, Huang WC, Wang SJ, Qi H, Kim S, Tu YF, Barsoum MW, Li CY. 2D MXene-containing polymer electrolytes for all-solid-state lithium metal batteries. Nanoscale Adv. 2019;1(1):395. https://doi.org/10.1039/c8na00206a.

    Article  CAS  PubMed  Google Scholar 

  110. Yu F, Wang Y, Liu Y, Hui HY, Wang FX, Li JF, Wang Q. An aqueous rechargeable zinc-ion battery on basis of an organic pigment. Rare Met. 2022;41(7):2230. https://doi.org/10.1007/s12598-021-01941-8.

    Article  CAS  Google Scholar 

  111. Wan JD, Wang R, Liu ZX, Zhang LH, Liang F, Zhou TF, Zhang SL, Zhang L, Lu QQ, Zhang CF, Guo ZP. A double-functional Additive containing nucleophilic groups for high-performance zn-ion batteries. ACS Nano. 2023;17(2):1610. https://doi.org/10.1021/acsnano.2c11357.

    Article  CAS  Google Scholar 

  112. Song M, Zhong CL. Achieving both high reversible and stable Zn anode by a practical glucose electrolyte additive toward high-performance Zn-ion batteries. Rare Met. 2022;41(2):356. https://doi.org/10.1007/s12598-021-01858-2.

    Article  CAS  Google Scholar 

  113. Mu XP, Wang DS, Du F, Chen G, Wang CZ, Wei YJ, Gogotsi Y, Gao Y, Dall’ Agnese Y. Revealing the pseudo-intercalation charge storage mechanism of MXenes in acidic electrolyte. Adv Funct Mater. 2019;29(29):1902953. https://doi.org/10.1002/adfm.201902953.

    Article  CAS  Google Scholar 

  114. Sun C, Wu CP, Gu XX, Wang C, Wang QH. Interface engineering via Ti3C2Tx MXene electrolyte additive toward dendrite-free zinc deposition. Nano-Micro Lett. 2021;13(1):13. https://doi.org/10.1007/s40820-021-00612-8.

    Article  CAS  Google Scholar 

  115. Liu CK, Tian Y, An YL, Yang QL, **ong SL, Feng JK, Qian YT. Robust and flexible polymer/MXene-derived two dimensional TiO2 hybrid gel electrolyte for dendrite-free solid-state zinc-ion batteries. Chem Eng J. 2022;430:132748. https://doi.org/10.1016/j.cej.2021.132748.

    Article  CAS  Google Scholar 

  116. Dai CL, Hu LY, ** XT, Zhao Y, Qu LT. The emerging of aqueous zinc-based dual electrolytic batteries. Small. 2021;17(33):2008043. https://doi.org/10.1002/smll.202008043.

    Article  CAS  Google Scholar 

  117. **ng ZH, Huang CD, Hu ZL. Advances and strategies in electrolyte regulation for aqueous zinc-based batteries. Coord Chem Rev. 2022;452:214299. https://doi.org/10.1016/j.ccr.2021.214299.

    Article  CAS  Google Scholar 

  118. Feng J, Ma DT, Ouyang KF, Yang M, Wang YY, Qiu JM, Chen TT, Zhao JL, Yong B, **e YS, Mi HW, Sun LN, He CAX, Zhang PX. Multifunctional MXene-bonded transport network embedded in polymer electrolyte enables high-rate and stable solid-state zinc metal batteries. Adv Funct Mater. 2022;32(45):2207909. https://doi.org/10.1002/adfm.202207909.

    Article  CAS  Google Scholar 

  119. Chen Z, Li XL, Wang DH, Yang Q, Ma LT, Huang ZD, Liang GJ, Chen A, Guo Y, Dong BB, Huang XY, Yang C, Zhi CY. Grafted MXene/polymer electrolyte for high performance solid zinc batteries with enhanced shelf life at low/high temperatures. Energy Environ Sci. 2021;14(6):3492. https://doi.org/10.1039/d1ee00409c.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (NSFC, No. 22379039) and the Natural Science Foundation of Hebei Province (No. B2021202052).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Meng-Meng Zhen or Zhen-Zhong Hu.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, XY., Yang, QH., Meng, XY. et al. Research status and perspectives of MXene-based materials for aqueous zinc-ion batteries. Rare Met. 43, 1867–1885 (2024). https://doi.org/10.1007/s12598-023-02596-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02596-3

Keywords

Navigation