Log in

Unraveling magnetic properties and martensitic transformation in Mn-rich Ni–Mn–Sn alloys: first-principles calculations and experiments

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

We have investigated the phase stability, magnetic properties, and martensitic transformation thermodynamics/kinetics of the Ni24-xMn18+x+ySn6-y (x, y = 0, 1, 2) system by combining the first-principles calculations and experiments. The calculation results show that the optimized lattice parameters are consistent with the experimental data. Respectively, we obtain the relation equation for the austenite formation energy (Eform-A) and Mn content (XMn): \(E_{{{\text{form - A}}}} {\text{ = }}507.358X_{{{\text{Mn}}}} -{\text{274}}.126\), as well as for the six-layer modulated (6M) martensite formation energy (Eform-6M) and Ni content (XNi): \(E_{{{\text{form - 6M}}}} = - {\text{728}}.484X_{{{\text{Ni}}}} {\text{ + 264}}.374\). The ternary phase diagram of the total magnetic moment was established. The excess Mn will reduce the total magnetic moment of 6M (Mag6M) and non-modulated (NM) (MagNM) martensites, with the following equations relating the total magnetic moment and Mn content: \({\text{Mag}}_{{{\text{6M}}}} = - 15.{\text{905}}X_{{{\text{Mn}}}} {\text{ + 7}}.902\) and \({\text{Mag}}_{{{\text{NM}}}} = - 14.{\text{781}}X_{{{\text{Mn}}}} {\text{ + 7}}.411\), while the effect on austenite is complex. The variation of total magnetic moment is mainly dominated by the Mn atomic magnetic moment. The 3d electrons of MnSn (Mn at Sn sublattice) play an important role in magnetic properties from the perspective of the electronic density of states. Based on the thermodynamics of martensitic transformation, the alloys will likely undergo austenite ↔ 6M ↔ NM transformation sequence. Combining the thermodynamic and kinetic results, the martensitic transformation temperature decreases with x increasing and increases with y increasing. These results are expected to provide reference for predicting the phase stability and magnetic properties of Ni–Mn–Sn alloys.

Graphical abstract

摘要

我们通过将第一性原理计算和实验相结合的方法,对Ni24-xMn18+x+ySn6-y (xy=0,1,2) 合金系的相稳定性、磁性能和马氏体相变热/动力学进行了研究。计算结果表明,优化后的晶格参数与实验数据一致。分别得到了奥氏体形成能 (Eform-A) 与Mn含量 (XMn) 之间的关系方程:\(E_{{{\text{form - A}}}} {\text{ = }}507.358X_{{{\text{Mn}}}} {\text{ - 274}}.126\),以及六层调制 (6M) 马氏体形成能 (Eform-6M) 与Ni含量 (XNi) 之间的关系方程:\(E_{{{\text{form - 6M}}}} {\text{ = - 728}}.484X_{{{\text{Ni}}}} {\text{ + 264}}.374\)。并且建立了总磁矩的三元相图。过量的Mn会降低6M马氏体 (Mag6M)和非调制 (NM) 马氏体 (MagNM) 的总磁矩,其关系方程如下:\({\text{Mag}}_{{{\text{6M}}}} = - 15.{\text{905}}X_{{{\text{Mn}}}} {\text{ + 7}}.902\)\({\text{Mag}}_{{{\text{NM}}}} = - 14.{\text{781}}X_{{{\text{Mn}}}} {\text{ + 7}}.411\),而对奥氏体的影响则较为复杂。总磁矩的变化主要由Mn的原子磁矩主导。从电子态密度的角度来看,MnSn (Mn在Sn亚晶格上) 的3d电子在磁性能方面起着重要作用。基于马氏体相变的热力学,合金很可能经历A↔6M↔NM的相变序列。结合热力学和动力学结果,马氏体相变温度随着x的增加而降低,随着y的增加而升高。这些结果有望为预测Ni-Mn-Sn合金的相稳定性和磁性能提供参考。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Kainuma R, Imano Y, Ito W, Morito H, Sutou Y, Oikawa K, Fujita A, Ishida K, Okamoto S, Kitakami O, Kanomata T. Metamagnetic shape memory effect in a Ni43Co7Mn39Sn11 Heusler-type polycrystalline alloy. Appl Phys Lett. 2006;88(19): 192513. https://doi.org/10.1063/1.2203211.

    Article  ADS  CAS  Google Scholar 

  2. Ding ZY, Gao JJ, Jiao ZB, Wu HH, Chen AY, Zhu J. Strain-magnetization property of Ni–Mn–Ga (Co, Cu) microwires. Rare Met. 2023;42(1):244. https://doi.org/10.1007/s12598-022-02071-5.

    Article  CAS  Google Scholar 

  3. Li ZB, Dong SY, Li ZZ, Yang B, Liu F, Sánchez-Valdés CF, Sánchez Llamazares JL, Zhang YD, Esling C, Zhao X, Zuo L. Giant low-field magnetocaloric effect in Si alloyed Ni–Co–Mn–In alloys. Scr Mater. 2019;159:113. https://doi.org/10.1016/j.scriptamat.2018.09.029.

    Article  CAS  Google Scholar 

  4. Krenke T, Duman E, Acet M, Wassermann EF, Moya X, Mañosa L, Planes A. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys. Nat Mater. 2005;4(6):450. https://doi.org/10.1038/nmat1395.

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Shen Y, Sun W, Wei ZY, Shen Q, Zhang YF, Liu J. Orientation dependent elastocaloric effect in directionally solidified Ni–Mn–Sn alloys. Scr Mater. 2019;163:14. https://doi.org/10.1016/j.scriptamat.2018.12.026.

    Article  CAS  Google Scholar 

  6. Sun W, Liu J, Lu BF, Li Y, Yan A. Large elastocaloric effect at small transformation strain in Ni45Mn44Sn11 metamagnetic shape memory alloys. Scr Mater. 2016;114:1. https://doi.org/10.1016/j.scriptamat.2015.11.021.

    Article  ADS  CAS  Google Scholar 

  7. Yu SY, Ma L, Liu GD, Liu ZH, Chen JL, Cao ZX, Wu GH, Zhang B, Zhang XX. Magnetic field-induced martensitic transformation and large magnetoresistance in NiCoMnSb alloys. Appl Phys Lett. 2007;90(24): 242501. https://doi.org/10.1063/1.2748095.

    Article  ADS  CAS  Google Scholar 

  8. Li ZB, Hu W, Chen FH, Zhang MG, Li ZZ, Yang B, Zhao X, Zuo L. Large magnetoresistance in a directionally solidified Ni44.5Co5.1Mn37.1In13.3 magnetic shape memory alloy. J Magn Magn Mater. 2018;452:249. https://doi.org/10.1016/j.jmmm.2017.12.093.

    Article  ADS  CAS  Google Scholar 

  9. Guan ZQ, Bai J, Zhang Y, Gu JL, Jiang XJ, Liang XZ, Huang RK, Zhang YD, Esling C, Zhao X, Zuo L. Revealing essence of magnetostructural coupling of Ni–Co–Mn–Ti alloys by first-principles calculations and experimental verification. Rare Met. 2022;41(6):1933. https://doi.org/10.1007/s12598-021-01947-2.

    Article  CAS  Google Scholar 

  10. Koyama K, Watanabe K, Kanomata T, Kainuma R, Oikawa K, Ishida K. Observation of field-induced reverse transformation in ferromagnetic shape memory alloy Ni50Mn36Sn14. Appl Phys Lett. 2016;88(13): 132505. https://doi.org/10.1063/1.2189916.

    Article  ADS  CAS  Google Scholar 

  11. Liu FS, Wang QB, Li SP, Ao WQ, Li JQ. The martensitic transition and magnetocaloric properties of Ni51Mn49-xSnx. Phys B. 2013;412:74. https://doi.org/10.1016/j.physb.2012.12.024.

    Article  ADS  CAS  Google Scholar 

  12. Zhang GY, Li D, Liu C, Li ZB, Yang B, Yan HL, Zhao X, Zuo L. Giant low-field actuated caloric effects in a textured Ni43Mn47Sn10 alloy. Scr Mater. 2021;201: 113947. https://doi.org/10.1016/j.scriptamat.2021.113947.

    Article  CAS  Google Scholar 

  13. Huang L, Cong DY, Ma L, Nie ZH, Wang MG, Wang ZL, Suo HL, Ren Y, Wang YD. Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy. J Alloys Compd. 2015;647:1081. https://doi.org/10.1016/j.jallcom.2015.06.175.

    Article  CAS  Google Scholar 

  14. Li FQ, Qu YH, Yan HL, Chen Z, Cong DY, Sun XM, Li SH, Wang YD. Giant tensile superelasticity originating from two-step phase transformation in a Ni–Mn–Sn–Fe magnetic microwire. Appl Phys Lett. 2018;113(11): 112402. https://doi.org/10.1063/1.5045834.

    Article  ADS  CAS  Google Scholar 

  15. Huang L, Cong DY, Ren Y, Wei KX, Wang YD. Effect of Al substitution on the magnetocaloric properties of Ni–Co–Mn–Sn multifunctional alloys. Intermetallics. 2020;119: 106706. https://doi.org/10.1016/j.intermet.2020.106706.

    Article  CAS  Google Scholar 

  16. Sarkar SK, Ahlawat S, Kaushik SD, Babu PD, Sen D, Honecker D, Biswas A. Magnetic ordering of the martensite phase in Ni–Co–Mn–Sn-based ferromagnetic shape memory alloys. J Phys: Condens Matter. 2020;32:115801. https://doi.org/10.1088/1361-648X/ab5876.

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Tian HF, Lu JB, Ma L, Shi HL, Yang HX, Wu GH, Li JQ. Martensitic transformation and magnetic domains in Mn50Ni40Sn10 studied by in-situ transmission electron microscopy. J Appl Phys. 2012;112(3): 033904. https://doi.org/10.1063/1.4740458.

    Article  ADS  CAS  Google Scholar 

  18. Sutou Y, Imano Y, Koeda N, Omori T, Kainuma R, Ishida K, Oikawa K. Magnetic and martensitic transformations of NiMnX(X=In, Sn, Sb) ferromagnetic shape memory alloys. Appl Phys Lett. 2004;85(19):4358. https://doi.org/10.1063/1.1808879.

    Article  ADS  CAS  Google Scholar 

  19. Yan HL, Zhang YD, Xu N, Senyshyn A, Brokmeier HG, Esling C, Zhao X, Zuo L. Crystal structure determination of incommensurate modulated martensite in Ni–Mn–In Heusler alloys. Acta Mater. 2015;88:375. https://doi.org/10.1016/j.actamat.2015.01.025.

    Article  ADS  CAS  Google Scholar 

  20. Chernenko VA, Cesari E, Khovailo V, Pons J, Seguí C, Takagi T. Intermartensitic phase transformations in Ni–Mn–Ga studied under magnetic field. J Magn Mater. 2005;871:290. https://doi.org/10.1016/j.jmmm.2004.11.399.

    Article  CAS  Google Scholar 

  21. Mehaddene T, Neuhaus J, Petry W, Hradil K, Bourges P, Hiess A. Interplay of structural instability and lattice dynamics in Ni2MnAl. Phys Rev B. 2008;78(10): 104110. https://doi.org/10.1103/PhysRevB.78.104110.

    Article  ADS  CAS  Google Scholar 

  22. Yang LH, Zhang H, Hu FX, Sun JR, Pan LQ, Shen BG. Magnetocaloric effect and martensitic transition in Ni50Mn36-xCoxSn14. J Alloys Comp. 2014;588:46. https://doi.org/10.1016/j.jallcom.2013.10.196.

    Article  CAS  Google Scholar 

  23. Kanomata T, Umetsu RY, Ohtsuki K, Shoji T, Endo K, Fukushima K, Nishihara H, Ito W, Adachi Y, Miura T, Oikawa K, Kainuma R, Ziebeck KRA. Magnetic phase diagram of Ni2Mn1.44-xCuxSn0.56 shape memory alloys. J Alloys Comp. 2014;590:221. https://doi.org/10.1016/j.jallcom.2013.12.045.

    Article  CAS  Google Scholar 

  24. Hu QM, Li CM, Yang R, Kulkova SE, Bazhanov DI, Johansson B, Vitos L. Site occupancy, magnetic moments, and elastic constants of off-stoichiometric Ni2MnGa from first-principles calculations. Phys Rev B. 2009;79(14):144112. https://doi.org/10.1103/PhysRevB.79.144112.

    Article  ADS  CAS  Google Scholar 

  25. Li CM, Luo HB, Hu QM, Yang R, Johansson B, Vitos L. Site preference and elastic properties of Fe-, Co-, and Cu-doped Ni2MnGa shape memory alloys from first principles. Phys Rev B. 2011;84(2):024206. https://doi.org/10.1103/PhysRevB.84.024206.

    Article  ADS  CAS  Google Scholar 

  26. Luo HB, Hu QM, Li CM, Yang R, Johansson B, Vitos L. Phase stability of Ni2(Mn1-xFex)Ga: a first-principles study. Phys Rev B. 2012;86(2):024427. https://doi.org/10.1103/PhysRevB.86.024427.

    Article  ADS  CAS  Google Scholar 

  27. Inaekyan K, Brailovski V, Prokoshkin S, Korotitskiy A, Glezer A. Characterization of amorphous and nanocrystalline Ti–Ni-based shape memory alloys. J Alloys Comp. 2009;473(1–2):71. https://doi.org/10.1016/j.jallcom.2008.05.023.

    Article  CAS  Google Scholar 

  28. Zhou ZN, Yang L, Li RC, Li J, Hu QD, Li JG. Martensitic transformations and kinetics in Ni–Mn–In–Mg shape memory alloys. Intermetallics. 2018;92:49. https://doi.org/10.1016/j.intermet.2017.09.016.

    Article  CAS  Google Scholar 

  29. **ong K, Wang BW, Sun ZP, Li W, ** CC, Zhang SM, Xu SY, Guo L, Mao Y. Frist-principles prediction of elastic, electronic, and thermodynamic properties of high entropy carbide ceramic (TiZrNbTa)C. Rare Met. 2022;41(3):1002. https://doi.org/10.1007/s12598-021-01834-w.

    Article  CAS  Google Scholar 

  30. Hafner J. Atomic-scale computational materials science. Acta Mater. 2000;48(1):71. https://doi.org/10.1016/s1359-6454(99)00288-8.

    Article  ADS  CAS  Google Scholar 

  31. Ayat Z, Boukraa A, Ouahab A, Daoudi B. Electronic structure of the rare-earth superstoichiometric dihydride GdH2.25. Rare Met. 2022;41(8):2794. https://doi.org/10.1007/s12598-016-0861-x.

    Article  CAS  Google Scholar 

  32. **g XH, Guo RH, An SL, Zhang JY, Zhou GZ, Li HQ. Theoretical study on DFT of ethanol adsorption on Pt low-index surfaces. Chin J Rare Met. 2022;46(2):206. https://doi.org/10.13373/j.cnki.cjrm.xy19120008.

    Article  Google Scholar 

  33. Jiang HL, Hu ZF, Song CY, Gui YL, Yin YX. First Principal Study of TiZrHfNbScx Refractory High Entropy Alloys with Different Sc Content. Chin. J Rare Met. 2022;46(10):1383. https://doi.org/10.13373/j.cnki.cjrm.xy19060029.

    Article  Google Scholar 

  34. Jiang PG, Yu XB, **ao YY, Zhao S, Peng WJ. Study on hydrogen adsorption on WO3(001) surface by density functional theory calculation. Tungsten. 2022;5(4):558. https://doi.org/10.1007/s42864-022-00195-w.

    Article  Google Scholar 

  35. Lin CQ, Yan HL, Zhang YD, Esling C, Zhao X, Zuo L. Crystal structure of modulated martensite and crystallographic correlations between martensite variants of Ni50Mn38Sn12 alloy. J Appl Crystallogr. 2016;49:1276. https://doi.org/10.1107/s1600576716010372.

    Article  ADS  CAS  Google Scholar 

  36. Bai J, Wang JL, Shi SF, Raulot JM, Zhang YD, Esling C, Zhao X, Zuo L. Complete martensitic transformation sequence and magnetic properties of non-stoichiometric Ni2Mn1.2Ga0.8 alloy by first-principles calculations. J Magn Magn Mater. 2019;473:360. https://doi.org/10.1016/j.jmmm.2018.10.079.

    Article  ADS  CAS  Google Scholar 

  37. Yamada T, Kunitomi N, Nakal Y, Cox DE, Shirane G. Magnetic structure of α-Mn. J Phys Soc Jpn. 1970;28(3):615. https://doi.org/10.1143/JPSJ.28.615.

    Article  ADS  CAS  Google Scholar 

  38. Chen FH, **e HB, Huo MS, Wu H, Li LJ, Jiang ZY. Effects of magnetic field and hydrostatic pressure on the antiferromagnetic–ferromagnetic transition and magneto-functional properties in Hf1-xTaxFe2 alloys. Tungsten. 2022;5(4):503. https://doi.org/10.1007/s42864-022-00156-3.

  39. Muthu SE, Rao NVR, Raja MM, Kumar DMR, Radheep DM, Arumugam S. Influence of Ni/Mn concentration on the structural, magnetic and magnetocaloric properties in Ni50−xMn37+xSn13 Heusler alloys. J Phys D: Appl Phys. 2010;43(42): 425002. https://doi.org/10.1088/0022-3727/43/42/425002.

    Article  CAS  Google Scholar 

  40. Miroshkina ON, Eggert B, Lill J, Beckmann B, Koch D, Hu MY, Lojewski T, Rauls S, Scheibel F, Taubel A, Šob M, Ollefs K, Gutfleisch O, Wende H, Gruner ME, Friák M. Impact of magnetic and antisite disorder on the vibrational densities of states in Ni2MnSn Heusler alloys. Phys Rev B. 2022;106(21): 214302. https://doi.org/10.1103/PhysRevB.106.214302.

    Article  ADS  CAS  Google Scholar 

  41. Li ZB, Jiang YW, Li ZZ, Valde´s CFS, Llamazares JLS, Yang B, Zhang YD, Esling C, Zhao X, Zuo L. Phase transition and magnetocaloric properties of Mn50Ni42-xCoxSn8 (0 ≤ x ≤ 10) melt-spun ribbons. IUCrJ. 2018;5:54. https://doi.org/10.1107/S2052252517016220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Maziarz W, Czaja P, Szczerba MJ, Lityn´ska-Dobrzyn´ska L, Czeppe T, Dutkiewicz J. Influence of Ni/Mn concentration ratio on microstructure and martensitic transformation in melt spun Ni–Mn–Sn Heusler alloy ribbons. J Alloys Comp. 2014;615:S173. https://doi.org/10.1016/j.jallcom.2013.12.164.

    Article  CAS  Google Scholar 

  43. Chulist R, Czaja P. On the role of atomic shuffling in the 4O, 4M and 8M martensite structures in Ni–Mn–Sn single crystal. Scr Mater. 2020;189:106. https://doi.org/10.1016/j.scriptamat.2020.08.007.

    Article  CAS  Google Scholar 

  44. Sokolovskiy VV, Buchelnikov VD, Zagrebin MA, Enter P, Sahoo S, Ogura M. First-principles investigation of chemical and structural disorder in magnetic Ni2Mn1+xSn1−x Heusler alloys. Phys Rev B. 2012;86(13): 134418. https://doi.org/10.1103/PhysRevB.86.134418.

    Article  ADS  CAS  Google Scholar 

  45. Friák M, Zelený M, Mazalová M, Miháliková I, Turek I, Kaštil J, Kamarád J, Míšek M, Arnold Z, Schneeweiss O, Šob M. The impact of disorder on the 4O-martensite of Ni–Mn–Sn Heusler alloy. Intermetallics. 2022;151: 107708. https://doi.org/10.1016/j.intermet.2022.107708.

    Article  CAS  Google Scholar 

  46. Czaja P, Chulist R, Szlezynger M, Fitta M, Maziarz W. Multiphase microstructure and extended martensitic phase transformation in directionally solidified and heat treated Ni44Co6Mn39Sn11 metamagnetic shape memory alloy. In: Proceedings of the International Conference on Martensitic Transformations. Chicago; 2018. 263.

  47. Miyakawa T, Ito T, Xu X, Omori T, Kainuma R. Martensitic transformation near room temperature and hysteresis in (Ni–Co)50–Mn–Sn metamagnetic shape memory alloys. J Alloys Comp. 2022;913:165136. https://doi.org/10.1016/j.jallcom.2022.165136.

    Article  CAS  Google Scholar 

  48. Çakır A, Righi L, Albertini F, Acet M, Farle M. Intermartensitic transitions and phase stability in Ni50Mn50-xSnx Heusler alloys. Acta Mater. 2015;99:140. https://doi.org/10.1016/j.actamat.2015.07.072.

    Article  ADS  CAS  Google Scholar 

  49. Fang H, Wong B, Bai Y. Kinetic modelling of thermophysical properties of shape memory alloys during phase transformation. Const Build Mater. 2017;131:146. https://doi.org/10.1016/j.conbuildmat.2016.11.064.

    Article  Google Scholar 

  50. Kissinger HE. Reaction kinetics in differential thermal analysis. Anal Chem. 1957;29(11):1702. https://doi.org/10.1021/ac60131a045.

    Article  CAS  Google Scholar 

  51. Li CM, Luo HB, Hu QM, Yang R, Johansson B, Vitos L. Role of magnetic and atomic ordering in the martensitic transformation of Ni–Mn–In from a first-principles study. Phys Rev B. 2012;86(21): 214205. https://doi.org/10.1103/PhysRevB.86.214205.

    Article  ADS  CAS  Google Scholar 

  52. Barman SR, Banik S, Chakrabarti A. Structural and electronic properties of Ni2MnGa. Phys Rev B. 2005;72(18): 184410. https://doi.org/10.1103/PhysRevB.72.184410.

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 51771044), the Natural Science Foundation of Hebei Province (No. E2019501061), the Performance Subsidy Fund for Key Laboratory of Dielectric and Electrolyte Functional Material Hebei (No. 22567627H), the Fundamental Research Funds for the Central Universities (No. N2223025), 2023 Hebei Provincial doctoral candidate Innovation Ability training funding project (CXZZBS2023165) and the Programme of Introducing Talents of Discipline Innovation to Universities 2.0 (No. BP0719037). Thanks to the support of the Shanxi Supercomputing Center of China, and the calculations for this work were performed on TianHe-2. This project is supported by the China Scholarship Council (CSC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **g Bai.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Bai, J., Guo, KL. et al. Unraveling magnetic properties and martensitic transformation in Mn-rich Ni–Mn–Sn alloys: first-principles calculations and experiments. Rare Met. 43, 1769–1785 (2024). https://doi.org/10.1007/s12598-023-02538-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02538-z

Keywords

Navigation