Log in

Facile and effective synthesis strategy for terbium-doped hydroxyapatite toward photoelectric devices and flexible functional fibers

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

As a material with good biocompatibility, hydroxyapatite (HAP) can have optical properties after do** with various rare earth ions. As a biocompatible fluorescent material, doped HAP could have broad applications in biological probes, drug delivery, optoelectronic materials, fluorescence anti-counterfeiting, and other aspects. In this paper, we put forward the preparation of HAP doped with terbium (III) ions (Tb3+) by hydrothermal co-precipitation. By controlling the Tb3+ do** content in reaction and the reaction time, the changes in HAP’s structure, morphology, and luminescence properties under different conditions were studied. When the do** amount of Tb3+ reached an optimal value, the dipole-quadrupole would occur and the concentration would be quenched. The control experiment showed that the optimal Tb3+ content was 7.5 × 10–5 mol, which showed the best fluorescence performance. HAP, a non-luminous material, was rarely used in the field of fluorescent anti-counterfeiting and photoelectric devices. We proposed to prepare a luminescent aramid/polyphenylene sulfide (ACFs/PPS) fiber paper and a new light-emitting diode (LED) using the Tb-doped HAP phosphor. The composite sample exhibited an excellent stability and fluorescence performance, which also demonstrated a possibility of HAP applications in anti-counterfeiting and photoelectric. The introduction of Tb3+ dopant HAP was done to give HAP optical properties and broaden the application range of HAP.

Graphical abstract

摘要

羟基磷灰石(HAP)是一种具有良好生物相容性的材料,并且在掺杂各种稀土离子后会具有新的光学性质。稀土元素掺杂后的HAP成为一种具有生物相容性的荧光材料,在生物探针、药物传递、光电材料、荧光防伪等方面都具有广阔的应用前景。本文利用水热合成共沉淀法制备稀土铽离子(Tb3+)掺杂的HAP。通过控制反应中Tb3+的掺杂含量和反应时间,研究了不同条件下HAP的结构、形貌和发光性能的变化,当Tb3+的掺杂量达到最大值后会发生偶极-四极作用导致浓度淬灭。对照实验表明,Tb3+的掺杂量为7.5 × 10−5 mol时荧光性能最好。由于HAP本身是一种非发光材料,很少用于荧光防伪和光电器件领域,因此,我们提出了利用Tb掺杂HAP的荧光粉制备发光芳纶/聚苯硫醚(ACFs/PPS)纤维纸和新型发光二极管(LED)。复合后的样品表现出优异的稳定性和荧光性能,这也证明了HAP在防伪领域和光电领域具有良好的应用前景。Tb3+掺杂不仅赋予了HAP新的光学性质,还拓展了HAP的应用范围。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Reynard B, Lécuyer C, Grandjean P. Crystal-chemical controls on rare-earth element concentrations in fossil biogenic apatites and implications for paleoenvironmental reconstructions. Chem Geol. 1999;155(3–4):233. https://doi.org/10.1016/S0009-2541(98)00169-7.

    Article  CAS  ADS  Google Scholar 

  2. Gu MQ, Li W, Jiang L, Li XY. Recent progress of rare earth doped hydroxyapatite nanoparticles: luminescence properties, synthesis and biomedical applications. Acta Biomater. 2022;148:22. https://doi.org/10.1016/j.actbio.2022.06.006.

    Article  CAS  PubMed  Google Scholar 

  3. Marion C, Li RH, Waters KE. A review of reagents applied to rare-earth mineral flotation. Adv Colloid Interface Sci. 2020;279: 102142. https://doi.org/10.1016/j.cis.2020.102142.

    Article  CAS  PubMed  Google Scholar 

  4. Mahmood BK, Kaygili O, Bulut N, Dorozhkin SV, Ates T, Koytepe S, Gürses C, Ercan F, Kebiroglu H, Agid RS, İnce T. Effects of strontium-erbium co-do** on the structural properties of hydroxyapatite: an experimental and theoretical study. Ceram Int. 2020;46(10):16354. https://doi.org/10.1016/j.ceramint.2020.03.194.

    Article  CAS  Google Scholar 

  5. Li X, Ma H, Wang XD, Chen FF, Zeng XH. Structural and luminescent properties of Eu, Mg Co-doped GaN. Chin J Rare Met. 2020;44(11):1170. https://doi.org/10.13373/j.cnki.cjrm.XY19040031.

    Article  Google Scholar 

  6. Liu J, Zhu XH, Ma CS, Shang SW. Research progress on micro-arc oxide film with rare earth additives. Chin J Rare Met. 2022;46(8):1073. https://doi.org/10.13373/j.cnki.cjrm.XY20050043.

    Article  Google Scholar 

  7. Zhang Y, Chen J. Preparation of REPO4 (RE=La–Gd) nanorods from an ionic liquid extraction system and luminescent properties of CePO4: Tb3+. Rare Met. 2019;38(2):122. https://doi.org/10.1007/s12598-016-0701-z.

    Article  CAS  Google Scholar 

  8. Singh S, Singh D. Structural and optical properties of green emitting Y2SiO5: Tb3+ and Gd2SiO5: Tb3+ nanoparticles for modern lighting applications. Rare Met. 2021;40(11):3289. https://doi.org/10.1007/s12598-020-01585-0.

    Article  CAS  Google Scholar 

  9. Guan JJ, Tian B, Tang S, Ke QF, Zhang CQ, Zhu ZA, Guo YP. Hydroxyapatite coatings with oriented nanoplate arrays: synthesis, formation mechanism and cytocompatibility. J Mater Chem B. 2015;3(8):1655. https://doi.org/10.1039/C4TB02085E.

    Article  CAS  PubMed  Google Scholar 

  10. Biedrzycka A, Skwarek E, Hanna UM. Hydroxyapatite with magnetic core: synthesis methods, properties, adsorption and medical applications. Adv Colloid Interface Sci. 2021;291: 102401. https://doi.org/10.1016/j.cis.2021.102401.

    Article  CAS  PubMed  Google Scholar 

  11. Fihri A, Len C, Varma RS, Solhy A. Hydroxyapatite: a review of syntheses, structure and applications in heterogeneous catalysis. Coord Chem Rev. 2017;347:48. https://doi.org/10.1016/j.ccr.2017.06.009.

    Article  CAS  Google Scholar 

  12. Ibrahim M, Labaki M, Giraudon JM, Lamonier JF. Hydroxyapatite, a multifunctional material for air, water and soil pollution control: a review. J Hazard Mater. 2020;383: 121139. https://doi.org/10.1016/j.jhazmat.2019.121139.

    Article  CAS  PubMed  Google Scholar 

  13. Szcześ A, Hołysz L, Chibowski E. Synthesis of hydroxyapatite for biomedical applications. Adv Colloid Interface Sci. 2017;249:321. https://doi.org/10.1016/j.cis.2017.04.007.

    Article  CAS  PubMed  Google Scholar 

  14. Zhou HJ, Lee J. Nanoscale hydroxyapatite particles for bone tissue engineering. Acta Biomater. 2011;7(7):2769. https://doi.org/10.1016/j.actbio.2011.03.019.

    Article  CAS  PubMed  Google Scholar 

  15. Zhang CN, Uchikoshi T, Liu LH, Kikuchi M, Ichinose I. Nest-like microstructured biocompatible membrane fabricated by hydrothermally-synthesized hydroxyapatite (HAp) whiskers. J Eur Ceram Soc. 2020;40(2):513. https://doi.org/10.1016/j.jeurceramsoc.2019.09.032.

    Article  CAS  Google Scholar 

  16. Cheng J, Bian XT, Zhai ZY, Sardar M, Lu J. A single-phase full-color phosphor Sr2Ca2La(PO4)3O:Eu2+,Tb3+,Mn2+: photoluminescence and energy transfer. J Rare Earth. 2022;40(4):541. https://doi.org/10.1016/j.jre.2021.01.018.

  17. Qi YX, Yang RR, Gao Y, Jiang PF, Cong RH, Yang T. Ce3+ sensitized Tb3+ and Dy3+ photoluminescence in β-LaB5O9 prepared by solegel method. J Rare Earth. 2022;40:1181. https://doi.org/10.1016/j.jre.2021.08.008.

  18. Wu Z, Zhou ZR, Hong YL. Gelcasting of through-pore hydroxyapatite ceramics. J Eur Ceram Soc. 2019;39(2–3):547. https://doi.org/10.1016/j.jeurceramsoc.2018.08.042.

    Article  CAS  Google Scholar 

  19. Chen ZX, Wang XY, Luo J, Zhang BW, Shen F, Li BB, Yang J. Synthesis and characterization of rod-like amino acids/nanohydroxyapatite composites to inhibit osteosarcoma. RSC Adv. 2022;12(55):36103. https://doi.org/10.1039/d2ra03784j.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  20. Li H, Zhu YJ. Nanowires: synthesis and energy/environmental applications. Energy Environ Mater. 2021;4(4):544. https://doi.org/10.1002/eem2.12158.

    Article  Google Scholar 

  21. Chen F, Zhu YJ. Large-scale automated production of highly ordered ultralong hydroxyapatite nanowires and construction of various fire-resistant flexible ordered architectures. ACS Nano. 2016;10(12):11483. https://doi.org/10.1021/acsnano.6b07239.

    Article  CAS  PubMed  Google Scholar 

  22. Deshmukh K, Shaik MM, Ramanan SR, Kowshik M. Self-activated fluorescent hydroxyapatite nanoparticles: a promising agent for bioimaging and biolabeling. ACS Biomater Sci Eng. 2016;2(8):1257. https://doi.org/10.1021/acsbiomaterials.6b00169.

    Article  CAS  PubMed  Google Scholar 

  23. Wang C, Liu DD, Zhang CM, Sun JD, Feng WP, Liang XJ, Wang SX, Zhang JC. Defect-related luminescent hydroxyapatite-enhanced osteogenic differentiation of bone mesenchymal stem cells via an ATP-induced cAMP/PKA pathway. ACS Appl Mater Interfaces. 2016;8(18):11262. https://doi.org/10.1021/acsami.6b01103.

    Article  CAS  PubMed  Google Scholar 

  24. Koirala MB, Nguyen TDT, Pitchaimani A, Choi SO, Aryal S. Synthesis and characterization of biomimetic hydroxyapatite nanoconstruct using chemical gradient across lipid bilayer. ACS Appl Mater Interfaces. 2015;7(49):27382. https://doi.org/10.1021/acsami.5b09042.

    Article  CAS  PubMed  Google Scholar 

  25. Wang YY, Yue D, Tian BS, Li WD, Zhang B, Yang L, Li Y, Wang ZL, Zhang YL. Effectively enhanced photoluminescence of CePO4: Tb3+ nanorods combined with carbon dots. J Rare Earth. 2022;40(7):1007. https://doi.org/10.1016/j.jre.2021.10.006.

  26. Liu Y, Raina DB, Sebastian S, Nagesh H, Isaksson H, Engellau J, Lidgren L, Tägil M. Sustained and controlled delivery of doxorubicin from an in-situ setting biphasic hydroxyapatite carrier for local treatment of a highly proliferative human osteosarcoma. Acta Biomater. 2021;131:555. https://doi.org/10.1016/j.actbio.2021.07.016.

    Article  CAS  PubMed  Google Scholar 

  27. Li L, Li D, Zhao WW, Cai Q, Li G, Yu YH, Yang XQ. Composite resin reinforced with fluorescent europium-doped hydroxyapatite nanowires for in-situ characterization. Dent Mater. 2020;36(1): e15. https://doi.org/10.1016/j.dental.2019.11.010.

    Article  CAS  PubMed  Google Scholar 

  28. Sheng T, Liu XZ, Qian LX, Xu B, Zhang YY. Photoelectric properties of β-Ga2O3 thin films annealed at different conditions. Rare Met. 2022;41(4): 1375. https://doi.org/10.1007/s12598-015-0575-5.

  29. Smith BR, Gambhir SS. Nanomaterials for in vivo imaging. Chem Rev. 2017;117(3):901. https://doi.org/10.1021/acs.chemrev.6b00073.

    Article  CAS  PubMed  Google Scholar 

  30. Yang RL, Zhu YJ, Chen FF, Dong LY, **ong ZC. Luminescent, fire-resistant, and water-proof ultralong hydroxyapatite nanowire-based paper for multimode anticounterfeiting applications. ACS Appl Mater Interfaces. 2017;9(30):25455. https://doi.org/10.1021/acsami.7b06835.

    Article  CAS  PubMed  Google Scholar 

  31. Yao SJ, Chen MJ, Huang SQ, Wu MY, Yan JB, Li ZY, Wang H, Wu J, **ong SW, Wang LX. Mechanism of improvement in the strength of para-aramid paper by polyphenylene sulfide pulp. Compos Commun. 2022;34:101250. https://doi.org/10.1016/j.coco.2022.101250.

    Article  Google Scholar 

  32. Dhankhar P, Devi R, Devi S, Chahar S, Dalal M, Taxak VB, Khatkar SP, Boora P. Synthesis and photoluminescent performance of novel europium (III) carboxylates with heterocyclic ancillary ligands. Rare Met. 2022;41(4): 1342. https://doi.org/10.1007/s12598-019-01261-y.

  33. Ma XX, Mei LF, Liu HK, Liao LB, Nie K, Liu YQ, Li ZH. Synthesis and luminescence properties of Eu2+-activated phosphor Ba3LaK(PO4)3F for n-UV white-LEDs. Polyhedron. 2016;119:223. https://doi.org/10.1016/j.poly.2016.09.001.

    Article  CAS  Google Scholar 

  34. Nie K, Ma XX, Lin PL, Kumar N, Wang LX, Mei LF. Synthesis and luminescence properties of apatite-type red-emitting Ba2La8(GeO4)6O2: Eu3+ phosphors. J Rare Earth. 2021;39(11):1320. https://doi.org/10.1016/j.jre.2020.10.019.

    Article  CAS  Google Scholar 

  35. Nolasco MM, Vaz PM, Vaz PD, Ferreira RAS, Lima PP, Carlos LD. A green-emitting α-substituted β-diketonate Tb3+ phosphor for ultraviolet LED-based solid-state lighting. J Coord Chem. 2014;67(23–24):4076. https://doi.org/10.1080/00958972.2014.969722.

    Article  CAS  Google Scholar 

  36. Zhao M, Yang ZY, Ning LX, **a ZG. Tailoring of white luminescence in a NaLi3SiO4:Eu2+ phosphor containing broad-band defect-induced charge-transfer emission. Adv Mater. 2021;33(29):2101428. https://doi.org/10.1002/adma.202101428.

    Article  CAS  Google Scholar 

  37. Guo L, Li BW, Zhang CL. Optimization of process parameters for preparation of hydroxyapatite by the sol–gel method. J Solgel Sci Technol. 2020;96(1):247. https://doi.org/10.1007/s10971-020-05381-1.

    Article  CAS  Google Scholar 

  38. Li HS, Mei LF, Liu HK, Liu YG, Liao LB, Kumar RV. Growth mechanism of surfactant-free size-controlled luminescent hydroxyapatite nanocrystallites. Cryst Growth Des. 2017;17(5):2809. https://doi.org/10.1021/acs.cgd.7b00258.

    Article  CAS  Google Scholar 

  39. Thuy DDT, Minh VTN, Xuan TN, Huan PV, Hung VP, Nguyen DH, Hoan BT, Manh TL, Van HN. Dual-mode green emission and temperature sensing properties of rare-earth-element-doped biphasic calcium phosphate composites. J Alloy Compd. 2021;871: 159483. https://doi.org/10.1016/j.jallcom.2021.159483.

    Article  CAS  Google Scholar 

  40. Chen P, Wang F, Qiao YP, Zhang Z. Luminescence of samarium doped hydroxyapatite containing strontium: effects of do** concentration. J Rare Earth. 2022;40(3):398. https://doi.org/10.1016/j.jre.2021.02.006.

    Article  CAS  Google Scholar 

  41. Kareem RO, Kaygili O, Ates T, Bulut N, Koytepe S, Kuruçay A, Ercan F, Ercan I. Experimental and theoretical characterization of Bi-based hydroxyapatites doped with Ce. Ceram Int. 2022;48(22):33440. https://doi.org/10.1016/j.ceramint.2022.07.287.

    Article  CAS  Google Scholar 

  42. Liu ZG, Wang Q, Yao SW, Yang LR, Yu SW, Feng XX, Li FF. Synthesis and characterization of Tb3+/Gd3+ dual-doped multifunctional hydroxyapatite nanoparticles. Ceram Int. 2014;40(2):2613. https://doi.org/10.1016/j.ceramint.2013.10.070.

    Article  CAS  Google Scholar 

  43. Wang CF, Jeong KJ, Kim J, Kang SW, Kang J, Han IH, Lee IW, Oh SJ, Lee J. Emission-tunable probes using terbium(III)-doped self-activated luminescent hydroxyapatite for in vitro bioimaging. J Colloid Interface Sci. 2021;581:21. https://doi.org/10.1016/j.jcis.2020.07.083.

    Article  CAS  PubMed  ADS  Google Scholar 

  44. Lü W, Xu HW, Huo JS, Shao BQ, Feng Y, Zhao S, You HP. Tunable white light of a Ce3+, Tb3+, Mn2+ triply doped Na2Ca3Si2O8 phosphor for high colour-rendering white LED applications: tunable luminescence and energy transfer. Dalton Trans. 2017;46(28):9272. https://doi.org/10.1039/C7DT01086A.

    Article  PubMed  Google Scholar 

  45. Cao RP, Lin JY, Lan B, Cheng FR, Chen T, Li L, Liu R, Wang J. Luminescence properties, tunable emission and energy transfer of Na3Sc2(PO4)3: Sm3+, Bi3+ phosphors. J Mol Struct. 2023;1282: 135221. https://doi.org/10.1016/j.molstruc.2023.135221.

    Article  CAS  Google Scholar 

  46. Zhou RR, Cheng CA, Wang XY, Nie K, Wu J, Wu MY, Duan XQ, Hu ZY, Huq IU, Wang H, Wang LX, Mei LF, Liu HK, Ma XX. Metal halide perovskite nanocrystals with enhanced photoluminescence and stability toward anti-counterfeiting high-performance flexible fibers. Nano Res. 2023;16(2):3542. https://doi.org/10.1007/s12274-022-5041-8.

    Article  CAS  ADS  Google Scholar 

  47. Jiang GP, Song LL, Tao DL, ** F. Characterization of luminescent hydroxyapatite@terbium complex core-shell composites using chlorobenzoic acid as ligands. J Rare Earth. 2020;38(11):1165. https://doi.org/10.1016/j.jre.2019.10.009.

    Article  CAS  Google Scholar 

  48. Jana B, Inamdar SR, HM SK. Effect of quencher and temperature on fluorescence intensity of laser dyes: DETC and C504T. Spectrochim Acta A Mol Biomol Spectrosc. 2017;170:124. https://doi.org/10.1016/j.saa.2016.07.010.

    Article  CAS  PubMed  ADS  Google Scholar 

  49. Wang Y, Xu CF, Zhang Z, Zheng C, Pei JT, Sun LZ. Enhanced 1–5 μm near- and mid-infrared emission in Ho3+/Yb3+ codoped TeO2–ZnF2 oxyfluorotellurite glasses. J Rare Earth. 2020;38(10):1044. https://doi.org/10.1016/j.jre.2019.10.008.

    Article  CAS  Google Scholar 

  50. Zheng XX, Yang ML, Wang GH, Zhou WL, Zhang JL, Yu LQ, Wang P, Qiu ZX, Li CZ, Lian SX. Luminescence tuning of Tb/Eu co-doped zinc aluminoborosilicate glasses for white LED applications. Ceram Int. 2020;46(17):26608. https://doi.org/10.1016/j.ceramint.2020.07.129.

    Article  CAS  Google Scholar 

  51. Cui RR, Guo X, Gong XY, Deng CY. Photoluminescence properties and energy transfer of novel orange–red emitting phosphors: Ba3Bi2(PO4)4: Sm3+, Eu3+ for white light-emitting diodes. Rare Met. 2021;40(10):2882. https://doi.org/10.1007/s12598-020-01663-3.

    Article  CAS  Google Scholar 

  52. Huang XY, Han SY, Huang W, Liu XG. Enhancing solar cell efficiency: the search for luminescent materials as spectral converters. Chem Soc Rev. 2013;42(1):173. https://doi.org/10.1039/c2cs35288e.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the National Natural Science Foundation of China (Nos. 52274273 and 51872269), the Key Laboratory of Testing and Tracing of Rare Earth Products for State Market Regulation (Jiangxi University of Science and Technology) (No. TTREP2022YB04), the Science and Technology Research Project of Hubei Provincial Department of Education (No. B2021091), Key Laboratory for New Textile Materials and Applications of Hubei Province (Wuhan Textile University) (No. FZXCL202107), and the Open Project Program of High-Tech Organic Fibers Key Laboratory of Sichuan Province, and China and National Project Cultivation Plan of Wuhan Textile University. This work was aided by the graduate innovation fund project of Wuhan Textile University. The authors would like to thank Liu Nian and Liu Tianying from Shiyanjia Laboratory (www.shiyanjia.com) for the XPS and SEM characterizations.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kun Nie or Wu-Bin Dai.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 28548 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, XD., Nie, K., Hu, ZY. et al. Facile and effective synthesis strategy for terbium-doped hydroxyapatite toward photoelectric devices and flexible functional fibers. Rare Met. 43, 1713–1723 (2024). https://doi.org/10.1007/s12598-023-02535-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02535-2

Keywords

Navigation