Log in

Two sandwich-type uranyl-containing polytungstates catalyze aerobic synthesis of benzimidazoles

  • Letter
  • Published:
Rare Metals Aims and scope Submit manuscript

Diversified synthetic strategies are extremely important for the structural diversity of uranium-containing polyoxometalates (U-POMs) and their functional expansion. Herein, two sandwich-type U-POMs were reported, which are Na5.6K6.4[(UO2)(H2O)(TeW9O33)]2·21H2O (UTeW9) and Na8.9K2.7H1.19[K0.79(UO2)2.21(PW9O34)2]·12H2O (UPW9) using in-situ strategy and lacunary precursor strategy, respectively. UTeW9 shows a typical Keggin-type open or half-sandwich configuration. UPW9 shows a typical Keggin-type sandwiched structure containing significant disorders of K(I) and uranyl ions with a triangular configuration. In addition, UTeW9 exhibits high efficiency in the catalyzed condensation of various o-arylenediamines and aldehydes for the aerobic synthesis of benzimidazoles with excellent yield.

Graphical abstract

摘要

多样化的合成策略对含铀多金属氧簇(U-POMs)的结构多样性和功能扩展至关重要。本文分别采用原位合成策略和不稳定前驱体策略合成了两例夹心型U-POMs:Na5.6K6.4[(UO2)(H2O)(TeW9O33)]2·21H2O (UTeW9)和Na8.9K2.7H1.19[K0.79(UO22)2.21(PW99O3434)2]·12H2O (UPW9)。UTeW9是通过简单原料原位合成的,呈现出典型的Keggin型开放式或半夹心结构。UPW9由不稳定的{α-P2W12}前驱体与简单原料反应得到,呈现出典型的Keggin型夹心结构,呈三角构型的夹心中含有无序的K(I)和铀酰离子。此外,UTeW9能够高效催化各种邻芳二胺和苯甲醛的缩合反应,以优异的收率合成苯并咪唑类化合物。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Scheme 1
Fig. 4

References

  1. Luo XM, Li YK, Dong XY, Zang SQ. Platonic and Archimedean solids in discrete metal-containing clusters. Chem Soc Rev. 2023;52(1):383. https://doi.org/10.1039/D2CS00582D.

    Article  CAS  PubMed  Google Scholar 

  2. Cheng Y, Qin KJ, Zang DJ. Polyoxometalates based nanocomposites for bioapplications. Rare Met. 2023. https://doi.org/10.1007/s12598-023-02379-w.

    Article  Google Scholar 

  3. Zhou T, **e LL, Niu Y, **ao HR, Li YJ, Han Q, Qiu XJ, Yang XL, Wu XY, Zhu LM, Pang H, Cao XY. New insights on (V10O28)6−-based electrode materials for energy storage: a brief review. Rare Met. 2023;42(5):1431. https://doi.org/10.1007/s12598-022-02207-7.

    Article  CAS  Google Scholar 

  4. Liu ZY, Lin YD, Yu H, Chen HN, Guo ZW, Li XX, Zheng ST. Recent advances in polyoxoniobate-catalyzed reactions. Tungsten.2022;4(2):81. https://doi.org/10.1007/s42864-021-00134-1.

    Article  CAS  Google Scholar 

  5. Chen HH, Zheng KT, Wang JR, Niu BX, Ma PT, Wang JP, Niu JY. Discovery and isolation of two arsenotungastate species: [As4W48O168]36– and [As2W21O77(H2O)3]22–. Inorg Chem. 2023;62(8):3338.https://doi.org/10.1021/acs.inorgchem.2c04280.

    Article  CAS  PubMed  Google Scholar 

  6. Yang ZF, Li J, Niu JY, Wang JP. Polyoxotantalate chemistry: from synthetic strategies to structural diversity and applications. Dalton Trans. 2023;52(15):4632. https://doi.org/10.1039/D2DT03319D.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng MY, Liu YF, Du WX, Shi JW, Li JH, Wang HY, Li K, Yang GP, Zhang DD. Two Dawson-type U(VI)-containing selenotungstates with sandwich structure and its high-efficiency catalysis for pyrazoles. Chin Chem Lett. 2022;33(8):3899. https://doi.org/10.1016/j.cclet.2021.11.059.

    Article  CAS  Google Scholar 

  8. Cheng MY, Wang HY, Liu YF, Shi JW, Zhou MQ, Du WX, Zhang DZ, Yang GP. Bouquet-like uranium-containing selenotungstate consisting of two different Keggin-/Anderson-type units with excellent photoluminescence quantum yield. Chin Chem Lett. 2023;34(1): 107209. https://doi.org/10.1016/j.cclet.2022.02.015.

    Article  CAS  Google Scholar 

  9. Wang HY, Zheng XY, Long LS, Kong XJ, Zheng LS. Sandwich-type uranyl phosphate–polyoxometalate cluster exhibiting strong luminescence. Inorg Chem. 2021;60(9):6790. https://doi.org/10.1021/acs.inorgchem.1c00622.

    Article  CAS  PubMed  Google Scholar 

  10. Du WX, Cheng MY, Li K, Ma YC, Shi JW, Zhang DD. Insight into hexanuclear peroxotantalum complexes: synthesis, characterization, and efficient catalyst for amidation reaction. Tungsten. 2022;4(2):158. https://doi.org/10.1007/s42864-021-00114-5.

    Article  Google Scholar 

  11. Li CF, Yamaguchi K, Suzuki K. Ligand-directed approach in polyoxometalate synthesis: formation of a new divacant lacunary polyoxomolybdate [γ-PMo10O36]7−. Angew Chem Int Ed. 2021;60(13):6960. https://doi.org/10.1002/anie.202016642.

    Article  CAS  Google Scholar 

  12. Ding JH, Liu YF, Tian ZT, Lin PJ, Yang F, Li K, Yang GP, Wei YG. Uranyl-silicotungstate-containing hybrid building units α-SiW9 and γ-SiW10 with excellent catalytic activities in the three-component synthesis of dihydropyrimidin-2(1H)-ones. Inorg Chem Front. 2023;10(11):3195. https://doi.org/10.1039/D2QI02653H.

    Article  CAS  Google Scholar 

  13. Das V, Kaushik R, Hussain F. Heterometallic 3d–4f polyoxometalates: an emerging field with structural diversity to multiple applications. Coord Chem Rev. 2020;413: 213271. https://doi.org/10.1016/j.ccr.2020.213271.

    Article  CAS  Google Scholar 

  14. Lai QS, Li XX, Zheng ST. All-inorganic POM cages and their assembly: a review. Coord Chem Rev. 2023;482: 215077. https://doi.org/10.1016/j.ccr.2023.215077.

    Article  CAS  Google Scholar 

  15. Auvray T, Matson EM. Polyoxometalate-based complexes as ligands for the study of actinide chemistry. Dalton Trans. 2020;49(40):13917. https://doi.org/10.1039/D0DT02755C.

    Article  CAS  PubMed  Google Scholar 

  16. Dufaye M, Duval S, Loiseau T. Trends and new directions in the crystal chemistry of actinide oxo-clusters incorporated in polyoxometalates. CrystEngComm. 2020;22(21):3549. https://doi.org/10.1039/D0CE00088D.

    Article  CAS  Google Scholar 

  17. Yang GP, Li K, Hu CW. Recent advances in uranium-containing polyoxometalates. Inorg Chem Front. 2022;9(21):5408. https://doi.org/10.1039/D2QI01834A.

    Article  CAS  Google Scholar 

  18. Gaunt AJ, May I, Cop** R, Bhatt AI, Collison D, Danny FO, Travis HK, Pope MT. A new structural family of heteropolytungstate lacunary complexes with the uranyl, UO22+, cation. Dalton Trans. 2003;15:3009. https://doi.org/10.1039/B302955G.

    Article  Google Scholar 

  19. Khoshnavazi R, Eshtiagh-hossieni H, Alizadeh MH, Pope MT. Syntheses and structures determination of new polytungstoarsenates [Na2As2W18U2O72]12− and [MAs2W18U2O72]13− (M=NH4+ and K+). Polyhedron. 2006;25(9):1921. https://doi.org/10.1016/j.poly.2005.05.009.

    Article  CAS  Google Scholar 

  20. Wang HY, Zheng XY, Long LS, Zheng LS, Kong XJ. Synthesis, structures and photoluminescence of uranyl polyoxometalate clusters based on trilacunary [TeW9O33]8–. Tungsten. 2023;5(2):254. https://doi.org/10.1007/s42864-022-00193-y.

    Article  Google Scholar 

  21. Jeannin Y. Synthèse et étude cristallographique d’un nouveau composé de coordination asymétrique de l’uranium(IV) lié à deux ligands du type polytungstate [(H3SbIIIW17O59)UIV(HW5O18)]11–. CR Chim. 2005;8(6):999. https://doi.org/10.1016/j.crci.2004.11.017.

    Article  CAS  Google Scholar 

  22. Kim KC, Gaunt A, Pope MT. New heteropolytungstates incorporating dioxouranium(VI). Derivatives of α-[SiW9O34]10−, α-[AsW9O33]9−, γ-[SiW10O36]8−, and [As4W40O140]28−. J Clust Sci. 2002;13(3):423. https://doi.org/10.1023/A:1020507201056.

    Article  CAS  Google Scholar 

  23. Kim KC, Pope MT. New plenary and lacunary polyoxotungstate structures assembled from nonatungstoarsenate(III) anions and uranyl cations. J Chem Soc Dalton Trans. 2001;7:986. https://doi.org/10.1039/B008162K.

    Article  Google Scholar 

  24. Mal SS, Dickman MH, Kortz U. Actinide polyoxometalates: incorporation of uranyl–peroxo in U-shaped 36-tungsto-8-phosphate. Chem Eur J. 2008;14(32):9851. https://doi.org/10.1002/chem.200801583.

    Article  CAS  PubMed  Google Scholar 

  25. Li K, Lin XL, Zeng K, Gao XF, Cen W, Liu YF, Yang GP. Effect of Na(I)–H2O clusters on self-assembly of sandwich-type U(VI)-containing silicotungstates and the efficient catalytic activity for the synthesis of substituted phenylsulfonyl-1H-pyrazoles. Tungsten. 2022;4(2):149. https://doi.org/10.1007/s42864-021-00119-0.

    Article  Google Scholar 

  26. Liu YF, Li K, Lian HY, Chen XJ, Zhang XL, Yang GP. Self-assembly of a U(VI)-containing polytungstate tetramer with Lewis acid-base catalytic activity for a dehydration condensation reaction. Inorg Chem. 2022;61(50):20358. https://doi.org/10.1021/acs.inorgchem.2c02918.

    Article  CAS  PubMed  Google Scholar 

  27. Yang GP, Zhang XL, Liu YF, Zhang DD, Li K, Hu CW. Self-assembly of Keggin-type U(vi)-containing tungstophosphates with a sandwich structure: an efficient catalyst for the synthesis of sulfonyl pyrazoles. Inorg Chem Front. 2021;8(21):4650. https://doi.org/10.1039/D1QI00485A.

    Article  CAS  Google Scholar 

  28. Zhou J, Yu T, Li K, Zeng K, Yang GP, Hu CW. Two U(VI)-containing silicotungstates with sandwich structures: Lewis acid–base synergistic catalyzed synthesis of benzodiazepines and pyrazoles. Inorg Chem. 2022;61(7):3050. https://doi.org/10.1021/acs.inorgchem.1c03160.

    Article  CAS  PubMed  Google Scholar 

  29. Kim KC, Pope MT. Cation-directed structure changes in polyoxometalate chemistry. Equilibria between isomers of bis(9-tungstophosphatodioxouranate(VI)) complexes. J Am Chem Soc. 1999;121(37):8512. https://doi.org/10.1021/ja9909125.

    Article  CAS  Google Scholar 

  30. Akhtar W, Khan MF, Verma G, Shaquiquzzaman M, Rizvi MA, Mehdi SH, Akhter M, Alam MM. Therapeutic evolution of benzimidazole derivatives in the last quinquennial period. Eur J Med Chem. 2017;126:705. https://doi.org/10.1016/j.ejmech.2016.12.010.

    Article  CAS  PubMed  Google Scholar 

  31. Bansal Y, Silakari O. The therapeutic journey of benzimidazoles: a review. Biorg Med Chem. 2012;20(21):6208. https://doi.org/10.1016/j.bmc.2012.09.013.

    Article  CAS  Google Scholar 

  32. Singla P, Luxami V, Paul K. Benzimidazole-biologically attractive scaffold for protein kinase inhibitors. RSC Adv. 2014;4(24):12422. https://doi.org/10.1039/C3RA46304D.

    Article  ADS  CAS  Google Scholar 

  33. Li CH, Zhang LL, Li H, Yang S. Cobalt nitride enabled benzimidazoles production from furyl/aryl bio-alcohols and o-nitroanilines without an external H-source. Front Chem Sci Eng. 2023;17(1):68. https://doi.org/10.1007/s11705-022-2174-y.

    Article  CAS  Google Scholar 

  34. Wang BY, Li MR, Zhang SD, Wu HG, Liao YH, Li H. Synergistic effect between Co single atoms and nanoparticles enables selective synthesis of bio-based benzimidazoles. Appl Catal B Environ. 2023;327: 122454. https://doi.org/10.1016/j.apcatb.2023.122454.

    Article  CAS  Google Scholar 

  35. Akhtar JM, Yar SM, Sharma KV, Khan AA, Ali Z, Haider RMD, Pathak A. Recent progress of benzimidazole hybrids for anticancer potential. Curr Med Chem. 2020;27(35):5970. https://doi.org/10.2174/0929867326666190808122929.

    Article  CAS  PubMed  Google Scholar 

  36. Arya CG, Gondru R, Li YP, Banothu J. Coumarin–benzimidazole hybrids: a review of developments in medicinal chemistry. Eur J Med Chem. 2022;227:113921. https://doi.org/10.1016/j.ejmech.2021.113921.

    Article  CAS  Google Scholar 

  37. Singla P, Luxami V, Paul K. Triazine–benzimidazole hybrids: anticancer activity, DNA interaction and dihydrofolate reductase inhibitors. Biorg Med Chem. 2015;23(8):1691. https://doi.org/10.1016/j.bmc.2015.03.012.

    Article  CAS  Google Scholar 

  38. Tahlan S, Kumar S, Narasimhan B. Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: a review. BMC Chem. 2019;13(1):101. https://doi.org/10.1186/s13065-019-0625-4.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Jiang JJ, Pan M, Liu JM, Wang W, Su CY. Assembly of robust and porous hydrogen-bonded coordination frameworks: isomorphism, polymorphism, and selective adsorption. Inorg Chem. 2010;49(21):10166. https://doi.org/10.1021/ic1014384.

    Article  CAS  PubMed  Google Scholar 

  40. Saltan GM, Dinçalp H, Kıran M, Zafer C, Erbaş SÇ. Novel organic dyes based on phenyl-substituted benzimidazole for dye sensitized solar cells. Mater Chem Phys. 2015;163:387. https://doi.org/10.1016/j.matchemphys.2015.07.055.

    Article  CAS  Google Scholar 

  41. Weber J. Nanostructured poly(benzimidazole): from mesoporous networks to nanofibers. Chemsuschem. 2010;3(2):181. https://doi.org/10.1002/cssc.200900122.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao YL, Wu C, Qiu PL, Li XP, Wang Q, Chen JS, Ma DG. New benzimidazole-based bipolar hosts: highly efficient phosphorescent and thermally activated delayed fluorescent organic light-emitting diodes employing the same device structure. ACS Appl Mate Interfaces. 2016;8(4):2635. https://doi.org/10.1021/acsami.5b10464.

    Article  CAS  Google Scholar 

  43. Skolia E, Apostolopoulou MK, Nikitas NF, Kokotos CG. Photochemical synthesis of benzimidazoles from diamines and aldehydes. Eur J Org Chem. 2021;2021(3):422. https://doi.org/10.1002/ejoc.202001357.

    Article  CAS  Google Scholar 

  44. Agrahari B, Layek S, Ganguly R, Dege N, Pathak DD. Synthesis, characterization and single crystal X-ray studies of pincer type Ni(II)-Schiff base complexes: application in synthesis of 2-substituted benzimidazoles. J Organomet Chem. 2019;890:13. https://doi.org/10.1016/j.jorganchem.2019.03.018.

    Article  CAS  Google Scholar 

  45. Daw P, Ben-David Y, Milstein D. Direct synthesis of benzimidazoles by dehydrogenative coupling of aromatic diamines and alcohols catalyzed by cobalt. ACS Catal. 2017;7(11):7456. https://doi.org/10.1021/acscatal.7b02777.

    Article  CAS  Google Scholar 

  46. Garazhian Z, Rezaeifard A, Jafarpour M. A nanoscopic icosahedral {Mo72Fe30} cluster catalyzes the aerobic synthesis of benzimidazoles. RSC Adv. 2019;9(60):34854. https://doi.org/10.1039/C9RA06581D.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (No. 22001034) and Jiangxi Provincial Natural Science Foundation (No. 20212BAB213001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ke Li, Pei Luo or Guo-** Yang.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, YF., Hu, QL., Chen, XJ. et al. Two sandwich-type uranyl-containing polytungstates catalyze aerobic synthesis of benzimidazoles. Rare Met. 43, 1316–1322 (2024). https://doi.org/10.1007/s12598-023-02532-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02532-5

Navigation