Log in

Tailoring mechanical heterogeneity, nanoscale creep deformation and optical properties of nanostructured Zr-based metallic glass

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Metallic glasses are spatially heterogeneous at the nanometer scale. However, the effects of external excitation on their structural and mechanical heterogeneity and the correlation to their properties are still unresolved. Nanoindentation, atomic force microscopy (AFM) and high-resolution transmission electron microscopy (HRTEM) were carried out to explore the effects of cryogenic thermal cycling (CTC) on mechanical/structural heterogeneity, nanoscale creep deformation and optical properties of nanostructured metallic glass thin films (MGTFs). The results indicate that CTC treatment alters the distribution fluctuations of hardness/modulus and energy dissipation and results in an increase-then-decrease variation in mechanical heterogeneity. By applying Maxwell–Voigt model, it can be shown that CTC treatment results in a remarkable activation of more defects with longer relaxation time in soft regions but has only a slight effect on defects in hard regions. In addition, CTC treatment increases the transition time from primary-state stage to steady-state stage during creep deformation. The enhanced optical reflectivity of the MGTFs after 15 thermal cycles can be attributed to increased aggregation of Cu and Ni elements. The results of this study shed new light on understanding mechanical/structural heterogeneity and its influence on nanoscale creep deformation and optical characteristics of nanostructured MGTFs, and facilitate the design of high-performance nanostructured MGTFs.

Graphical abstract

摘要

金属玻璃存在纳米尺度空间 不均匀性. 然而外场激发下, 金属玻璃的结构/力学不. 均匀性演变及其与物性之间的关联尚不明确. 本文通 过纳米压痕技术, 原子力显微镜及高分辨透射电镜表 征手段,探究了低温热循环对纳米结构金属玻璃薄膜 力学/结构不均匀性, 纳米蠕变行为及光学性能的影响. 研究表明低温热循环改变了硬度, 模量, 能量耗散的 分布趋势, 力学不均匀性先增加后减, 基于Maxwell–Voigt 模型. 低温热循环容易激活软区长弛豫时间的缺 陷. 对硬区缺陷影响较小; 瞬态蠕变向稳态蠕变转变 的时间延长. 由于Cu 和Ni 元素的富集, 15 次低温热 循环后的样品反射率提高. 这项工作为金属玻璃力学/ 结构不均匀性特征及其对纳米蠕变行为及光学性能的演化提供了新的见解, 对未来高性能纳米结构金属玻 璃薄膜新材料的开发具有重要的指导意义.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Song L, Gao M, Xu W, Huo J, Wang J, Li R, Wang W, Perepezko JH. Inheritance from glass to liquid: β relaxation depresses the nucleation of crystals. Acta Mater. 2020;185:38. https://doi.org/10.1016/j.actamat.2019.12.002.

    Article  CAS  Google Scholar 

  2. Zhang P, Maldonis JJ, Liu Z, Schroers J, Voyles PM. Spatially heterogeneous dynamics in a metallic glass forming liquid imaged by electron correlation microscopy. Nat Commun. 2018;9(1):1129. https://doi.org/10.1038/s41467-018-03604-2.

    Article  CAS  Google Scholar 

  3. Yuan C, Lv Z, Pang C, Li X, Liu R, Yang C, Ma J, Ke H, Wang W, Shen B. Ultrasonic-assisted plastic flow in a Zr-based metallic glass. Sci China Mater. 2020;64(2):448. https://doi.org/10.1007/s40843-020-1411-2.

    Article  CAS  Google Scholar 

  4. Lv Z, Yuan C, Ke H, Shen B. Defects activation in CoFe-based metallic glasses during creep deformation. J Mater Sci Technol. 2021;69:42. https://doi.org/10.1016/j.jmst.2020.08.012.

    Article  CAS  Google Scholar 

  5. Yao W, Cao Q, Liu S, Wang X, Fecht HJ, Caron A, Zhang D, Jiang J. Tailoring nanostructured Ni-Nb metallic glassy thin films by substrate temperature. Acta Mater. 2020;194:13. https://doi.org/10.1016/j.actamat.2020.04.046.

    Article  CAS  Google Scholar 

  6. Wang Y, Ding J, Fan Z, Tian L, Li M, Lu H, Zhang Y, Ma E, Li J, Shan Z. Tension-compression asymmetry in amorphous silicon. Nat mater. 2021;20:1371. https://doi.org/10.1038/s41563-021-01017-z.

    Article  CAS  Google Scholar 

  7. Ghidelli M, Gravier S, Blandin JJ, Raskin JP, Lani F, Pardoen T. Size-dependent failure mechanisms in ZrNi thin metallic glass films. Scripta Mater. 2014;89:9. https://doi.org/10.1016/j.scriptamat.2014.06.011.

    Article  CAS  Google Scholar 

  8. Lee CJ, Lin HK, Sun S, Huang J. Characteristic difference between ITO/ZrCu and ITO/Ag bi-layer films as transparent electrodes deposited on PET substrate. Appl Surf Sci. 2010;257(1):239. https://doi.org/10.1016/j.apsusc.2010.06.074.

    Article  CAS  Google Scholar 

  9. Alvi S, Milczarek M, Jarzabek DM, Hedman D, Kohan MG, Levintant-Zayonts N, Vomiero A, Akhtar F. Enhanced mechanical, thermal and electrical properties of high-entropy HfMoNbTaTiVWZr thin film metallic glass and its nitrides. Adv Eng Mater. 2022. https://doi.org/10.1002/ADEM.202101626.

    Article  Google Scholar 

  10. Liu S, Cao Q, Qian X, Wang C, Wang X, Zhang D, Hu X, Xu W, Ferry M, Jiang J. Effects of substrate temperature on structure, thermal stability and mechanical property of a Zr-based metallic glass thin film. Thin Solid Films. 2015;595:17. https://doi.org/10.1016/j.tsf.2015.10.049.

    Article  CAS  Google Scholar 

  11. Pei C, Chen S, Zhao T, Li M, Cui Z, Sun B, Hu S, Lan S, Hahn H, Feng T. Nanostructured metallic glass in a highly upgraded energy state contributing to efficient catalytic performance. Adv mater. 2022;34(26):2200850. https://doi.org/10.1002/adma.202200850.

    Article  CAS  Google Scholar 

  12. Sun Q, Miskovic DM, Ferry M. Probing the formation of ultrastable metallic glass from structural heterogeneity. J Mater Sci Technol. 2022;104:214. https://doi.org/10.1016/J.JMST.2021.06.059.

    Article  CAS  Google Scholar 

  13. Luo P, Cao C, Zhu F, Lv Y, Liu Y, Wen P, Bai H, Vaughan G, Michiel M, Ruta B, Wang W. Ultrastable metallic glasses formed on cold substrates. Nat commun. 2018;9(1):1389. https://doi.org/10.1038/s41467-018-03656-4.

    Article  CAS  Google Scholar 

  14. Sun Q, Miskovic DM, Kong H, Ferry M. Transition from relaxation to rejuvenation in ultrastable metallic glass driven by annealing. Appl Surf Sci. 2021;546:149048. https://doi.org/10.1016/j.apsusc.2021.149048.

    Article  CAS  Google Scholar 

  15. Luo Q, Zhang Z, Li D, Luo P, Wang W, Shen B. Nanoscale-to-Mesoscale heterogeneity and percolating favored clusters govern ultrastability of metallic glasses. Nano lett. 2022;22:2867. https://doi.org/10.1021/ACS.NANOLETT.1C05039.

    Article  CAS  Google Scholar 

  16. Nandam SH, Ivanisenko Y, Schwaiger R, Śniadecki Z, Mu X, Wang D, Chellali R, Boll T, Kilmametov A, Bergfeldt T, Gleiter H, Hahn H. Cu-Zr nanoglasses: atomic structure, thermal stability and indentation properties. Acta Mater. 2017;136:181. https://doi.org/10.1016/j.actamat.2017.07.001.

    Article  CAS  Google Scholar 

  17. Wang J, Chen N, Liu P, Wang Z. The ultrastable kinetic behavior of an Au-based nanoglass. Acta Mater. 2014;79:30. https://doi.org/10.1016/j.actamat.2014.07.015.

    Article  CAS  Google Scholar 

  18. Gleiter H, Schimmel T, Hahn H. Nanostructured solids–from nano-glasses to quantum transistors. Nano Today. 2014;9(1):17. https://doi.org/10.1016/j.nantod.2014.02.008.

    Article  CAS  Google Scholar 

  19. Gleiter H. Nanoglasses: a new kind of noncrystalline material and the way to an age of new technologies? Small. 2016;12(16):2225. https://doi.org/10.1002/smll.201500899.

    Article  CAS  Google Scholar 

  20. Liu Y, Zhao F, Li Y, Chen M. Deformation behavior of metallic glass thin films. J Appl Phys. 2012;112(6):063504. https://doi.org/10.1063/1.4752280.

    Article  CAS  Google Scholar 

  21. Yuan C, Liu R, Pang C, Zuo X, Li B, Song S, Hu J, Zhu W, Shen B. Anelastic and viscoplastic deformation in a Fe-based metallic glass. J Alloys Compd. 2021;853:157233. https://doi.org/10.1016/j.jallcom.2020.157233.

    Article  CAS  Google Scholar 

  22. Trifonov AS, Lubenchenko AV, Louzguine-Luzgin DV. Cryogenic cycling-induced changes in a Fe-based bulk metallic glass on the nanoscale surface layer. Mater Lett. 2021;285:129114. https://doi.org/10.1016/j.matlet.2020.129114.

    Article  CAS  Google Scholar 

  23. Widjaja G, Ershov K, Chupradit S, Suksatan W, Kavitha M, Jawad MA, Fardeeva I, Ghafel ST, Mustafa YF, Kadhim MM, Sajjadifar S. The effects of hydrogen do** on energy state of shear bands in a Zr-based metallic glass. Vacuum. 2022;198:110882. https://doi.org/10.1016/j.vacuum.2022.110882.

    Article  CAS  Google Scholar 

  24. Ross P, Küchemann S, Derlet PM, Yu H, Arnold W, Liaw P, Samwer K, Maaß R. Linking macroscopic rejuvenation to nano-elastic fluctuations in a metallic glass. Acta Mater. 2017;138:111. https://doi.org/10.1016/j.actamat.2017.07.043.

    Article  CAS  Google Scholar 

  25. Wang D, Liu Y, Nishi T, Nakajima K. Length scale of mechanical heterogeneity in a glassy polymer determined by atomic force microscopy. Appl Phys Lett. 2012;100(25):251905. https://doi.org/10.1063/1.4729931.

    Article  CAS  Google Scholar 

  26. Yuan C, Lv Z, Pang C, Zhu W, Wang X, Shen B. Pronounced nanoindentation creep deformation in Cu-doped CoFe-based metallic glasses. J Alloys Compd. 2019;806:246. https://doi.org/10.1016/j.jallcom.2019.07.226.

    Article  CAS  Google Scholar 

  27. Di S, Ke H, Wang Q, Zhou J, Zhao Y, Shen B. Large tensile plasticity induced by pronounced β-relaxation in Fe-based metallic glass via cryogenic thermal cycling. Mater Design. 2022;222:111074. https://doi.org/10.1016/J.MATDES.2022.111074.

    Article  CAS  Google Scholar 

  28. Guo H, Jiang C, Yang B, Wang J. Deformation behavior of Al-rich metallic glasses under nanoindentation. J Mater Sci Technol. 2017;33(11):1272. https://doi.org/10.1016/j.jmst.2016.10.014.

    Article  CAS  Google Scholar 

  29. Liu S, Chang Z, Fu Y, Liu Y, Lin M, Ren X, Wang W, Zhang Z, He J. Nanoscale creep behavior and its size dependency of a Zr-based bulk metallic glass manufactured by selective laser melting. Mater Design. 2022;218:110723. https://doi.org/10.1016/J.MATDES.2022.110723.

    Article  CAS  Google Scholar 

  30. Shang B, Wang W, Greer AL, Guan P. Atomistic modelling of thermal-cycling rejuvenation in metallic glasses. Acta Mater. 2021;213:116952. https://doi.org/10.2139/ssrn.3757770.

    Article  CAS  Google Scholar 

  31. Liu Y, Wang D, Nakajima K, Zhang W, Hirata A, Nishi T, Inoue A, Chen M. Characterization of nanoscale mechanical heterogeneity in a metallic glass by dynamic force microscopy. Phys Rev Lett. 2011;106(12):125504. https://doi.org/10.1103/PhysRevLett.106.125504.

    Article  CAS  Google Scholar 

  32. Castellero A, Moser B, Uhlenhaut DI, Torre FHD, Löffler JF. Room-temperature creep and structural relaxation of Mg–Cu–Y metallic glasses. Acta Mater. 2008;56(15):3777. https://doi.org/10.1016/j.actamat.2008.04.021.

    Article  CAS  Google Scholar 

  33. Hendra J, Tarigan NK, Ramos N, Golden K, Ayrton AB. Low reflectance of nano-patterned Pt-Cu-NiP bulk metallic glass. Appl Phys Lett. 2015;107(2):021903. https://doi.org/10.1063/1.4926873.

    Article  CAS  Google Scholar 

  34. Ying H, Liu S, Wu Z, Dong W, Ge J, Hahn H, Provenzano V, Wang X, Lan S. Phase selection rule of high-entropy metallic glasses with different short-to-medium-range orders. Rare Met. 2022;41(6):2021. https://doi.org/10.1007/s12598-022-01973-8.

    Article  CAS  Google Scholar 

  35. Li K, Ge J, Liu S, Fu S, Yin Z, Zhang W, Chen G, Wei S, Ji H, Feng T, Liu Q, Wang X, Zuo X, Ren Y, Hahn H, Lan S. In situ scattering study of multiscale structural evolution during liquid–liquid phase transition in Mg-based metallic glasses. Rare Met. 2021;40(11):3107. https://doi.org/10.1007/s12598-021-01767-4.

    Article  CAS  Google Scholar 

  36. Di S, Wang Q, Zhou J, Shen Y, Li J, Zhu M, Yin K, Zeng Q, Sun L, Shen B. Enhancement of plasticity for FeCoBSiNb bulk metallic glass with superhigh strength through cryogenic thermal cycling. Scripta Mater. 2020;187:13. https://doi.org/10.1016/j.scriptamat.2020.05.059.

    Article  CAS  Google Scholar 

  37. Di S, Wang Q, Yang Y, Liang T, Zhou J, Su L, Yin K, Zeng Q, Sun L, Shen B. Efficient rejuvenation of heterogeneous {[(Fe0.5Co0.5)0.75B0.2Si0.05]96Nb4}99.9Cu0.1bulk metallic glass upon cryogenic cycling treatment. J Mater Sci Technol. 2022. https://doi.org/10.1016/j.jmst.2021.04.034.

    Article  Google Scholar 

  38. Geng C, Huang B, Zhang N, Yi J, Wang Q, Jia Y, Li F, Luan J, Hou X, Huang W, Yuan Q, Wang G, Wang W. Evolution of local densities during shear banding in Zr-based metallic glass micropillars. Acta Mater. 2022;235:118068. https://doi.org/10.2139/ssrn.4013247.

    Article  CAS  Google Scholar 

  39. Sohrabi S, Ri M, Jiang H, Gu L, Wen P, Sun Y, Wang W. Prominent role of chemical heterogeneity on cryogenic rejuvenation and thermomechanical properties of La–Al–Ni metallic glass. Intermetallics. 2019;111:106497. https://doi.org/10.1016/j.intermet.2019.106497.

    Article  CAS  Google Scholar 

  40. Gu J, Shao Y, Shi L, Si J, Yao K. Novel corrosion behaviours of the annealing and cryogenic thermal cycling treated Ti-based metallic glasses. Intermetallics. 2019;110:106467. https://doi.org/10.1016/j.intermet.2019.04.010.

    Article  CAS  Google Scholar 

  41. Ketov SV, Trifonov AS, Ivanov YP, Churyumov AY, Lubenchenko AV, Batrakov AA, Jiang J, Louzguine LD, Eckert J, Orava J, Greer AL. On cryothermal cycling as a method for inducing structural changes in metallic glasses. NPG Asia Mater. 2018;10(4):137. https://doi.org/10.1038/s41427-018-0019-4.

    Article  CAS  Google Scholar 

  42. Tang Y, **ao H, Wang X, Cao Q, Zhang D, Jiang J. Mechanical property and structural changes by thermal cycling in phase-separated metallic glasses. J Mater Sci Technol. 2021;78:144. https://doi.org/10.1016/j.jmst.2020.10.050.

    Article  CAS  Google Scholar 

  43. Lan S, Zhu L, Wu Z, Gu L, Zhang Q, Kong H, Liu J, Song R, Liu S, Sha G, Wang Y, Liu Q, Liu W, Wang P, Liu C, Ren Y, Wang X. A medium-range structure motif linking amorphous and crystalline states. Nat mater. 2021;20(10):1347. https://doi.org/10.1038/s41563-021-01011-5.

    Article  CAS  Google Scholar 

  44. Lan S, Ren Y, Wei X, Wang B, Gilbert EP, Shibayama T, Watanabe S, Ohnuma M, Wang X. Hidden amorphous phase and reentrant supercooled liquid in Pd-Ni-P metallic glasses. Nat Commun. 2017;8:14679. https://doi.org/10.1038/ncomms14679.

    Article  CAS  Google Scholar 

  45. Lan S, Guo C, Zhou W, Ren Y, Almer J, Pei C, Hahn H, Liu C, Feng T, Wang X, Gleiter H. Engineering medium-range order and polyamorphism in a nanostructured amorphous alloy. Commun Phys. 2019;2:117. https://doi.org/10.1038/s42005-019-0222-9.

    Article  CAS  Google Scholar 

  46. Cui J, Luo Q, Di S, Zhang Z, Shen B. Rejuvenation-to-relaxation transition induced by elastostatic compression and its effect on deformation behavior in a Zr-based bulk metallic glass. Metals. 2022;12(2):282. https://doi.org/10.3390/MET12020282.

    Article  CAS  Google Scholar 

  47. Ke H, Zeng J, Liu C, Yang Y. Structure heterogeneity in metallic glass: modeling and experiment. J Mater Sci Technol. 2014;30(6):560. https://doi.org/10.1016/j.jmst.2013.11.014.

    Article  Google Scholar 

  48. Luo P, Zhu F, Lv Y, Lu Z, Shen L, Zhao R, Sun Y, Vaughan GBM, Michiel M, Ruta B, Bai H, Wang W. Microscopic structural evolution during ultrastable metallic glass formation. ACS Appl Mater Interfaces. 2021;13:40098. https://doi.org/10.1021/acsami.1c10716.

    Article  CAS  Google Scholar 

  49. Zhu F, Hirata A, Liu P, Song S, Tian Y, Han J, Fujita T, Chen M. Correlation between local structure order and spatial heterogeneity in a metallic glass. Phys Rev Lett. 2017;119(21):215501. https://doi.org/10.1103/PhysRevLett.119.215501.

    Article  Google Scholar 

  50. Ketov SV, Sun Y, Nachum S, Lu Z, Checchi A, Beraldin AR, Bai H, Wang W. Rejuvenation of metallic glasses by non-affine thermal strain. Nature. 2015;524(7564):200. https://doi.org/10.1038/nature14674.

    Article  CAS  Google Scholar 

  51. Zhu Y, Zhou Y, Wang A, Li H, Fu H, Zhang H, Zhang H, Zhu Z. Atomic-scale icosahedral short-range ordering in a rejuvenated Zr-based bulk metallic glass upon deep cryogenic treatment. Mater Sci Eng-A. 2022;850:143565. https://doi.org/10.1016/j.msea.2022.143565.

    Article  CAS  Google Scholar 

  52. Ma X, Ma J, Bian X, Tong X, Han D, Jia Y, Wu S, Zhang N, Geng C, Li P, Wang Q, Zhang Y, Wang G. The role of nano-scale elastic heterogeneity in mechanical and tribological behaviors of a Cu–Zr based metallic glass thin film. Intermetallics. 2021;133:107159. https://doi.org/10.1016/j.intermet.2021.107159.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Nos. 51971061 and 52231005) and the Natural Science Foundation of Jiangsu Province (No. BK20221474).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Luo, **g-Tao Zhu or Bao-Long Shen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interests.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, JX., Luo, Q., Zhang, ZG. et al. Tailoring mechanical heterogeneity, nanoscale creep deformation and optical properties of nanostructured Zr-based metallic glass. Rare Met. 42, 3430–3442 (2023). https://doi.org/10.1007/s12598-023-02440-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-023-02440-8

Keywords

Navigation