Log in

Fe3O4@Angelica sinensis polysaccharide nanoparticles as an ultralow-toxicity contrast agent for magnetic resonance imaging

  • Original Article
  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Although iron oxide (Fe3O4) nanoparticles have broad application prospects as magnetic resonance imaging (MRI) contrast agent, their biocompatibility and biotoxicity still need to be improved. In this study, we prepared Fe3O4@Angelica sinensis polysaccharide nanoparticles (Fe3O4@ASP NPs) with a 9 nm Fe3O4 core and ASP as the coating material. The Fe3O4@ASP NPs are superparamagnetic, can be taken up by liver and spleen macrophages in the circulatory system in vivo, and are a good-biocompatibility and low-toxicity transverse relaxation time (T2) and T2-star (T2*) magnetic resonance imaging (MRI) contrast agent for the liver. The cytotoxicity assessment using HeLa cells and the pathological tests in mice validate that Fe3O4@ASP NPs have low toxicity and good biocompatibility in vivo, which can be attributed to the ASP as a natural polysaccharide with good biocompatibility and its function of protecting the liver. Fe3O4@ASP NPs are a potential new MRI contrast agent with high signal intensity in vivo.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wahsner J, Gale EM, Rodríguez-Rodríguez A, Caravan P. Chemistry of MRI contrast agents: current challenges and new frontiers. Chem Rev. 2019;119(2):957.

    CAS  Google Scholar 

  2. Ntziachristos V, Pleitez MA, Aime S, Brindle KM. Emerging technologies to image tissue metabolism. Cell Metab. 2019;29(3):518.

    CAS  Google Scholar 

  3. Corot C, Robert P, Idée JM, Port M. Recent advances in iron oxide nanocrystal technology for medical imaging. Adv Drug Delivery Rev. 2006;58(14):1471.

    CAS  Google Scholar 

  4. Padmanabhan P, Kumar A, Kumar S, Chaudhary RK, Gulyás B. Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 2016;41:1.

    CAS  Google Scholar 

  5. Lin LS, Cong ZX, Cao JB, Ke KM, Peng QL, Gao J, Yang HH, Liu G, Chen X. Multifunctional Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy. ACS Nano. 2014;8(4):3876.

    CAS  Google Scholar 

  6. Hao R, Yu J, Ge Z, Zhao L, Sheng F, Xu L, Li G, Hou Y. Develo** Fe3O4 nanoparticles into an efficient multimodality imaging and therapeutic probe. Nanoscale. 2013;5(23):11954.

    CAS  Google Scholar 

  7. **ng R, Bhirde AA, Wang S, Sun X, Liu G, Hou Y, Chen X. Hollow iron oxide nanoparticles as multidrug resistant drug delivery and imaging vehicles. Nano Res. 2013;6(1):1.

    CAS  Google Scholar 

  8. Yu J, Zhao F, Gao W, Yang X, Ju Y, Zhao L, Guo W, **e J, Liang X, Tao X, Li J, Ying Y, Li W, Zheng J, Qiao L, **ong S, Mou X, Che S, Hou Y. Magnetic reactive oxygen species nanoreactor for switchable magnetic resonance imaging guided cancer therapy based on pH-sensitive Fe5C2@Fe3O4 nanoparticles. ACS Nano. 2019;13(9):10002.

    CAS  Google Scholar 

  9. Zhou H, Tang J, Li J, Li W, Liu Y, Chen C. In vivo aggregation-induced transition between T1 and T2 relaxations of magnetic ultra-small iron oxide nanoparticles in tumor microenvironment. Nanoscale. 2017;9(9):3040.

    CAS  Google Scholar 

  10. Shen Z, Wu A, Chen X. Iron oxide nanoparticle based contrast agents for magnetic resonance imaging. Mol Pharm. 2017;14(5):1352.

    CAS  Google Scholar 

  11. Hao R, **ng R, Xu Z, Hou Y, Gao S, Sun S. Synthesis, functionalization, and biomedical applications of multifunctional magnetic nanoparticles. Adv Mater. 2010;22(25):2729.

    CAS  Google Scholar 

  12. Khmara I, Strbak O, Zavisova V, Koneracka M, Kubovcikova M, Antal I, Kavecansky V, Lucanska D, Dobrota D, Kopcansky P. Chitosan-stabilized iron oxide nanoparticles for magnetic resonance imaging. J Magn Magn Mater. 2019;474(3):319.

    CAS  Google Scholar 

  13. Wang J, Chen Y, Chen B, Ding J, **a G, Gao C, Cheng J, ** N, Zhou Y, Li X, Tang M, Wang XM. Pharmacokinetic parameters and tissue distribution of magnetic Fe3O4 nanoparticles in mice. Int J Nanomed. 2010;5:861.

    CAS  Google Scholar 

  14. He X, Nie H, Wang K, Tan W, Wu X, Zhang P. In vivo study of biodistribution and urinary excretion of surface-modified silica nanoparticles. Anal Chem. 2008;80(24):9597.

    CAS  Google Scholar 

  15. Li J, Cha R, Zhang Y, Guo H, Long K, Gao P, Wang X, Zhou F, Jiang X. Iron oxide nanoparticles for targeted imaging of liver tumors with ultralow hepatotoxicity. J Mater Chem B. 2018;6(40):6413.

    CAS  Google Scholar 

  16. Scialabba C, Puleio R, Peddis D, Varvaro G, Calandra P, Cassata G, Cicero L, Licciardi M, Giammona G. Folate targeted coated SPIONs as efficient tool for MRI. Nano Res. 2017;10(9):3212.

    CAS  Google Scholar 

  17. **a B, Li J, Shi J, Zhang Y, Zhang Q, Chen Z, Wang B. Biodegradablec and magnetic-fluorescent porous silicon@iron oxide nanocomposites for fluorescence/magnetic resonance bimodal imaging of tumor in vivo. ACS Biomater Sci Eng. 2017;3(10):2579.

    CAS  Google Scholar 

  18. Liu Q, Song L, Chen S, Gao J, Zhao P, Du J. A superparamagnetic polymersome with extremely high T2 relaxivity for MRI and cancer-targeted drug delivery. Biomaterials. 2017;114:23.

    CAS  Google Scholar 

  19. Liu J, Tang M, Zhou Y, Long Y, Cheng Y, Zheng H. A siramesine-loaded metal organic framework nanoplatform for overcoming multidrug resistance with efficient cancer cell targeting. RSC Adv. 2020;10(12):6919.

    CAS  Google Scholar 

  20. Ge R, Li X, Lin M, Wang D, Li S, Liu S, Tang Q, Liu Y, Jiang J, Liu L, Sun H, Zhang H, Yang B. Fe3O4@polydopamine composite theranostic superparticles employing preassembled Fe3O4 nanoparticles as the core. ACS Appl Mater Interfaces. 2016;8(35):22942.

    CAS  Google Scholar 

  21. Xu C, Zhang C, Wang Y, Li L, Li L, Whittaker AK. Controllable synthesis of a novel magnetic core–shell nanoparticle for dual-modal imaging and pH-responsive drug delivery. Nanotechnology. 2017;28(49):495101.

    Google Scholar 

  22. Arsalani S, Guidelli EJ, Silveira MA, Salmon CEG, Araujo JFDF, Bruno AC, Baffa O. Magnetic Fe3O4 nanoparticles coated by natural rubber latex as MRI contrast agent. J Magn Magn Mater. 2019;475:458.

    CAS  Google Scholar 

  23. Park J, Lee G, Seo J. Mannose-functionalized core@shell nanoparticles and their interactions with bacteria. J Mater Sci. 2017;52(3):1534.

    CAS  Google Scholar 

  24. Xu YY, Wang L, Wu T, Wang RM. Magnetic properties of α-Fe2O3 nanopallets. Rare Met. 2019;38(1):14.

    CAS  Google Scholar 

  25. Lin Y, Liu X, **ng Z, Geng Y, Wilson J, Wu D, Kong H. Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles for cellulase immobilization. Cellulose. 2017;24(12):5541.

    CAS  Google Scholar 

  26. ** M, Zhao K, Huang Q, Xu C, Shang P. Isolation, structure and bioactivities of the polysaccharides from Angelica sinensis (Oliv.) Diels: a review. Carbohydr Polym. 2012;89(3):713.

    CAS  Google Scholar 

  27. Wei WL, Zeng R, Gu CM, Qu Y, Huang LF. Angelica sinensis in China—a review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol. 2016;190:116.

    CAS  Google Scholar 

  28. Yin JY, Chan BCL, Yu H, Lau IYK, Han XQ, Cheng SW, Wong CK, Lau CBS, **e MY, Fung KP, Leung PC, Han QB. Separation, structure characterization, conformation and immunomodulating effect of a hyperbranched heteroglycan from Radix Astragali. Carbohydr Polym. 2012;87(1):667.

    CAS  Google Scholar 

  29. Fang L, **ao XF, Liu CX, He X. Recent advance in studies on Angelica sinensis. Chin Herb Med. 2012;4(1):12.

    CAS  Google Scholar 

  30. Nie R. Protective effect of Angelica sinensis polysaccharides in hepatic injuries by tetrachloride intoxication. J Wuhan Polytech Univ. 2008;27:23.

    CAS  Google Scholar 

  31. Ding H, Shi GG, Yu X, Yu JP, Huang JA. Modulation of GdCl3 and Angelica sinensis polysaccharides on differentially expressed genes in liver of hepatic immunological injury mice by cDNA microarray. World J Gastroenterol. 2003;9(5):1072.

    CAS  Google Scholar 

  32. Yang T, Jia M, Meng J, Wu H, Mei Q. Immunomodulatory activity of polysaccharide isolated from Angelica sinensis. Int J Biol Macromol. 2006;39(4):179.

    CAS  Google Scholar 

  33. Wang QK, Chen CX, Guo YJ, Zhao HY, Sun JF, Ma S, **ng KZ. Dietary polysaccharide from Angelica sinensis enhanced cellular defence responses and disease resistance of grouper Epinephelus malabaricus. Aquac Int. 2011;19(5):945.

    CAS  Google Scholar 

  34. Shang P, Qian AR, Yang TH, Jia M, Mei QB, Cho CH, Zhao WM, Chen ZN. Experimental study of anti-tumor effects of polysaccharides from Angelica sinensis. World J Gastroenterol. 2003;9(9):1963.

    CAS  Google Scholar 

  35. Cao W, Li XQ, Wang X, Li T, Chen X, Liu SB, Mei QB. Characterizations and anti-tumor activities of three acidic polysaccharides from Angelica sinensis (Oliv.) Diels. Int J Biol Macromol. 2010;46(1):115.

    CAS  Google Scholar 

  36. Zhang S, He B, Ge J, Li H, Luo X, Zhang H, Li Y, Zhai C, Liu P, Liu X, Fei X. Extraction, chemical analysis of Angelica sinensis polysaccharides and antioxidant activity of the polysaccharides in ischemia–reperfusion rats. Int J Biol Macromol. 2010;47(4):546.

    CAS  Google Scholar 

  37. Celikler S, Tas S, Vatan O, Ziyanok-Ayvalik S, Yildiz G, Bilaloglu R. Anti-hyperglycemic and antigenotoxic potential of Ulva rigida ethanolic extract in the experimental diabetes mellitus. Food Chem Toxicol. 2009;47(8):1837.

    CAS  Google Scholar 

  38. Sarker SD, Nahar L. Natural medicine: the genus Angelica. Curr Med Chem. 2004;11(11):1479.

    CAS  Google Scholar 

  39. Wang KP, Zeng F, Liu JY, Guo D, Zhang Y. Inhibitory effect of polysaccharides isolated from Angelica sinensis on hepcidin expression. J Ethnopharmacol. 2011;134(3):944.

    CAS  Google Scholar 

  40. Liu SP, Dong WG, Wu DF, Luo HS, Yu JP. Protective effect of Angelica sinensis polysaccharide on experimental immunological colon injury in rats. World J Gastroenterol. 2003;9(12):2786.

    CAS  Google Scholar 

  41. Wong VKC, Yu L, Cho CH. Protective effect of polysaccharides from Angelica sinensis on ulcerative colitis in rats. Inflammopharmacology. 2008;16(4):162.

    CAS  Google Scholar 

  42. Wang K, Li L, Xu X, Lu L, Wang J, Wang S, Wang Y, ** Z, Zhang JZ, Jiang Y. Fe3O4@astragalus polysaccharide core-shell nanoparticles for iron deficiency anemia therapy and magnetic resonance imaging in vivo. ACS Appl Mater Interfaces. 2019;11:10452.

    CAS  Google Scholar 

  43. Fleet ME. The structure of magnetite: two annealed natural magnetites, Fe3.005O4 and Fe2.96Mg0.04O4. Acta Crystallogr Sect C: Cryst Struct Commun. 1984;40(9):1491.

    Google Scholar 

  44. Neuberger T, Schöpf B, Hofmann H, Hofmann M, von Rechenberg B. Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater. 2005;293(1):483.

    CAS  Google Scholar 

  45. Wang J, Ge B, Li Z, Guan F, Li F. Structural analysis and immunoregulation activity comparison of five polysaccharides from Angelica sinensis. Carbohydr Polym. 2016;140:6.

    CAS  Google Scholar 

  46. Bhattacharjee S. DLS and zeta potential—what they are and what they are not? J Control Release. 2016;235:337.

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No.2019YFB2005801), the National Natural Science Foundation of China (Nos. 51671019, 51731003, 51971024, 51927802 and 51971023), Bei**g Natural Science Foundation Key Program (No. Z190007) and Fundamental Research Funds for the Central Universities (No. FRF-MP-19-004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to **ao-Guang Xu or Li-Na Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 295 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Xu, XG., Ma, YL. et al. Fe3O4@Angelica sinensis polysaccharide nanoparticles as an ultralow-toxicity contrast agent for magnetic resonance imaging. Rare Met. 40, 2486–2493 (2021). https://doi.org/10.1007/s12598-020-01620-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-020-01620-0

Keywords

Navigation