Log in

Preparation of W–TiC alloys from core–shell structure powders synthesized by an improved wet chemical method

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

In order to improve the homogeneous distribution of the TiC particles and facilitate the TiC particles to distribute in the tungsten grain interiors, two kinds of TiC-doped tungsten precursors with a core–shell structure were prepared by an improved wet chemical method at different reaction temperature conditions. Consequently, fine plate-like precursor (200–400 nm) and flower-like precursor (approximately 1.25 μm) are obtained. After reduction and sintering, the microstructures of the samples were characterized by scanning electron microscopy and transmission electron microscopy. In the sample sintered from the plate-like precursor, TiC particles with sizes in the range of 40–300 nm and an average size of approximately 80 nm were uniformly distributed in the tungsten matrix with a high share in the grain interiors. However, in the sample sintered from the flower-like precursor, the TiC particles with sizes in the range of 50–700 nm are significantly aggregated and non-uniformly distributed in the tungsten matrix. As a result, the sample sintered from the plate-like precursor achieves higher mechanical properties and a much narrower range of bending strength values than that sintered from the flower-like precursor. The average bending strength of the sample sintered from the plate-like precursor is 655 MPa, which is higher than that of the sample sintered from the flower-like precursor (524 MPa). Different reaction mechanisms and dispersing stabilities of the TiC particles at different temperature conditions should be accounted for the differences between the two samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Smid I, Akiba M, Vieider G, Plöchl L. Development of tungsten armor and bonding to copper for plasma interactive components. J Nucl Mater. 1998;258–263(1):160.

    Article  Google Scholar 

  2. Philipps V. Tungsten as material for plasma-facing components in fusion devices. J Nucl Mater. 2011;415(1):S2.

    Article  CAS  Google Scholar 

  3. Kim Y, Lee KH, Kim EP, Cheong DI, Hong SH. Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process. Int J Refract Met Hard Mater. 2009;27(5):842.

    Article  CAS  Google Scholar 

  4. Kitsunai Y, Kurishita H, Kuwabara T, Narui M, Hasegawa M, Takida T, Takebe K. Radiation embrittlement behavior of finegrained molybdenum alloy with 0.2 wt% TiC addition. J Nucl Mater. 2005;346(2–3):233.

    Article  CAS  Google Scholar 

  5. Kurishita H, Arakawa H, Matsuo S, Sakamoto T, Kobayashi S, Nakai K, Pintsuk G, Linke J, Tsurekawa S, Yardley V, Tokunaga K, Takida T, Katoh M, Ikegaya A, Ueda Y, Kawai M, Yoshida N. Development of nanostructured tungsten based materials resistant to recrystallization and/or radiation induced embrittlement. Mater Trans. 2013;54(4):456.

    Article  CAS  Google Scholar 

  6. Kurishita H, Matsuo S, Arakawa H, Sakamoto T, Kobayashi S, Nakai K, Okano H, Watanabe H, Yoshida N, Torikai Y, Hatano Y, Takida T, Kato M, Ikegaya A, Ueda Y, Hatakeyama M, Shikama T. Current status of nanostructured tungsten-based materials development. Phys Scr. 2014;2014(T159):014032.

    Article  Google Scholar 

  7. **e ZM, Liu R, Miao S, Yang XD, Zhang T, Wang XP, Fang QF, Liu CS, Luo GN, Lian YY, Liu X. Extraordinary high ductility/strength of the interface designed bulk W-ZrC alloy plate at relatively low temperature. Sci Rep. 2015;5:16014.

    Article  CAS  Google Scholar 

  8. **e ZM, Liu R, Zhang T, Fang QF, Liu CS, Liu X, Luo GN. Achieving high strength/ductility in bulk W-Zr-Y2O3 alloy plate with hybrid microstructure. Mater Des. 2016;107:144.

    Article  CAS  Google Scholar 

  9. Liu G, Zhang GJ, Jiang F, Ding XD, Sun YJ, Sun J, Ma E. Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. Nat Mater. 2013;12(4):344.

    Article  CAS  Google Scholar 

  10. Wahlberg S, Yar MA, Abuelnaga MO, Salem HG, Johnsson M, Muhammed M. Fabrication of nanostructured W-Y2O3 materials by chemical methods. J Mater Chem. 2012;22(25):12622.

    Article  CAS  Google Scholar 

  11. Dong Z, Liu N, Ma Z, Liu C, Guo Q, Liu Y. Preparation of ultra-fine grain W-Y2O3 alloy by an improved wet chemical method and two-step spark plasma sintering. J Alloy Compd. 2017;695:2969.

    Article  CAS  Google Scholar 

  12. Lang S, Yan Q, Sun N, Zhang X, Deng L, Wang Y, Ge C. Microstructure, basic thermal-mechanical and Charpy impact properties of W-0.1wt.%TiC alloy via chemical method. J Alloy Compd. 2016;660:184.

    Article  CAS  Google Scholar 

  13. Yar MA, Wahlberg S, Bergqvist H, Salem HG, Johnsson M, Muhammed M. Chemically produced nanostructured ODS-lanthanum oxide-tungsten composites sintered by spark plasma. J Nucl Mater. 2011;408(2):129.

    Article  CAS  Google Scholar 

  14. **a M, Yan Q, Xu L, Guo H, Zhu L, Ge C. Bulk tungsten with uniformly dispersed La2O3 nanoparticles sintered from co-precipitated La2O3/W nanoparticles. J Nucl Mater. 2013;434(1–3):85.

    Article  CAS  Google Scholar 

  15. Zhang XX, Yan QZ, Yang CT, Wang TN, **a M, Ge CC. Recrystallization temperature of tungsten with different deformation degrees. Rare Met. 2016;35(7):566.

    Article  CAS  Google Scholar 

  16. Veleva L, Oksiuta Z, Vogt U, Baluc N. Sintering and characterization of W-Y and W-Y2O3 materials. Fusion Eng Des. 2009;84(7–11):1920.

    Article  CAS  Google Scholar 

  17. Zhao M, Zhou Z, Zhong M, Tan J, Lian Y, Liu X. Thermal shock behavior of fine grained W-Y2O3 materials fabricated via two different manufacturing technologies. J Nucl Mater. 2016;470:236.

    Article  CAS  Google Scholar 

  18. Liu R, **e ZM, Fang QF, Zhang T, Wang XP, Hao T, Liu CS, Dai Y. Nanostructured yttria dispersion-strengthened tungsten synthesized by sol-gel method. J Alloy Compd. 2016;657:73.

    Article  CAS  Google Scholar 

  19. Kurishita H, Matsuo S, Arakawa H, Sakamoto T, Kobayashi S, Nakai K, Takida T, Kato M, Kawai M, Yoshida N. Development of re-crystallized W-1.1%TiC with enhanced room-temperature ductility and radiation performance. J Nucl Mater. 2010;398(1–3):87.

    Article  CAS  Google Scholar 

  20. Song GM, Wang YJ, Zhou Y. Thermal-mechanical properties of TiC particle-reinforced tungsten composites for high temperature applications. Int J Refract Met Hard Mater. 2003;21(1–2):1.

    Article  CAS  Google Scholar 

  21. **a M, Yan Q, Xu L, Zhu L, Guo H, Ge C. Synthesis of TiC/W core-shell nanoparticles by precipitate-coating process. J Nucl Mater. 2012;430(1–3):216.

    Article  CAS  Google Scholar 

  22. Kurishita H, Matsuo S, Arakawa H, Narui M, Yamazaki M, Sakamoto T, Kobayashi S, Nakai K, Takida T, Takebe K, Kawai M, Yoshida N. High temperature tensile properties and their application to toughness enhancement in ultra-fine grained W-(0-1.5) wt% TiC. J Nucl Mater. 2009;386–388:579.

    Article  Google Scholar 

  23. Lang S, Yan Q, Wang Y, Zhang X, Sun N, Deng L, Ge C. Preparation and microstructure characterization of W-0.1wt.%TiC alloy via chemical method. Int J Refract Met Hard Mater. 2016;55:33.

    Article  CAS  Google Scholar 

  24. Lassner E, Schubert WD. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds. New York: Kluwer Academic/Plenum Publishers; 1999. 119.

    Book  Google Scholar 

  25. Livage J, Guzman G. Aqueous precursors for electrochromic tungsten oxide hydrates. Solid State Ionics. 1996;84(3):205.

    Article  CAS  Google Scholar 

  26. Yang J, Li W, Li J, Sun D, Chen Q. Hydrothermal synthesis and photoelectrochemical properties of vertically aligned tungsten trioxide (hydrate) plate-like arrays fabricated directly on FTO substrates. J Mater Chem. 2012;22(34):17744.

    Article  CAS  Google Scholar 

  27. Huang J, Xu X, Gu C, Yang M, Yang M, Liu J. Large-scale synthesis of hydrated tungsten oxide 3D architectures by a simple chemical solution route and their gas-sensing properties. J Mater Chem. 2011;21(35):13283.

    Article  CAS  Google Scholar 

  28. Miao B, Zeng W, Lin L, Xu S, Ding X. Syntheses and mechanism of WO3·H2O nanoflowers assembled of square nanoplates with the assistance of oxalic acid. Nanosci Nanotech Lett. 2013;5(7):765.

    Article  CAS  Google Scholar 

  29. Li D, Kaner RB. How nucleation affects the aggregation of nanoparticles. J Mater Chem. 2007;17(22):2279.

    Article  CAS  Google Scholar 

  30. Hattori K, Moriyama N, Shinoda K. The effect of temperature on the stability of polyethylene suspensions in water dispersed with nonionic surfactants. Nippon Kagaku Zassi. 1967;88(10):1030.

    Article  CAS  Google Scholar 

  31. Moriyama N, Tokiwa F. Stabilities of disperse dye suspensions dispersed with various types of surfactants at high temperature. J Jpn Oil Chem Soc. 1971;20(1):41.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the ITER-National Magnetic Confinement Fusion Program (No. 2014GB123000).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Zhi Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lang, ST., Yan, QZ., Sun, NB. et al. Preparation of W–TiC alloys from core–shell structure powders synthesized by an improved wet chemical method. Rare Met. 42, 1378–1386 (2023). https://doi.org/10.1007/s12598-018-1066-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-018-1066-2

Keywords

Navigation