Log in

Treatment method of hazardous pickling sludge by reusing as glass–ceramics nucleation agent

  • Published:
Rare Metals Aims and scope Submit manuscript

Abstract

Heavy metal containing pickling sludge (PS) is one of the by-products of the stainless-steel-making industry, which has been considered hazardous due to contained chromium and nickel. Traditional methods of PS disposing are landfill and cement solidification. This research is aimed at disposing PS by solidification/stabilization and reusing it as a nucleation agent of glass–ceramics. The crystallization behavior and the properties of a glass in the CaO–MgO–SiO2–Al2O3 system were studied by considering PS as the nucleation agent. Experimental results confirm that introducing 14 wt% PS as the nucleation agent of glass–ceramics can decrease crystallization temperature by 110.8 °C, refine the grain size by forming isometric crystals with size of 2 μm, enhance Vickers hardness by 2690 MPa and decrease water absorption from (1.21 ± 0.10) wt% to (0.04 ± 0.01) wt%. Therefore, it is reasonable to conclude that PS can be utilized as a nucleation agent to improve the crystallization and mechanical properties of the glass–ceramics. The testing results of US EPA toxicity characteristic leaching procedure (TCLP) confirm the safety of this reusing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Singhal A, Tewari VK, Prakash S. Characterization of stainless steel pickling bath sludge and its solidification/stabilization. Build Environ. 2008;43(6):1010.

    Article  Google Scholar 

  2. Rögener F, Sartor M, Bán A, Buchloh D, Reichardt T. Metal recovery from spent stainless steel pickling solutions. Resour Conserv Recl. 2012;60:72.

    Article  Google Scholar 

  3. Singhal A, Prakash S, Tewari VK. Trials on sludge of lime treated spent liquor of pickling unit for use in the cement concrete and its leaching characteristics. Build Environ. 2007;42(1):196.

    Article  Google Scholar 

  4. Regel-Rosocka M. A review on methods of regeneration of spent pickling solutions from steel processing. J Hazard Mater. 2010;177(1–3):57.

    Article  Google Scholar 

  5. Nie ZR, Ma LW, ** XL. “Complexation-precipitation” metal separation method system and its application in secondary resources. Rare Met. 2014;33(4):369.

    Article  Google Scholar 

  6. Zhou Y, Zhang QM, Luo J, Tang Q, Du J. Crystallization and dielectric properties of lead-free glass-ceramic composites with Gd2O3 addition. Rare Met. 2012;31(3):281.

    Article  Google Scholar 

  7. Tunali A, Ozel E, Turan S. Production and characterisation of granulated frit to achieve anorthite based glass-ceramic glaze. J Eur Ceram Soc. 2015;35(3):1089.

    Article  Google Scholar 

  8. Garcia-Valles M, Avila G, Martinez S, Terradas R, Nogues JM. Heavy metal-rich wastes sequester in mineral phases through a glass-ceramic process. Chemosphere. 2007;68(10):1946.

    Article  Google Scholar 

  9. Yuan SQ, Dong J, Wang C, Wang ZJ. Comprehensive treating copper tailing and nickel residue. Chin J Rare Met. 2014;38(1):108.

    Google Scholar 

  10. Ghosh S, Pal KS, Dandapat N, Ghosh J, Datta S. Glass-ceramic glazes for future generation floor tiles. J Eur Ceram Soc. 2013;33(5):935.

    Article  Google Scholar 

  11. Zhang K, Liu J, Liu W, Yang J. Preparation of glass–ceramics from molten steel slag using liquid–liquid mixing method. Chemosphere. 2011;85(4):689.

    Article  Google Scholar 

  12. Wang ZJ, Ni W, Jia Y, Zhu LP, Huang XY. Crystallization behavior of glass ceramics prepared from the mixture of nickel slag, blast furnace slag and quartz sand. J Non-Cryst Solids. 2010;356(31):1554.

    Article  Google Scholar 

  13. Vu DH, Wang KS, Chen JH, Nam BX, Bac BH. Glass–ceramic from mixtures of bottom ash and fly ash. Waste Manag. 2012;32(12):2306.

    Article  Google Scholar 

  14. Cheng TW, Chen YS. On formation of CaO–Al2O3–SiO2 glass-ceramics by vitrification of incinerator fly ash. Chemosphere. 2003;51(9):817.

    Article  Google Scholar 

  15. Kim JM, Kim HS. Temperature-time-mechanical properties of glass-ceramics produced from coal fly ash. J Am Ceram Soc. 2005;88(5):1227.

    Article  Google Scholar 

  16. Zhang WY, Gao H, Xu Y. Sintering and reactive crystal growth of diopside–albite glass–ceramics from waste glass. J Eur Ceram Soc. 2011;31(9):1669.

    Article  Google Scholar 

  17. Yang Z, Lin Q, **a J, He Y, Liao G, Ke Y. Preparation and crystallization of glass–ceramics derived from iron-rich copper slag. J Alloy Compd. 2013;574:354.

    Article  Google Scholar 

  18. Karpukhina N, Hill RG, Law RV. Crystallisation in oxide glasses—a tutorial review. Chem Soc Rev. 2014;43(7):2174.

    Article  Google Scholar 

  19. Alizadeh P, Yekta BE, Gervei A. Effect of Fe2O3 addition on the sinterability and machinability of glass-ceramics in the system MgO–CaO–SiO2–P2O5. J Eur Ceram Soc. 2004;24(13):3529.

    Article  Google Scholar 

  20. Abdel-Hameed Salwa AM, Elwan RL. Effect of La2O3, CoO, Cr2O3 and MoO3 nucleating agents on crystallization behavior and magnetic properties of ferromagnetic glass-ceramic in the system Fe2O3·CaO·ZnO·SiO2. Mater Res Bull. 2012;47(5):1233.

    Article  Google Scholar 

  21. Mirsaneh M, Reaney IM, James PF, Hatton PV. Effect of CaF2 and CaO substituted for MgO on the phase evolution and mechanical properties of K-fluorrichterite glass ceramics. J Am Ceram Soc. 2006;89(2):587.

    Article  Google Scholar 

  22. Khater GA. Influence of Cr2O3, LiF, CaF2, TiO2 nucleants on the crystallization behavior and microstructure of glass–ceramics based on blast-furnace slag. Ceram Int. 2011;37(7):2193.

    Article  Google Scholar 

  23. Huang SF, Cao P, Li Y, Huang ZH, Gao W. Nucleation and crystallization kinetics of a multicomponent lithium disilicate glass by in situ and real-time synchrotron X-ray diffraction. Cryst Growth Des. 2013;13(9):4031.

    Article  Google Scholar 

  24. Schmidt B, Wolters R, Kaplin J, Schneiker T, Lobo-Recio MA, López F, López-Delgado A, Alguacil FJ. Rinse water regeneration in stainless steel pickling. Desalination. 2007;211(1):64.

    Article  Google Scholar 

  25. Tang B, Yuan LJ, Shi TH, Yu LF, Zhu YC. Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation. J Hazard Mater. 2009;63(2):1173.

    Article  Google Scholar 

  26. Banijamali S, Eftekhari Yekta B, Rezaie HR, Marghussian VK. Crystallization and sintering characteristics of CaO–Al2O3–SiO2 glasses in the presence of TiO2, CaF2 and ZrO2. Thermochim Acta. 2009;488(1):60.

    Article  Google Scholar 

  27. Mukherjee DP, Das SK. SiO2–Al2O3–CaO glass-ceramics: effects of CaF2 on crystallization, microstructure and properties. Ceram Int. 2013;39(1):571.

    Article  Google Scholar 

  28. Rezvani M, Eftekhari-Yekta B, Solati-Hash** M, Marghussian VK. Effect of Cr2O3, Fe2O3 and TiO2 nucleants on the crystallization behaviour of SiO2–Al2O3–CaO–MgO(R2O) glass–ceramics. Ceram Int. 2005;31(1):75.

    Article  Google Scholar 

  29. Niyompan A, Phumas S, Tipakontitikul R, Tunkasiri T. Phase formation, microstructure and electrical properties of mica glass-ceramics containing Cr2O3 produced by heat treatment. Ceram Int. 2013;39(S1):S427.

    Article  Google Scholar 

  30. Mirhadi B, Mehdikhani B. Crystallization behavior and microstructure of (CaO·ZrO2·SiO2)–Cr2O3 based glasses. J Non-Cryst Solids. 2011;357(22–23):3711.

    Article  Google Scholar 

  31. Wang SM. Effects of Fe on crystallization and properties of a new high infrared radiance glass–ceramics. Environ Sci Technol. 2010;44(12):4816.

    Article  Google Scholar 

  32. Fan CS, Li KC. Production of insulating glass ceramics from thin film transistor-liquid crystal display (TFT-LCD) waste glass and calcium fluoride sludge. J Clean Prod. 2013;57:335.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the National Natural Science Foundation of China (Nos. 51502014,51472030 and U1360202), the National Key Project of the Scientific and Technical Support Program of China (No. 2012BAC02B01), the National Hi-Tech R&D Program of China (No. 2012AA063202), the Fundamental Research Funds for the Central Universities (No. FRF-TP-15-050A2), and the China Postdoctoral Science Foundation Funded Project (No. 2014M560885).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shen-Gen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Zhang, SG., Pan, DA. et al. Treatment method of hazardous pickling sludge by reusing as glass–ceramics nucleation agent. Rare Met. 35, 269–274 (2016). https://doi.org/10.1007/s12598-015-0673-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12598-015-0673-4

Keywords

Navigation