Log in

Radial diversification of pump and signal intensities in EDFA comprising LP01 mode dispersion compensation fibers in third order nonlinear condition

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

The article gives simple and reliable analytical expressions for estimating signal and pump intensity (SPI) variations with normalized radial distance (R) of an erbium-doped fiber amplifier (EDFA). We predict the aforementioned variations corresponding to both signal and pump with and without third-order nonlinearity (TON) using some dispersion compensation fibers (DCFs) in our study. The suggested formulation employs the implementation of iteration-based Chebyshev formulation for the LP01 modal field of DCFs. In the absence and presence of TON, our observations align remarkably well with numerical results. The exact results were obtained using finite element method (FEM). It is worth noting that our suggested method involves very little calculation and the simplicity and correctness of our formalism will help designers in constructing an effective low-dispersion fiber optic link.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. G.P. Agrawal, R.W. Boyd, Contemporary Nonlinear Optics (Boston Academic Press, Boston, 2012)

    Google Scholar 

  2. A.W. Snyder, Y. Chen, L. Poladian, D.J. Mitchel, Fundamental mode of highly nonlinear fibres. Electron. Lett. 26, 643–644 (1990)

    Article  Google Scholar 

  3. I.A. Goncharenko, Influence of nonlinearity on mode parameters of anisotropic optical fibres. J. Mod. Opt. 37, 1673–1684 (1990)

    Article  Google Scholar 

  4. N.A. Olsson, J. Hegarty, R.A. Logen, L.F. Johnson, K.L. Walker, L.G. Cohen, B.L. Kasper, J.C. Campbell, 68.3 km transmission with 1.37 T Bit Km/s capacity using wavelength division multiplexing of ten single frequency lasers at 1.5 μm. Electron. Lett. 21, 105–106 (1985)

    Article  Google Scholar 

  5. K. Thyagarajan, C. Kakkar, S-band single-stage EDFA with 25-dB gain using distributed ASE suppression. IEEE Photon. Technol. Lett. 16, 2448–2450 (1994)

    Article  Google Scholar 

  6. B. Pederson, Small-single erbium-doped fiber amplifiers pumped at 980 nm: a design study. Opt. Quant. Electron. 26, S237–S244 (1994)

    Google Scholar 

  7. K. Thyagarajan, C. Kakkar, Novel fiber design for flat gain Raman amplification compensation in S band. IEEE J. Lightwave Technol. 22, 2279–2285 (2004)

    Article  Google Scholar 

  8. A.K. Ghatak, K. Thyagarjan, Optical Electronics (Cambridge University Press, Cambridge, 2011)

    Google Scholar 

  9. W.J. Tomlinson, R.H. Stolen, C.V. Shank, Compression of optical pulses chirped by self-phase modulation in fibers. J. Opt. Soc. Am. B 1, 139–149 (1984)

    Article  Google Scholar 

  10. G.P. Agrawal, Nonlinear Fiber Optics (Academic Press Cambridge, Massachusetts, 2013)

    Google Scholar 

  11. C. Antonelli, O. Golani, M. Shtaif, A. Mecozzi, Nonlinear interference noise in space-division multiplexed transmission through optical fibers. Opt. Express 25, 13055–13078 (2017)

    Article  Google Scholar 

  12. Y.F. Yu, M. Ren, J.B. Zhang, T. Bourouina, C.S. Tan, J.M. Tsai, A.Q. Liu, Force-induced optical nonlinearity and Kerr-like coefficient in opto-mechanical ring resonators. Opt. Express 20, 18005–18015 (2012)

    Article  Google Scholar 

  13. X. Lu, J.Y. Lee, S. Rogers, Q. Lin, Optical Kerr nonlinearity in a high-Q silicon carbide microresonator. Opt. Express 22, 30826–30832 (2014)

    Article  Google Scholar 

  14. S. Gangopadhyay, M. Sengupta, S.K. Mondal, G. Das, S.N. Sarkar, Novel method for studying single-mode fibers involving Chebyshev technique. J. Opt. Commun. 18, 75–78 (1997)

    Article  Google Scholar 

  15. P. Patra, S. Gangopadhyay, S.N. Sarkar, Evaluation of Petermann I and II spot sizes and dispersion parameters of single-mode graded index fibers in the low V region by a simple technique. J. Opt. Commun. 22, 19–23 (2001)

    Google Scholar 

  16. S. Gangopadhyay, S.N. Sarkar, Prediction of modal dispersion in single-mode graded index fibers by Chebyshev technique. J. Opt. Commun. 19, 145–148 (1998)

    Google Scholar 

  17. S. Gangopadhyay, S. Choudhury, S.N. Sarkar, Evaluation of splice loss in single-mode graded index fibers by a simple technique. Opt. Quant. Electron. 31, 1247–1256 (1999)

    Article  Google Scholar 

  18. S. Chakraborty, C.K. Mandal, S. Gangopadhyay, Prediction of fundamental modal field for graded index fiber in the presence of Kerr nonlinearity. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0126

    Article  Google Scholar 

  19. S. Chakraborty, C.K. Mandal, S. Gangopadhyay, Prediction of first higher order modal field for graded index fiber in presence of Kerr nonlinearity. J. Opt. Commun. (2017). https://doi.org/10.1515/joc-2017-0206

    Article  Google Scholar 

  20. A. Sadhu, A. Karak, S.N. Sarkar, A simple and effective method to analyze the propagation characteristics of nonlinear single mode fiber using Chebyshev method. Microw. Opt. Technol. Lett. 56, 787–790 (2014)

    Article  Google Scholar 

  21. S.K. Mondal, S.N. Sarkar, Effect of optical Kerr effect nonlinearity on LP11 mode cut off frequency of single-mode dispersion shifted and dispersion flattened fibers. Opt. Commun. 127, 25–30 (1996)

    Article  Google Scholar 

  22. K. Roy, A. Majumdar, S. Gangopadhyay, An accurate but simple method for estimation of the influence of kerr nonlinearity on the far field pattern of LP11 mode in dispersion-shifted and dispersion-flattened fibers. J. Opt. Commun. (2022). https://doi.org/10.1515/joc-2022-0050

    Article  Google Scholar 

  23. T. Mukherjee, A. Majumdar, S. Gangopadhyay, Effect of Kerr nonlinearity on signal and pump intensities in EDFA comprising Single-mode step index fiber: estimation by a simple but accurate mathematical formalism. Results in Optics. 8, 100263 (2022)

    Article  Google Scholar 

  24. J. Aich, A. Majumdar, S. Gangopadhyay, Analysis of optical Kerr effect on effective core area and index of refraction in single-mode dispersion shifted and dispersion flattened fibers. J. Opt. Commun. (2021). https://doi.org/10.1515/joc-2021-0211

    Article  Google Scholar 

  25. M. Maity, A.K. Maiti, H. Mandal, S. Gangopadhyay, A simple method for study of effect of Kerr nonlinearity on effective core area, index of refraction and fractional modal power through the core of monomode graded index fibre. Int. J. Nanoparticles. 12, 136–151 (2020)

    Article  Google Scholar 

  26. S. Maiti, A. Majumdar, S.K. Biswas, S. Gangopadhyay, Evaluation of splice loss of single-mode graded index Fiber in presence of Kerr nonlinearity. Optik 203, 163962 (2020)

    Article  Google Scholar 

  27. R. Rakshit, A. Majumdar, S. Gangopadhyay, A simple but accurate method for prediction of splice loss in mono-mode dispersion shifted and dispersion flattened fibers in presence of Kerr nonlinearity. J. Opt. Commun. (2020). https://doi.org/10.1515/joc-2020-0259

    Article  Google Scholar 

  28. K. Roy, A. Majumdar, S. Gangopadhyay, A Simple but Accurate Method for Estimation of the Effect of Kerr Nonlinearity on Confinement and Excitation of the Fundamental Mode in Single Mode Graded Index Fiber. Optik 216, 164939 (2020)

    Article  Google Scholar 

  29. T. Mukherjee, A. Majumdar, S. Gangopadhyay, Influence of Kerr nonlinearity on group delay and modal dispersion parameters of single-mode graded index fibers: evaluation by a simple but accurate method. J. Opt. Commun. (2020). https://doi.org/10.1515/joc-2020-0192

    Article  Google Scholar 

  30. A. Majumdar, T. Mukherjee, S. Gangopadhyay, Estimation of Petermann I, Petermann II spot sizes for Kerr type nonlinear dispersion-shifted along with dispersion-flattened optical fibers in fundamental mode guidance applying a simple but accurate formalism. J. Nonlinear Opt. Phys. Mater. (2023). https://doi.org/10.1142/S0218863523500704

    Article  Google Scholar 

  31. K. Hayata, M. Koshiba, M. Suzuki, Finite-element solution of arbitrarily nonlinear, graded-index slab waveguides. Electron. Lett. 23, 429–431 (1987)

    Article  Google Scholar 

  32. U.C. Paek, Dispersionless single-mode fibers with trapezoidal index profiles in the wavelength region near 1.5 μm. Appl. Opt. 22, 2363–2369 (1983)

    Article  Google Scholar 

  33. P.K. Mishra, S.I. Hosain, I.G. Goyal, A. Sharma, Scalar variation analysis of single mode graded core W-type fibers. Opt. Quant. Electron. 16, 287–296 (1984)

    Article  Google Scholar 

  34. M. Monerie, Propagation in doubly clad single mode fibers. IEEE J. Quant. Electron. 18, 534–535 (1982)

    Article  Google Scholar 

  35. G.N. Watson, A treatise on the theory of Bessel functions (Cambridge University Press, U.K., 1944)

    Google Scholar 

  36. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series and Products (Academic Press, London, 1980)

    Google Scholar 

  37. M. Abramowitz, I. Stegun, A Handbook of Mathematical Functions (Dover Publications, New York, 1981)

    Google Scholar 

  38. P.Y.P. Chen, Fast method for calculating cut-off frequencies in single-mode fibers with arbitrary index profile. Electron. Lett. 18, 1048–1049 (1982)

    Article  Google Scholar 

  39. J. Shijun, Simple explicit formula for calculating the LP11 mode cut-off frequency. Electron. Lett. 23, 534–535 (1987)

    Article  Google Scholar 

  40. A. Bose, S. Gangopadhya, S.C. Saha, Simple method for study of single-mode dispersion-shifted and dispersion-flattened fibers. J. Opt. Commun. 33, 195–200 (2012)

    Article  Google Scholar 

  41. R. Rakshit, A. Majumdar, S. Maiti, S. Gangopadhyay, Influence of Kerr nonlinearity on single-mode dispersion-shifted and dispersion-flattened directional couplers: analysis by a simple but accurate method. Opt. Quant. Electron. 54, 118 (2022)

    Article  Google Scholar 

  42. K. Kamila, A.K. Panda, S. Gangopadhyay, A simple but accurate method for study of radial variation of pump and signal intensities in single mode erbium doped dispersion- shifted as well as dispersion- flattened fiber amplifier. Optik 124, 6167–6171 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the honorable reviewers for their constructive suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angshuman Majumdar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswas, B.D., Rakshit, R. & Majumdar, A. Radial diversification of pump and signal intensities in EDFA comprising LP01 mode dispersion compensation fibers in third order nonlinear condition. J Opt (2024). https://doi.org/10.1007/s12596-024-01972-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01972-1

Keywords

Navigation