Log in

Recovery of ultrashort optical pulses from 2D SHG-FROG traces based on modified Resnet-50 model

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this paper, we modify Resnet-50 deep-learning network to recover ultrashort optical pulses from their 2D SHG-FROG traces. Different from those reported methods, our model doesn’t need information of the true pulse, but evaluate accuracy of the recovered pulse by regenerating the 2D SHG-FROG trace and measuring its difference from the original FROG trace. The effectiveness of the proposed method is verified by recovering several types of pulses. Results demonstrate that the minimum of correlation coefficients between the regenerated and the original FROG traces can exceed 0.9503 even for the complex pulse with fluctuations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data underlying the results presented at this paper are not publicly available at this time, but may be obtained from the corresponding author upon reasonable request.

References

  1. Chen, Gao, Isolated attosecond pulse generation from Helium atom irradiated by a three-color laser pulse. Acta Phys. Sin. 71, 054204 (2022)

    Article  Google Scholar 

  2. K. Midorikawa, Progress on table-top isolated attosecond light sources. Nat. Photonics. 16, 267–278 (2022)

    Article  ADS  Google Scholar 

  3. A. Macchi, M. Borghesi, M. Passoni, Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys. 85, 751–793 (2013)

    Article  ADS  Google Scholar 

  4. M. Malinauskas, A. Zukauskas, S. Hasegawa, Ultrafast laser processing of materials: from science to industry. Light: Sci. Appl. 5, e16133 (2016)

    Article  Google Scholar 

  5. D. Garratt,  Direct observation of ultrafast exciton localization in an organic semiconductor with soft X-ray transient absorption spectroscopy. Nat. Commun. 13, 1–8 (2022)

    Article  Google Scholar 

  6. K.T. Kim, C. Zhang, A.D. Shiner, B.E. Schmit, F. Legare, D.M. Villeneuve, P.B. Corkum, Petahertz optical oscilloscope. Nat. Photonics. 7, 958–962 (2013)

    Article  ADS  Google Scholar 

  7. S.B. Park, K. Kim, W. Cho, S.I. Hwang, I. Ivanov, C.H. Nam, K.T. Kim, Direct sampling of a light wave in air. Optica. 5, 402–408 (2018)

    Article  ADS  Google Scholar 

  8. C. Ivan Sytcevich, S. Guo, J. Mikaelsson, A.-L. Vogelsang, B. Viotti, R. Alonso, P.T. Romero, J. Guerreiro, Inigo, L.H. Sola, Annel, H. Crespo, M. Miranda, C.L. Arnold, Characterizing ultrashort laser pulses with second harmonic dispersion scans. J. Opt. Soc. Am. B 38(5), 1546–1555 (2021)

    Article  ADS  Google Scholar 

  9. D.L. Rick Trebino, Kane, Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating. J. Opt. Soc. Am. A 10(5), 1101–1112 (1993)

    Article  ADS  Google Scholar 

  10. R. Pamela Bowlan, Trebino, Complete single-shot measurement of arbitrary nanosecond laser pulses in time. Opt. Express. 19, 1367–1377 (2011)

    Article  ADS  Google Scholar 

  11. J.-H. Chung, A.M. Weiner, Ambiguity of ultrashort pulse shapes retrieved from the intensity autocorrelation and the power spectrum. IEEE J. Sel. Top. Quantum Electron. 7, 656–666 (2001)

    Article  ADS  Google Scholar 

  12. S.D. Rana Jafari, R. Khosravi, Trebino, Reliable determination of pulse-shape instability in trains of ultrashort laser pulses using frequency-resolved optical gating. Sci. Rep. 12, 21006 (2022)

    Article  ADS  Google Scholar 

  13. Y. Yuta Nakano, K. Kida, T. Motoyoshi, Imasaka, Cross-correlation frequency-resolved optical gating for characterization of a train of monocycle optical pulses, Conference on Lasers and Elctro-Optics(CLEO), SW1H.3 (2015)

  14. T. Jones, P. Susnjar, R. Petkovsek, R. Trebino, High-sensitivity simple frequency-resolved-optical gating device. IEE J. Quantum Electron. 56(3), 8600306 (2020)

    Article  Google Scholar 

  15. C. Iaconis, I.A. Walmsley, Self-referencing spectral interferometry for measuring ultrashort optical pulses. IEE J. Quantum Electron. 35, 501–509 (1999)

    Article  ADS  Google Scholar 

  16. M. Hoffmann, T. Nagy, T. Willemsen, M. Jupé, D. Ristau, U. Morgner, Pulse characterization by THG d-scan in absorbing nonlinear media. Opt. Express. 22, 5234–5240 (2014)

    Article  ADS  Google Scholar 

  17. B. Xu, J.M. Gunn, J.M.D. Cruz, V.V. Lozovoy, M. Dantus, Quantitative investigation of the multiphoton intrapulse interference phase scan method for simultaneous phase measurement and compensation of femtosecond laser pulses. J. Opt. Soc. Am. B 23, 750–759 (2006)

    Article  ADS  Google Scholar 

  18. T. Oksenhendler, S. Coudreau, N. Forget, V. Crozatier, S. Grabielle, R. Herzog, O. Gobert, Kaplan,Self-referenced spectral interferometry. Appl. Phys. B: Lasers Opt. 99(1–2), 7–12 (2010)

    Article  ADS  Google Scholar 

  19. A. Leblanc, P. Lassonde, S. Petit, J.-C. Delagnes, E. Haddad, G. Ernotte, M.R. Bionta, V. Gruson, B.E. Schmidt, H. Ibrahim, E. Cormier, F. Legare, Phase-matching-free pulse retrieval based on transient absorption in solids. Opt. Express. 27(20), 28998–29015 (2019)

    Article  ADS  Google Scholar 

  20. B. Alonso, W. Holgado, I.J. Sola, Compact in-line temporal measurement of laser pulses with amplitude swing. Opt. Express. 28(10), 15625–15640 (2020)

    Article  ADS  Google Scholar 

  21. C. Nils, M. Geib, T. Zilk, F. Pertsch, Eilenberger, Common pulse retrieval algorithm: a fast and universal method to retrieve ultrashort pulses. Optica. 6(4), 495–505 (2019)

    Article  ADS  Google Scholar 

  22. W. Kenneth, N. DeLong, Davida, R. Fittinghoff, B. Trebino, K. Kohler, Wilson, Pulse retrieval in frequency-resolved optical gating based on the method of generalized projections. Opt. Lett. 19(24), 2152–2154 (1994)

    Article  ADS  Google Scholar 

  23. D.J. Kane, G. Rodriguez, A.J. Taylor, T.S. Clement, Simultaneous measurement of two ultrashort laser pulses from a single spectrogram in a single shot. J. Opt. Soc. Am. B 14, 935–943 (1997)

    Article  ADS  Google Scholar 

  24. P. Sidorenko, O. Lahav, Z. Avnat, O. Cohen, Ptychographic reconstruction algorithm for frequency-resolved-optical-gating: super-resolution and supreme robustness. Optica. 3(12), 1320–1330 (2016)

    Article  ADS  Google Scholar 

  25. R. Rana Jafari, Trebino, Extremely robust pulse retrieval from even noisy second-harmonic-generation frequency-resolved optical gating traces. IEE J. Quantum Electron. 56(1), 8600108 (2020)

    Google Scholar 

  26. R. Jafari, T. Jones, R. Trebino, 100% reliable frequency-resolved optical gating pulse-retrieval algorithmic approach. IEEE J. Quantum Electron. 55, 1–7 (2019)

    Article  Google Scholar 

  27. A. Marco, C.L. Krumbugel, W. Ladera, Kenneth, D.N. Delong, J.N. Fittinghoff, R. Sweetser, Trebino, Direct ultrashort-pulse intensity and phase retrieval by frequency-resolved optical gating and a computational neural network. Opt. Lett. 21(2), 143–145 (1996)

    Article  ADS  Google Scholar 

  28. T. Zahavy, A. Dikopoltsev, D. Moss, G.I. Haham, O. Cohen, S. Mannor, M. Segev, Deep learning reconstruction of ultrashort pulses. Optica. 5(5), 666–673 (2018)

    Article  ADS  Google Scholar 

  29. A. Sven Kleinert, T. Tajalli, U. Nagy, Morgner, Rapid phase retrieval of ultrashort pulses from dispersion scan traces using deep neural networks. Opt. Lett. 44(4), 979–982 (2019)

    Article  ADS  Google Scholar 

  30. A. Ron Ziv, T. Dikopoltsev, I. Zahavy, P. Rubinstein, O. Sidorenko, M. Cohen, Segev, Deep learning reconstruction of ultrashort pulses from 2D spatial intensity pattens recorded by an all-in-line system in a single-shot. Opt. Express. 28(5), 7528–7538 (2020)

    Article  ADS  Google Scholar 

  31. M. Stanfield, J. Ott, C. Gardner, Real-time reconstruction of high energy, ultrafast laser pulses using deep learning. Sci. Rep. 12, 5299 (2022)

    Article  ADS  Google Scholar 

  32. A.M.M. Istvan Toth, K. Gherman, W. Kovacs, H. Cho, V. Yun, Tosa, Reconstruction of femtosecond laser pulses from FROG traces by convolutional neural networks. Photonics. 10, 1195 (2023)

    Article  Google Scholar 

  33. K. He, X. Zhang, S. Ren, Deep residual learning for image recognition, IEEE conference on Computer Vision and Pattern Recognition(CVPR), (2016)

  34. Y. An, L. Huang, J. Li, J. Leng, L. Yang, P. Zhou, Learning to decompose the modes in few-mode fibers with deep convolutional neural network. Opt. Express. 27(7), 10127–10137 (2019)

    Article  ADS  Google Scholar 

Download references

Funding

Project is supported by the Bei**g Natural Science Foundation (No. 4192022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **aowei Dong.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, X., Yu, Z. Recovery of ultrashort optical pulses from 2D SHG-FROG traces based on modified Resnet-50 model. J Opt (2024). https://doi.org/10.1007/s12596-024-01946-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01946-3

Keywords

Navigation