Log in

Effect of do** on the structural, optical and electrical properties of TiO2 thin films for gas sensor

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

In this research, we investigated the structural, electrical, and sensing characteristics of undoped and doped TiO2 thin films prepared through the spray pyrolysis technique, using titanium tetrachloride as the precursor material. The thin films were deposited on quartz and silicon substrates, maintaining a substrate temperature of 350 ºC, and subjected to annealing at 550 ºC for 120 min. X-ray diffraction (XRD) analysis revealed the polycrystalline nature of the films, and the crystallite size was calculated using Scherrer's formula. Nickel-doped titanium oxide thin films were also fabricated, varying the do** concentrations (Ni/Ti = 0%, 1%, 2%, 3%, 4%, and 5%), deposited on quartz substrates via the spray pyrolysis technique. The impact of do** on the structural and optical properties was explored, with X-ray diffraction indicating polycrystalline thin films exhibiting an anatase phase structure. Optical analysis demonstrated a reduction in the optical band gap with increasing do** concentration in TiO2 thin films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

On request, the corresponding author will provide you with the data sets generated during this investigation.

References

  1. A.M. Al-Zuhery, S.M. Al-Jawad, A.K. Al-Mousoi, The effect of PbS thickness on the performance of CdS/PbS solar cell prepared by CSP. Optik (Stuttg). 130, 666–672 (2017). https://doi.org/10.1016/j.ijleo.2016.10.120

    Article  ADS  Google Scholar 

  2. D. Bouras, M. Fellah, A. Mecif, R. Barillé, A. Obrosov, M. Rasheed, High photocatalytic capacity of porous ceramic-based powder doped with MgO. J. Korean Ceram. Soc. (2022). https://doi.org/10.1007/s43207-022-00254-5

    Article  Google Scholar 

  3. D. Bouras, M. Rasheed, R. Barille, M.N. Aldaraji, Efficiency of adding DD3+(Li/Mg) composite to plants and their fibers during the process of filtering solutions of toxic organic dyes. Opt. Mater. 131, 112725 (2022). https://doi.org/10.1016/j.optmat.2022.112725

    Article  Google Scholar 

  4. A. Pottier, C. Chanéac, E. Tronc, L. Mazerolles, J.-P. Jolivet, Synthesis of brookite TiO2 nanoparticles by thermolysis of TiCl4 in strongly acidic aqueous media. J. Mater. Chem. 11(4), 1116–1121 (2001). https://doi.org/10.1039/b100435m

    Article  Google Scholar 

  5. L. Usgodaarachchi, C. Thambiliyagodage, R. Wijesekera, S. Vigneswaran, M. Kandanapitiye, Fabrication of TiO2 spheres and a visible light active α-Fe2O3/TiO2-Rutile/TiO2-Anatase heterogeneous photocatalyst from natural ilmenite. ACS Omega 7(31), 27617–27637 (2022). https://doi.org/10.1021/acsomega.2c03262

    Article  Google Scholar 

  6. V. Vrakatseli, E. Farsari, D. Mataras, Wetting properties of transparent anatase/rutile mixed phase glancing angle magnetron sputtered nano-TiO2 films. Micromachines 11(6), 616 (2020). https://doi.org/10.3390/mi11060616

    Article  Google Scholar 

  7. Gayan, H. Hakkoum, E. Comini, Recent advancements in TiO2 nanostructures: sustainable synthesis and gas sensing. Nanomaterials 13(8), 1424–1424 (2023). https://doi.org/10.3390/nano13081424

    Article  Google Scholar 

  8. M.L. ArunaKumari, L. Gomathi Devi, G. Maia, T.-W. Chen, N. Al-Zaqri, M. Ajmal Ali, Mechanochemical synthesis of ternary heterojunctions TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 for effective charge separation in semiconductor photocatalysis: A comparative study. Environ Res 203, 111841–111841 (2022). https://doi.org/10.1016/j.envres.2021.111841

    Article  Google Scholar 

  9. Selma, M.R. Mohammad, N.J. Imran, Effect of electrolyte solution on structural and optical properties of tio2 grown by anodization technique for photoelectrocatalytic application. Surface Rev Lett 25(04), 1850078–1850078 (2018). https://doi.org/10.1142/s0218625x18500786

    Article  Google Scholar 

  10. O.N. Hussein, Selma, N.J. Imran, Structural, morphological, optical, and antibacterial properties of Mn and (Ag, Mn) co-doped copper sulfide nanostructures. Opt. Quantum. Electron. 55(6) (2023). https://doi.org/10.1007/s11082-023-04769-x

  11. M. Rasheed, R. Barillé, Room temperature deposition of ZnO and Al:ZnO ultrathin films on glass and PET substrates by DC sputtering technique. Opt. Quantum. Electron. 49(5) (2017). https://doi.org/10.1007/s11082-017-1030-7

  12. Y.-C. Liang, W.-C. Zhao, Morphology-dependent photocatalytic and gas-sensing functions of three-dimensional TiO2–ZnO nanoarchitectures. CrystEngComm (2020). https://doi.org/10.1039/d0ce01036g

    Article  Google Scholar 

  13. K.H. Aboud, S.M.H. AL-Jawad, N.J. Imran, Synthesis and characterization of flakes-like and flowers-like Ni: CdS nano films via hydrothermal technique for photocatalytic activity, J. Mater. Sci. Mater. Electron. 34 (2023). https://doi.org/10.1007/s10854-023-10330-z

  14. E. Kadri et al., Ac conductivity and dielectric behavior of a−Si:H/c−Si1−yGey/p−Si thin films synthesized by molecular beam epitaxial method. J. Alloy. Compd. 705, 708–713 (2017). https://doi.org/10.1016/j.jallcom.2017.02.117

    Article  Google Scholar 

  15. K.H. Aboud, S.M.H. AL-Jawad, N.J. Imran, Preparation and Characterization of Hierarchical CdS Nanoflowers for Efficient Photocatalytic Degradation. J. Nanostructures. 12, 316–329 (2022)

    Google Scholar 

  16. N. Ben Azaza et al., “3-(p-nitrophenyl)Coumarin derivatives: Synthesis, linear and nonlinear optical properties. Opt Mater 96, 109328 (2019). https://doi.org/10.1016/j.optmat.2019.109328

    Article  Google Scholar 

  17. H.N.C. Dharma et al., A review of titanium dioxide (TiO2)-based photocatalyst for oilfield-produced water treatment. Membranes 12(3), 345 (2022). https://doi.org/10.3390/membranes12030345

    Article  Google Scholar 

  18. N. Farooq et al., Recent trends of titania (TiO2) based materials: a review on synthetic approaches and potential applications. J. King Saud. Univ. Science/Maǧallaẗ ǧāmiʹaẗ al-malik Saʹūd. al-ʹUlūm, pp 103210–103210 (2024). https://doi.org/10.1016/j.jksus.2024.103210

  19. J. Reszczyńska et al., Lanthanide co-doped TiO2: the effect of metal type and amount on surface properties and photocatalytic activity. Appl. Surf. Sci. 307, 333–345 (2014). https://doi.org/10.1016/j.apsusc.2014.03.199

    Article  Google Scholar 

  20. W. Zhang et al., Interfacial lattice‐strain‐driven generation of oxygen vacancies in an Aerobic‐Annealed TiO2(B) electrode. Adv Mater 31(52) (2019). https://doi.org/10.1002/adma.201906156

  21. B. Choudhury, A. Choudhury, Tailoring luminescence properties of TiO2 nanoparticles by Mn do**. J. Lumin. 136, 339–346 (2013). https://doi.org/10.1016/j.jlumin.2012.12.011

    Article  Google Scholar 

  22. X. Tian et al., Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. Nano Mater Sci 3(4), 390–403 (2021). https://doi.org/10.1016/j.nanoms.2021.05.011

    Article  Google Scholar 

  23. M.V. Castro et al., Optimisation of surface treatments of TiO2: Nb transparent conductive coatings by a post-hot-wire annealing in a reducing H2 atmosphere. Thin Solid Films 550, 404–412 (2014). https://doi.org/10.1016/j.tsf.2013.11.044

    Article  ADS  Google Scholar 

  24. S. Cao, N. Sui, P. Zhang, T. Zhou, J. Tu, T. Zhang, TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors. J. Colloid Interface Sci. 607, 357–366 (2022). https://doi.org/10.1016/j.jcis.2021.08.215

    Article  ADS  Google Scholar 

  25. S.M. Patil et al., NH3 gas sensing performance of ternary TiO2/SnO2/WO3 hybrid nanostructures prepared by ultrasonic-assisted sol–gel method. J. Mater. Sci. Mater. Electron. 29(14), 11830–11839 (2018). https://doi.org/10.1007/s10854-018-9283-x

  26. Y. **ong et al., Gas sensing capabilities of TiO2 porous nanoceramics prepared through premature sintering. J. Adv. Ceram. 4(2), 152–157 (2015). https://doi.org/10.1007/s40145-015-0148-y

  27. B. Varun Kumar, S. Darshan, B.W. Shivaraj, M. Krishna, G. SatheeshBabu, C. Manjunatha, Modeling and simulation of TiO2/Se sensor for detection of CO gas using comsol multiphysics. ECS Trans 107(1), 5867–5877 (2022). https://doi.org/10.1149/10701.5867ecst

    Article  ADS  Google Scholar 

  28. Z. Lou, F. Li, J. Deng, L. Wang, T. Zhang, Branch-like hierarchical heterostructure (α-Fe2O3/TiO2): a novel sensing material for trimethylamine gas sensor. ACS Appl. Mater. Interfaces. 5(23), 12310–12316 (2013). https://doi.org/10.1021/am402532v

    Article  Google Scholar 

  29. T. Gao, B.P. Jelle, Thermal conductivity of TiO2 nanotubes. J Phys Chem C 117(3), 1401–1408 (2013). https://doi.org/10.1021/jp3108655

    Article  Google Scholar 

  30. N.R. D'Amico, G. Cantele, D. Ninno, First principles calculations of the band offset at SrTiO3−TiO2 interfaces. Appl. Phys. Lett. 101(14) (2012). https://doi.org/10.1063/1.4757281

  31. M.H. Seo, M. Yuasa, T. Kida, J.S. Huh, N. Yamazoe, K. Shimanoe, Detection of organic gases using TiO2 nanotube-based gas sensors. Procedia. Chem. 1(1), 192–195 (2009). https://doi.org/10.1016/j.proche.2009.07.048

  32. D. Mardare et al., Low temperature TiO2 based gas sensors for CO2. Ceram. Int. 42(6), 7353–7359 (2016). https://doi.org/10.1016/j.ceramint.2016.01.137

  33. S. Chakraborty, An investigation on the long-term stability of TiO2 nanofluid. Mater Today: Proc 11, 714–718 (2019). https://doi.org/10.1016/j.matpr.2019.03.032

    Article  Google Scholar 

  34. D. Mondal, A.M. Nair, S. Mukherji, Volatile organic compound sensing in breath using conducting polymer coated chemi-resistive filter paper sensors. Med. Biol. Eng. Compu. 61(8), 2001–2011 (2023). https://doi.org/10.1007/s11517-023-02861-8

    Article  Google Scholar 

  35. S. Saini, A. Lodhi, A. Dwivedi, A. Khandelwal, S.P. Tiwari, Resistive switching behavior of TiO2/(PVP:MoS2) Nanocomposite bilayer hybrid RRAM. Commun. Compu. Inf. Sci. pp 478–485 (2022). https://doi.org/10.1007/978-3-031-21514-8_39.

  36. H.K. Judran, N.A. Yousif, S.M.H. AL-Jawad, Preparation and characterization of CdS prepared by hydrothermal method. J. Sol-Gel. Sci. Technol. (2020). https://doi.org/10.1007/s10971-020-05430-9

  37. S.M.H. Al-Jawad, M.M. Ismail, Characterization of Mn, Cu, and (Mn, Cu) co-doped ZnS nanoparticles. J. Opt. Technol. 84(7), 495 (2017). https://doi.org/10.1364/jot.84.000495

    Article  Google Scholar 

  38. Selma, N.J. Imran, K.H. Aboud, Synthesis and characterization of Mn:CdS nanoflower thin films prepared by hydrothermal method for photocatalytic activity. J Sol-gel Science Technol 100(3), 423–439 (2021). https://doi.org/10.1007/s10971-021-05656-1

    Article  Google Scholar 

  39. Selma, M.H. AL-Jawad, N.J. Imran,  M.R. Mohammad, Effect of electrolyte solution and deposition methods on TiO2/CdS core–shell nanotube arrays for photoelectrocatalytic application. European. Phys. J. Appl. Phys. 92(2): 20102–20102 (2020). https://doi.org/10.1051/epjap/2020200127

  40. M. Enneffatia, M. Rasheed, B. Louatia, K. Guidaraa, S. Shihab, R. Barillé, “Investigation of structural, morphology, optical properties and electrical transport conduction of Li0.25Na0.75CdVO4 compound. J Phys: Conf Ser 1795(1), 012050 (2021). https://doi.org/10.1088/1742-6596/1795/1/012050

    Article  Google Scholar 

  41. M. Rasheed, O.Y. Mohammed, S. Shihab, A. Al-Adili, Explicit numerical model of solar cells to determine current and voltage. J. Phys: Conf. Ser. 1795(1), 012043 (2021). https://doi.org/10.1088/1742-6596/1795/1/012043

    Article  Google Scholar 

  42. M. Rasheed, SuhaShihab, O. Alabdali, H.H. Hassan, Parameters extraction of a single-diode model of photovoltaic cell using false position iterative method. J Phys: Conf Ser 1879(3), 032113 (2021). https://doi.org/10.1088/1742-6596/1879/3/032113

    Article  Google Scholar 

  43. M. Rasheed, S. Shihab, O.Y. Mohammed, A. Al-Adili, Parameters Estimation of Photovoltaic Model Using Nonlinear Algorithms. J. Phys: Conf. Ser. 1795(1), 012058 (2021). https://doi.org/10.1088/1742-6596/1795/1/012058

    Article  Google Scholar 

  44. M.A. Sarhan, S. Shihab, B.E. Kashem, M. Rasheed, New exact operational shifted pell matrices and their application in astrophysics. J. Phys: Conf. Ser. 1879(2), 022122 (2021). https://doi.org/10.1088/1742-6596/1879/2/022122

    Article  Google Scholar 

  45. The Ky Vo, Mo-modified TiO2 mesoporous microspheres prepared by spray pyrolysis for adsorption-photocatalytic water remediation. J. Sol-Gel. Sci. Technol. 103(3), 853–864 (2022). https://doi.org/10.1007/s10971-022-05902-0

    Article  Google Scholar 

  46. E. Kadri, M. Krichen, R. Mohammed, A. Zouari, K. Khirouni, Electrical transport mechanisms in amorphous silicon/crystalline silicon germanium heterojunction solar cell: impact of passivation layer in conversion efficiency. Opt Quantum Electron 48(12) (2016). https://doi.org/10.1007/s11082-016-0812-7

  47. S.D. Sharma et al., Sol–gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst. Appl. Catal. A 314(1), 40–46 (2006). https://doi.org/10.1016/j.apcata.2006.07.029

    Article  Google Scholar 

  48. M. Crişan et al., Sol–gel S-doped TiO2 materials for environmental protection. J. Non-Cryst. Solids 354(2–9), 705–711 (2008). https://doi.org/10.1016/j.jnoncrysol.2007.07.083

    Article  ADS  Google Scholar 

  49. V. Mansfeldova et al., Work function of TiO2 (Anatase, Rutile, and Brookite) single crystals: effects of the environment. J. Phys. Chem. C 125(3), 1902–1912 (2021). https://doi.org/10.1021/acs.jpcc.0c10519

    Article  Google Scholar 

  50. S. Nasiri et al., Modified Scherrer equation to calculate crystal size by XRD with high accuracy, examples Fe2O3, TiO2 and V2O5. Nano Trends 3, 100015 (2023). https://doi.org/10.1016/j.nwnano.2023.100015

    Article  Google Scholar 

  51. K. Nakata, A. Fujishima, TiO2 photocatalysis: Design and applications. J. Photochem. Photobiol., C 13(3), 169–189 (2012). https://doi.org/10.1016/j.jphotochemrev.2012.06.001

    Article  Google Scholar 

  52. M. Sellam, M. Rasheed, S. Azizi, T. Saidani, Improving photocatalytic performance: Creation and assessment of nanostructured SnO2 thin films, pure and with nickel do**, using spray pyrolysis. Ceram. Int. (2024). https://doi.org/10.1016/j.ceramint.2024.03.094

  53. K. Fukushima, I. Yamada, Surface smoothness and crystalline structure of ICB deposited TiO2 films. Appl. Surf. Sci. 43(1–4), 32–36 (1989). https://doi.org/10.1016/0169-4332(89)90186-4

    Article  ADS  Google Scholar 

  54. M. Mansoor, An interaction effect of perceived government response on COVID-19 and government agency’s use of ICT in building trust among citizens of Pakistan. Trans Gov: People Process Policy ahead-of-print, no. ahead-of-print, (2021). https://doi.org/10.1108/tg-01-2021-0002

  55. C. Liu et al. High performance, biocompatible dielectric thin‐film optical filters integrated with flexible substrates and microscale optoelectronic devices. Adv Opt Mater 6(15) (2018). https://doi.org/10.1002/adom.201800146

  56. Y. Wu, S. **ng, J. Fu, Examining the use of TiO2 to enhance the NH3 sensitivity of polypyrrole films. J. Appl. Polym. Sci. 118(6), 3351–3356 (2010). https://doi.org/10.1002/app.32382

    Article  Google Scholar 

  57. P. Desai et al. Synthesis and dielectric studies of Ni doped MgO nanostructure. Inorg. Nano-metal Chem. pp 1–13 (2023) https://doi.org/10.1080/24701556.2023.2260373

  58. L.A. Patil, D.N. Suryawanshi, I.G. Pathan, D.M. Patil, Nickel doped spray pyrolyzed nanostructured TiO2 thin films for LPG gas sensing. Sens. Actuators, B Chem. 176, 514–521 (2013). https://doi.org/10.1016/j.snb.2012.08.030

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the computing resources of the Universite d’Angers, Laboratory Moltech Anjou and in Angers, France and University of Technology- Iraq of Iraq.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

S. A., M. R. and Z. A.; methodology, S. A., M. R. and Z. A.; planned and conducted the tests, S. A. and M. R.; data analysis and interpretation, and M. R. and S. A.; prepared the manuscript. All authors have read and approved the final manuscript version.

Corresponding author

Correspondence to Mohammed RASHEED.

Ethics declarations

Ethical approval

Not Applicable.

Conflict of interest or computing interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Jawad, S.M.H., RASHEED, M. & Abbas, Z.Y. Effect of do** on the structural, optical and electrical properties of TiO2 thin films for gas sensor. J Opt (2024). https://doi.org/10.1007/s12596-024-01913-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01913-y

Keywords

Navigation