Log in

Revolutionizing medical imaging: a comprehensive review of optical coherence tomography (OCT)

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Optical coherence tomography (OCT) has become a ground-breaking method in medical imaging. This study covers all aspects of OCT, including its concepts, uses, and the considerable influence it has had on healthcare. OCT provides high-resolution, non-invasive imaging, making it a useful tool in ophthalmology, cardiology, dermatology, and other medical specialities. The underlying concepts underpinning OCT, such as its functioning principles, imaging modalities, and the most recent breakthroughs in the area were all looked at thoroughly. The study also goes through OCT's clinical uses, emphasizing its significance in the early identification, diagnosis, and monitoring of a variety of medical disorders. Furthermore, the potential future paths and advances in OCT technology that have the potential to improve diagnostic capabilities and widen clinical utility are also investigated. This thorough review seeks to offer a clearer knowledge of OCT's importance in modern medicine and to stimulate more study and development in this interesting topic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of data and materials

Data is available as tables and figures in appropriate places in the manuscript.

References

  1. S. Angenent, E. Pichon, A. Tannenbaum, Mathematical methods in medical image processing. Bull. Am. Math. Soc. (2006). https://doi.org/10.1090/S0273-0979-06-01104-9

    Article  MathSciNet  Google Scholar 

  2. H. Kasban, M.A.M. El-Bendary, D.H. Salama, A comparative study of medical imaging techniques. Int. J. Inf. Sci. Intell. Syst. 4, 37–58 (2015)

    Google Scholar 

  3. J. Beutel, J.M. Fitzpatrick, S.C. Horii, Y. Kim, H.L. Kundel, M. Sonka, R.L. Van Metter, Handbook of Medical Imaging (SPIE, Bellingham, Washington, 2000)

    Google Scholar 

  4. J.A. Seibert, X-ray imaging physics for nuclear medicine technologists. Part 2: X-ray interactions and image formation. J. Nucl. Med. Technol. 33 (2005). https://www.researchgate.net/publication/8002654

  5. E.L. Ritman, Medical X-ray Imaging, Current Status and Some Future Challenges. International Centre for Diffraction Data (2006). www.dxcicdd.com

  6. M. Wernick, O. Wirjadi, D. Chapman, Z. Zhong, N. Galatsanos, Y. Yang, J. Brankov, O. Oltulu, M. Anastasio, C. Muehleman, Multiple-image radiography. Phys. Med. Biol. 48, 3875–3895 (2003)

    Article  Google Scholar 

  7. T.G. Sanders, S.L. Jersey, Conventional radiography of the shoulder. Semin. Roentgenol. 40, 207–222 (2005). https://doi.org/10.1053/j.ro.2005.01.012

    Article  Google Scholar 

  8. T.M. Buzug, Computed tomography, in Springer Handbook of Medical Technology. Springer Handbooks. ed. by R. Kramme, K.P. Hoffmann, R.S. Pozos (Springer, Berlin, 2011). https://doi.org/10.1007/978-3-540-74658-4_16

    Chapter  Google Scholar 

  9. T. Sera, Computed tomography, in Transparency in Biology. ed. by K. Soga, M. Umezawa, K. Okubo (Springer, Singapore, 2021). https://doi.org/10.1007/978-981-15-9627-8_8

    Chapter  Google Scholar 

  10. T. Geva, Magnetic resonance imaging: historical perspective. J. Cardiovasc. Magn. Reason. 8, 573–580 (2006). https://doi.org/10.1080/10976640600755302

    Article  Google Scholar 

  11. R.J. Van Geuns, P.A. Wielopolski, H.G. de Bruin, B.J. Rensing, P.M. van Ooijen, M. Hulshoff, M. Oudkerk, P.J. de Feyter, Basic principles of magnetic resonance imaging. Prog. Cardiovasc. Dis. 42(2), 149–56 (1999). https://doi.org/10.1016/s0033-0620(99)70014-9

    Article  Google Scholar 

  12. V.P.B. Grover, J.M. Tognarelli, M.M.E. Crossey, I.J. Cox, S.D. Taylor-Robinson, M.J.W. McPhail, Magnetic resonance imaging: principles and techniques: lessons for clinicians. J. Clin. Exp. Hepatol. 5, 246–255 (2015). https://doi.org/10.1016/j.jceh.2015.08.001

    Article  Google Scholar 

  13. L. Ciobanu, A.G. Webb, C.H. Pennington, Magnetic resonance imaging of biological cells. Prog. Nucl. Magn. Reason. Spectrosc. 42, 69–93 (2003). https://doi.org/10.1016/S0079-6565(03)00004-9

    Article  Google Scholar 

  14. P. Ralls, R. Jeffrey, R. Kane, M. Robbin, Ultrasonography. Gastroenterol. Clin. N. Am. 31, 801–825, vii (2002). https://doi.org/10.1016/S0889-8553(02)00030-4

    Article  Google Scholar 

  15. R.E. Cartee, J.A. Hudson, S. Finn-Bodner, Ultrasonography. Vet. Clin. N. Am. Small Anim. Pract. 23, 345–377 (1993). https://doi.org/10.1016/S0195-5616(93)50032-3

    Article  Google Scholar 

  16. A.P. Dhawan, B. D’Alessandro, X. Fu, Optical imaging modalities for biomedical applications. IEEE Rev. Biomed. Eng. 3, 69–92 (2010). https://doi.org/10.1109/RBME.2010.2081975

    Article  Google Scholar 

  17. C. Balas, Review of biomedical optical imaging—a powerful, non-invasive, non-ionizing technology for improving in vivo diagnosis. Meas. Sci. Technol. (2009). https://doi.org/10.1088/0957-0233/20/10/104020

    Article  Google Scholar 

  18. J. Müller, A. Wunder, K. Licha, Optical imaging. Recent Results Cancer Res. 187, 221–46 (2013). https://doi.org/10.1007/978-3-642-10853-2_7

    Article  Google Scholar 

  19. V. Ntziachristos, Going deeper than microscopy: the optical imaging frontier in biology. Nat. Methods 7, 603–614 (2010). https://doi.org/10.1038/nmeth.1483

    Article  Google Scholar 

  20. Y. Chen, S. Yuan, J. Wierwille, C.-W. Chen, T.R. Blackwell, P.T. Winnard, V. Raman, K. Glunde, Integrated optical coherence tomography (OCT) and fluorescence laminar optical tomography (FLOT) for depth-resolved subsurface cancer imaging, in The Optical Society, 2013. p. BSuD9. https://doi.org/10.1364/biomed.2010.bsud9

  21. M.E. Brezinski, J.G. Fujimoto, Optical coherence tomography: high-resolution imaging in nontransparent tissue. IEEE J. Sel. Top. Quantum Electron. (1999). https://doi.org/10.1109/2944.796345

    Article  Google Scholar 

  22. S.W. Hell, R.N. Weinreb, J.F. Bille, High Resolution Imaging in Microscopy and Ophthalmology New Frontiers in Biomedical Optics Forewords (Springer, Cham, 2019). https://doi.org/10.1007/978-3-030-16638-0

    Book  Google Scholar 

  23. N.M. Fried, S. Rais-Bahrami, G.A. Lagoda, A.Y. Chuang, L.M. Su, A.L. Burnett, Identification and imaging of the nerves responsible for erectile function in rat prostate, in vivo, using optical nerve stimulation and optical coherence tomography. IEEE J. Sel. Top. Quantum Electron. 13, 1641–1645 (2007). https://doi.org/10.1109/JSTQE.2007.910119

    Article  ADS  Google Scholar 

  24. K.D. Rao, M.A. Choma, S. Yazdanfar, A.M. Rollins, J.A. Izatt, Molecular contrast in optical coherence tomography by use of a pump-probe technique. Opt. Lett. (2003). https://doi.org/10.1364/ol.28.000340

    Article  Google Scholar 

  25. K. Karthik, M. Mahadevappa, Convolution neural networks for optical coherence tomography (OCT) image classification. Biomed. Signal Process. Control (2023). https://doi.org/10.1016/j.bspc.2022.104176

    Article  Google Scholar 

  26. T.-H. Tsai, J. Fujimoto, H. Mashimo, Endoscopic optical coherence tomography for clinical gastroenterology. Diagnostics 4, 57–93 (2014). https://doi.org/10.3390/diagnostics4020057

    Article  Google Scholar 

  27. J.G. Fujimoto, C. Pitris, S.A. Boppart, M.E. Brezinski, Optical coherence tomography: an emerging technology for biomedical imaging and optical biopsy. Neoplasia 2, 9–25 (2000). https://doi.org/10.1038/sj.neo.7900071

    Article  Google Scholar 

  28. A.F. Fercher, C.K. Hitzenberger, W. Drexler, G. Kamp, H. Sattmann, In vivo optical coherence tomography. Am. J. Ophthalmol. 116, 113–114 (1993). https://doi.org/10.1016/S0002-9394(14)71762-3

    Article  Google Scholar 

  29. M.F. Kraus, B. Potsaid, M.A. Mayer, R. Bock, B. Baumann, J.J. Liu, J. Hornegger, J.G. Fujimoto, Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan patterns. Biomed. Opt. Express 3(6), 1182–99 (2012). https://doi.org/10.1364/BOE.3.001182

    Article  Google Scholar 

  30. W. Drexler, J.G. Fujimoto, Optical Coherence Tomography, 2nd edn. (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-06419-2

    Book  Google Scholar 

  31. P.N.T. Wells, H.-D. Liang, Medical ultrasound: imaging of soft tissue strain and elasticity. J. R. Soc. Interface 8, 1521–1549 (2011). https://doi.org/10.1098/rsif.2011.0054

    Article  Google Scholar 

  32. M.E. Brezinski, G.J. Tearney, N.J. Weissman, S.A. Boppart, B.E. Bouma, M.R. Hee, A.E. Weyman, E.A. Swanson, J.F. Southern, J.G. Fujimoto, Assessing atherosclerotic plaque morphology: comparison of optical coherence tomography and high frequency intravascular ultrasound. Heart 77, 397–403 (1997). https://doi.org/10.1136/hrt.77.5.397

    Article  Google Scholar 

  33. N.A. Patel, D.L. Stamper, M.E. Brezinski, Review of the ability of optical coherence tomography to characterize plaque, including a comparison with intravascular ultrasound. Cardiovasc. Interv. Radiol. 28, 1–9 (2005). https://doi.org/10.1007/s00270-003-0021-1

    Article  Google Scholar 

  34. C. Hauger, M. Wörz, T. Hellmuth, Interferometer for optical coherence tomography. Appl. Opt. 42(19), 3896–3902 (2003). https://doi.org/10.1364/AO.42.003896

    Article  ADS  Google Scholar 

  35. K. Takada, I. Yokohama, K. Chida, J. Noda, New measurement system for fault location in optical waveguide devices based on an interferometric technique. Appl. Opt. 26(9), 1603–6 (1987). https://doi.org/10.1364/AO.26.001603

    Article  ADS  Google Scholar 

  36. H.H. Gilgen, R.P. Novak, R.P. Salathe, W. Hodel, P. Beaud, Submillimeter optical reflectometry. J. Lightwave Technol. 7, 1225–1233 (1989). https://doi.org/10.1109/50.32387

    Article  ADS  Google Scholar 

  37. A.F. Fercher, C.K. Hitzenberger, Optical coherence tomography. Prog. Opt. 44, 215–302 (2002). https://doi.org/10.1016/S0079-6638(02)80017-8

    Article  ADS  Google Scholar 

  38. R.C. Youngquist, S. Carr, D.E.N. Davies, Optical coherence-domain reflectometry: a new optical evaluation technique. Opt. Lett. 12, 158–168 (1987). https://doi.org/10.1364/ol.12.000158

    Article  ADS  Google Scholar 

  39. Y. Rao, D.A. Jackson, Recent progress in fibre optic low-coherence interferometry. Meas. Sci. Technol 7, 981–999 (1996)

    Article  ADS  Google Scholar 

  40. A.G. Podoleanu, Optical coherence tomography. Br. J. Radiol. 78, 976–988 (2005). https://doi.org/10.1259/bjr/55735832

    Article  Google Scholar 

  41. W. Gao, Effects of temporal and spatial coherence on resolution in full-field optical coherence tomography. J. Mod. Opt. 62, 1764–1774 (2015). https://doi.org/10.1080/09500340.2014.952689

    Article  ADS  MathSciNet  Google Scholar 

  42. K. Patil, A. Mahajan, B. Subramani, A. Pachiyappan, R. Makkar, Algorithm for B-scan image reconstruction in optical coherence tomography. Pertanika J. Sci. Technol. 29, 533–545 (2021). https://doi.org/10.47836/pjst.29.1.28

    Article  Google Scholar 

  43. Adam M. Zysk, Freddy T. Nguyen, Amy L. Oldenburg, Daniel L. Marks, Stephen A. Boppart, Optical coherence tomography: a review of clinical development from bench to bedside. J. Biomed. Opt. 12(5), 051403–051403 (2007)

    Article  ADS  Google Scholar 

  44. A. Gunalan, L.S. Mattos, Towards OCT-guided endoscopic laser surgery—a review. Diagnostics (2023). https://doi.org/10.3390/diagnostics13040677

    Article  Google Scholar 

  45. S. Zheng, Y. Bai, Z. Xu, P. Liu, G. Ni, Optical coherence tomography for three-dimensional imaging in the biomedical field: a review. Front. Phys. (2021). https://doi.org/10.3389/fphy.2021.744346

    Article  Google Scholar 

  46. W. Drexler, Ultrahigh-resolution optical coherence tomography. J. Biomed. Opt. 9, 47–74 (2004). https://doi.org/10.1117/1.1629679

    Article  ADS  Google Scholar 

  47. J.G. Fujimoto, W. Drexler, Introduction to OCT, in Optical coherence tomography. ed. by W. Drexler, J. Fujimoto (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-06419-2_1

    Chapter  Google Scholar 

  48. R. Liang, Biomedical Optical Imaging Technologies (Springer, Berlin, 2013). https://doi.org/10.1007/978-3-642-28391-8

    Book  Google Scholar 

  49. S.H. Yun, G.J. Tearney, B.E. Bouma, B.H. Park, J.F. de Boer, High-speed spectral-domain optical coherence tomography at 1.3 m wavelength. Opt. Express 11(26), 3598–3604 (2003). https://doi.org/10.1364/OE.11.003598

    Article  ADS  Google Scholar 

  50. A.F. Zuluaga, R. Richards-Kortum, Spatially resolved spectral interferometry for determination of subsurface structure. Opt. Lett. 24(8), 519–21 (1999). https://doi.org/10.1364/ol.24.000519

    Article  ADS  Google Scholar 

  51. J.F. de Boer, R. Leitgeb, M. Wojtkowski, Twenty-five years of optical coherence tomography: the paradigm shift in sensitivity and speed provided by Fourier domain OCT [Invited]. Biomed. Opt. Express 8, 3248–3280 (2017). https://doi.org/10.1364/boe.8.003248

    Article  Google Scholar 

  52. A.F. Fercher, C.K. Hitzenberger, G. Kamp, S.Y. El-Zaiat, Measurement of intraocular distances by backscattering spectral interferometry. Opt. Commun. 117(1), 43–48 (1995). https://doi.org/10.1016/0030-4018(95)00119-S

    Article  ADS  Google Scholar 

  53. M. Wojtkowski, R. Leitgeb, A. Kowalczyk, T. Bajraszewski, A.F. Fercher, In vivo human retinal imaging by Fourier domain optical coherence tomography. J. Biomed. Opt. 7, 457–463 (2002). https://doi.org/10.1117/1.1482379

    Article  ADS  Google Scholar 

  54. M. Wojtkowski, T. Bajraszewski, P. Targowski, A. Kowalczyk, Real-time in vivo imaging by high-speed spectral optical coherence tomography. Opt. Lett. 28(19), 1745–1747 (2003). https://doi.org/10.1364/OL.28.001745

    Article  ADS  Google Scholar 

  55. B.E. Bouma, S.H. Yun, B.J. Vakoc, M.J. Suter, G.J. Tearney, Fourier-domain optical coherence tomography: recent advances toward clinical utility. Curr. Opin. Biotechnol. 20, 111–118 (2009). https://doi.org/10.1016/j.copbio.2009.02.007

    Article  Google Scholar 

  56. S.R. Chinn, E.A. Swanson, J.G. Fujimoto, Optical coherence tomography using a frequency-tunable optical source. Opt. Lett. 22(5), 340–342 (1997). https://doi.org/10.1364/OL.22.000340

    Article  ADS  Google Scholar 

  57. F. Lexer, C.K. Hitzenberger, A.F. Fercher, M. Kulhavy, Wavelength-tuning interferometry of intraocular distances. Appl. Opt. 36(25), 6548–53 (1997). https://doi.org/10.1364/ao.36.006548

    Article  ADS  Google Scholar 

  58. B. Potsaid et al., Ultrahigh speed 1050nm swept source/Fourier domain OCT retinal and anterior segment imaging at 100,000 to 400,000 axial scans per second. Opt. Express 18(19), 20029–20048 (2010). https://doi.org/10.1364/OE.18.020029

    Article  ADS  Google Scholar 

  59. C. Haisch, Optical tomography. Annu. Rev. Anal. Chem. 5(1), 57–77 (2012). https://doi.org/10.1146/annurev-anchem-062011-143138

    Article  Google Scholar 

  60. N. Mohd Fadzil, J. Jamaludin, S.Z. Mohd.Muji, M. Sahib, M. Mansor, N.M. Nor Ayob, M. Jumaah, S. Aw, M. Zawahir, Octagon modelling using parallel projection of optical tomography. J. Teknol. 70(3), 25–28 (2014). https://doi.org/10.11113/jt.v70.3457

    Article  Google Scholar 

  61. D. Huang, E.A. Swanson, C.P. Lin, J.S. Schuman, W.G. Stinson, W. Chang, M.R. Hee, T. Flotte, K. Gregory, C.A. Puliafito et al., Optical coherence tomography. Science 254(5035), 1178–81 (1991). https://doi.org/10.1126/science.1957169

    Article  ADS  Google Scholar 

  62. W. Drexler, J.G. Fujimoto, in Optical Coherence Tomography. ed. by W. Drexler, J.G. Fujimoto (Springer, Cham, 2015). https://doi.org/10.1007/978-3-319-06419-2

    Chapter  Google Scholar 

  63. R.C. Youngquist, S. Carr, D.E.N. Davies, Optical coherence-domain reflectometry: a new optical evaluation technique. Opt. Lett. 12(3), 158–160 (1987)

    Article  ADS  Google Scholar 

  64. J.A. Izatt, H.-W. Wang, M. Kulkarni, M.I. Canto, M.V. Sivak, Optical coherence microscopy in gastrointestinal tissues, in Summaries of Papers Presented at the Conference on Lasers and Electro-Optics, Anaheim, CA, USA, pp. 56–57 (1996) https://doi.org/10.1109/2944.577331

  65. J. Kim, W. Brown, J.R. Maher, H. Levinson, A. Wax, Functional optical coherence tomography: principles and progress. Phys. Med. Biol. 60, R211–R237 (2015). https://doi.org/10.1088/0031-9155/60/10/R211

    Article  ADS  Google Scholar 

  66. M.R. Hee, D. Huang, E.A. Swanson, J.G. Fujimoto, Polarization-sensitive low-coherence reflectometer for birefringence characterization and ranging. J. Opt. Soc. Am. B 9(6), 903–908 (1992). https://doi.org/10.1364/JOSAB.9.000903

    Article  ADS  Google Scholar 

  67. M. Ducros, J.F. Boer, H.-E. Huang, L.C. Chao, Z. Chen, J.S. Nelson, T.E. Milner, H. Rylander, Polarization-sensitive optical coherence tomography of the rabbit eye. Sel. Top. Quantum Electron. IEEE J. 5, 1159–1167 (1999). https://doi.org/10.1109/2944.796342

    Article  ADS  Google Scholar 

  68. M.J. Everett, K. Schoenenberger, B.W. Colston Jr., L.B. Da Silva, Birefringence characterization of biological tissue by use of optical coherence tomography. Opt. Lett. 23(3), 228–30 (1998). https://doi.org/10.1364/ol.23.000228

    Article  ADS  Google Scholar 

  69. C. Hitzenberger, E. Goetzinger, M. Sticker, M. Pircher, A. Fercher, Measurement and imaging of birefringence and optic axis orientation by phase resolved polarization sensitive optical coherence tomography. Opt. Express. 9(13), 780–90 (2001). https://doi.org/10.1364/oe.9.000780

    Article  ADS  Google Scholar 

  70. Z. Chen, T.E. Milner, D. Dave, J.S. Nelson, Optical Doppler tomographic imaging of fluid flow velocity in highly scattering media. Opt. Lett. 22(1), 64–66 (1997). https://doi.org/10.1364/OL.22.000064

    Article  ADS  Google Scholar 

  71. Z. Chen, T.E. Milner, S. Srinivas, X. Wang, A. Malekafzali, M.J. van Gemert, J.S. Nelson, Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. Opt. Lett. 22(14), 1119–21 (1997). https://doi.org/10.1364/ol.22.001119

    Article  ADS  Google Scholar 

  72. U. Morgner, W. Drexler, F.X. Kärtner, X.D. Li, C. Pitris, E.P. Ippen, J.G. Fujimoto, Spectroscopic optical coherence tomography. Opt. Lett. 25(2), 111–113 (2000). https://doi.org/10.1364/OL.25.000111

    Article  ADS  Google Scholar 

  73. F.E. Robles, S. Chowdhury, A. Wax, P. Carmeliet, R.K. Jain, H.W. Wang, J.K. Jiang, C.H. Lin, J.K. Lin, G.J. Huang, J.S. Yu, Blood or tissue constituent monitoring; (170.6510) spectroscopy, tissue diagnostics; (300.1030) absorption; (110.4500) optical coherence tomography (2000). http://omlc.ogi.edu/spectra/hemoglobin/

  74. F. Robles et al., Dual window method for processing spectroscopic optical coherence tomography signals with simultaneously high spectral and temporal resolution. Opt. Express 17(8), 6799–812 (2009). https://doi.org/10.1364/oe.17.006799

    Article  ADS  Google Scholar 

  75. D.J. Faber, E.G. Mik, M.C. Aalders, T.G. van Leeuwen, Toward assessment of blood oxygen saturation by spectroscopic optical coherence tomography. Opt. Lett. 30(9), 1015–7 (2005). https://doi.org/10.1364/ol.30.001015

    Article  ADS  Google Scholar 

  76. D.J. Faber, E.G. Mik, M.C. Aalders, T.G. van Leeuwen, The light absorption of (oxy-)hemoglobin assessed by spectroscopic optical coherence tomography. Opt. Lett. 28(16), 1436–8 (2003). https://doi.org/10.1364/ol.28.001436

    Article  ADS  Google Scholar 

  77. R. Leitgeb, M. Wojtkowski, A. Kowalczyk, C.K. Hitzenberger, M. Sticker, A.F. Fercher, Spectral measurement of absorption by spectroscopic frequency-domain optical coherence tomography. Opt. Lett. 25(11), 820–2 (2000). https://doi.org/10.1364/ol.25.000820

    Article  ADS  Google Scholar 

  78. A.L. Oldenburg, C. Xu, S.A. Boppart, Spectroscopic optical coherence tomography and microscopy. IEEE J. Sel. Top. Quantum Electron. 13(6), 1629–1640 (2007). https://doi.org/10.1109/JSTQE.2007.910292

    Article  ADS  Google Scholar 

  79. M.A. Kirby, I. Pelivanov, S. Song, Ł Ambrozinski, S.J. Yoon, L. Gao, D. Li, T.T. Shen, R.K. Wang, M. O’Donnell, Optical coherence elastography in ophthalmology. J. Biomed. Opt. 22, 1 (2017). https://doi.org/10.1117/1.jbo.22.12.121720

    Article  Google Scholar 

  80. R.M. Lerner, K.J. Parker, J. Holen, R. Gramiak, R.C. Waag, Sono-elasticity: medical elasticity images derived from ultrasound signals in mechanically vibrated targets, in Acoustical Imaging, vol. 16, ed. by L.W. Kessler (Springer, Boston, MA, 1988). https://doi.org/10.1007/978-1-4613-0725-9_31

    Chapter  Google Scholar 

  81. T.A. Krouskop, D.R. Dougherty, F.S. Vinson, A pulsed Doppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue. J. Rehabil. Res. Dev. 24(2), 1–8 (1987)

    Google Scholar 

  82. A.P. Sarvazyan et al., Biophysical bases of elasticity imaging, in Acoustical Imaging, vol. 21, ed. by J.P. Jones (Springer, Boston, MA, 1995). https://doi.org/10.1007/978-1-4615-1943-0_23

    Chapter  Google Scholar 

  83. T. Shiina, N. Nitta, E. Ueno et al., Real time tissue elasticity imaging using the combined autocorrelation method. J. Med. Ultrason. 29, 119–128 (2002). https://doi.org/10.1007/BF02481234

    Article  Google Scholar 

  84. Y. Yamakoshi, J. Sato, T. Sato, Ultrasonic imaging of internal vibration of soft tissue under forced vibration. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 37(2), 45–53 (1990). https://doi.org/10.1109/58.46969

    Article  Google Scholar 

  85. J. Ophir, S.K. Alam, B.S. Garra et al., Elastography: imaging the elastic properties of soft tissues with ultrasound. J. Med. Ultrason. 29, 155–171 (2002). https://doi.org/10.1007/BF02480847

    Article  Google Scholar 

  86. Y.K. Mariappan, K.J. Glaser, R.L. Ehman, Magnetic resonance elastography: a review. Clin. Anat. 23(5), 497–511 (2010). https://doi.org/10.1002/ca.21006

    Article  Google Scholar 

  87. R. Muthupillai, D.J. Lomas, P.J. Rossman, J.F. Greenleaf, A. Manduca, R.L. Ehman, Magnetic resonance elastography by direct visualization of propagating acoustic strain waves. Science 269(5232), 1854–7 (1995). https://doi.org/10.1126/science.7569924

    Article  ADS  Google Scholar 

  88. C. Xu, J. Ye, D.L. Marks, S.A. Boppart, Near-infrared dyes as contrast-enhancing agents for spectroscopic optical coherence tomography. Opt. Lett. 29(14), 1647–9 (2004). https://doi.org/10.1364/ol.29.001647

    Article  ADS  Google Scholar 

  89. A. Wang, W. Qi, T. Gao, X. Tang, Molecular contrast optical coherence tomography and its applications in medicine. Int. J. Mol. Sci. 23(6), 3038 (2022). https://doi.org/10.3390/ijms23063038

    Article  Google Scholar 

  90. C. Yang, Molecular contrast optical coherence tomography: a review. Photochem. Photobiol. 81(2), 215–37 (2005). https://doi.org/10.1562/2004-08-06-IR-266

    Article  Google Scholar 

  91. P.G. Yock, D.T. Linker, B.A.J. Angelsen, Tech Dr., Two-dimensional intravascular ultrasound: technical development and initial clinical experience. J. Am. Soc. Echocardiogr. 2, 296–304 (1989). https://doi.org/10.1016/S0894-7317(89)80090-2

    Article  Google Scholar 

  92. J.L. Fleg, G.W. Stone, Z.A. Fayad, J.F. Granada, T.S. Hatsukami, F.D. Kolodgie, J. Ohayon, R. Pettigrew, M.S. Sabatine, G.J. Tearney, S. Waxman, M.J. Domanski, P.R. Srinivas, J. Narula, Detection of high-risk atherosclerotic plaque: report of the NHLBI Working Group on current status and future directions. JACC Cardiovasc. Imaging 5, 941–955 (2012). https://doi.org/10.1016/j.jcmg.2012.07.007

    Article  Google Scholar 

  93. Y.J. Zhang, S. Pang, X.Y. Chen, C.V. Bourantas, D.R. Pan, S.J. Dong, W. Wu, X.M. Ren, H. Zhu, S.Y. Shi, J. Iqbal, B.D. Gogas, B. Xu, S.L. Chen, Comparison of intravascular ultrasound guided versus angiography guided drug eluting stent implantation: a systematic review and meta-analysis. BMC Cardiovasc. Disord. (2015). https://doi.org/10.1186/s12872-015-0144-8

    Article  Google Scholar 

  94. S.J. Nicholls, E.M. Tuzcu, I. Sipahi, P. Schoenhagen, S.E. Nissen, Intravascular ultrasound in cardiovascular medicine. Circulation (2006). https://doi.org/10.1161/CIRCULATIONAHA.106.637942

    Article  Google Scholar 

  95. G. Pasterkamp, E. Falk, H. Woutman, C. Borst, Techniques characterizing the coronary atherosclerotic plaque: influence on clinical decision making? J. Am. Coll. Cardiol. 36(1), 13–21 (2000). https://doi.org/10.1016/s0735-1097(00)00677-x

    Article  Google Scholar 

  96. R. Puri, M.I. Worthley, S.J. Nicholls, Intravascular imaging of vulnerable coronary plaque: current and future concepts. Nat. Rev. Cardiol. 8, 131–139 (2011). https://doi.org/10.1038/nrcardio.2010.210

    Article  Google Scholar 

  97. T. Sawada, J. Shite, H.M. Garcia-Garcia, T. Shinke, S. Watanabe, H. Otake, D. Matsumoto, Y. Tanino, D. Ogasawara, H. Kawamori, H. Kato, N. Miyoshi, M. Yokoyama, P.W. Serruys, K.I. Hirata, Feasibility of combined use of intravascular ultrasound radiofrequency data analysis and optical coherence tomography for detecting thin-cap fibroatheroma. Eur. Heart J. 29, 1136–1146 (2008). https://doi.org/10.1093/eurheartj/ehn132

    Article  Google Scholar 

  98. X. Li, J. Yin, C. Hu, Q. Zhou, K.K. Shung, Z. Chen, High-resolution coregistered intravascular imaging with integrated ultrasound and optical coherence tomography probe. Appl. Phys. Lett. (2010). https://doi.org/10.1063/1.3493659

    Article  Google Scholar 

  99. J. Yin, H.-C. Yang, X. Li, J. Zhang, Q. Zhou, C. Hu, K.K. Shung, Z. Chen, Integrated intravascular optical coherence tomography ultrasound imaging system. J. Biomed. Opt. (2010). https://doi.org/10.1117/1.3308642

    Article  Google Scholar 

  100. Q. Zhou, Z. Chen, Multimodality Imaging: For Intravascular Application (Springer, Singapore, 2019). https://doi.org/10.1007/978-981-10-6307-7

    Book  Google Scholar 

  101. J.R. Lakowicz, in Principles of Fluorescence Spectroscopy, 3rd edn., ed. by J.R. Lakowicz (Springer, New York, 2006). https://doi.org/10.1007/978-0-387-46312-4

    Chapter  Google Scholar 

  102. S. Yuan et al., Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging. Phys. Med. Biol. 55(1), 191–206 (2010). https://doi.org/10.1088/0031-9155/55/1/011

    Article  Google Scholar 

  103. Y.T. Pan, T.Q. **e, C.W. Du, S. Bastacky, S. Meyers, M.L. Zeidel, Enhancing early bladder cancer detection with fluorescence-guided endoscopic optical coherence tomography. Opt. Lett. 28(24), 2485–7 (2003). https://doi.org/10.1364/ol.28.002485

    Article  ADS  Google Scholar 

  104. L.P. Hariri, A.R. Tumlinson, N.H. Wade, D.G. Besselsen, U. Utzinger, E.W. Gerner, J.K. Barton, Ex vivo optical coherence tomography and laser-induced fluorescence spectroscopy imaging of murine gastrointestinal tract. Comput. Med. 57(2), 175–85 (2007)

    Google Scholar 

  105. M.R. Hee, J.A. Izatt, E.A. Swanson, D. Huang, J.S. Schuman, C.P. Lin, C.A. Puliafito, J.G. Fujimoto, Optical coherence tomography of the human retina. Arch. Ophthalmol. 113(3), 325–32 (1995). https://doi.org/10.1001/archopht.1995.01100030081025

    Article  Google Scholar 

  106. M. Zeppieri, S. Marsili, E.S. Enaholo, A.O. Shuaibu, N. Uwagboe, C. Salati, L. Spadea, M. Musa, Optical coherence tomography (OCT): a brief look at the uses and technological evolution of ophthalmology. Medicina (Lithuania) (2023). https://doi.org/10.3390/medicina59122114

    Article  Google Scholar 

  107. E.A. Swanson, J.A. Izatt, C.P. Lin, J.G. Fujimoto, J.S. Schuman, M.R. Hee, D. Huang, C.A. Puliafito, In vivo retinal imaging by optical coherence tomography. Opt. Lett. 18(21), 1864–1866 (1993). https://doi.org/10.1364/OL.18.001864

    Article  ADS  Google Scholar 

  108. W. Drexler, U. Morgner, F. Kärtner, C. Pitris, S. Boppart, X. Li, E. Ippen, J. Fujimoto, In vivo ultrahigh-resolution optical coherence. Opt. Lett. 24, 1221–1223 (1999). https://doi.org/10.1364/OL.24.001221

    Article  ADS  Google Scholar 

  109. T.E. de Carlo, A. Romano, N.K. Waheed, J.S. Duker, A review of optical coherence tomography angiography (OCTA). Int. J. Retin. Vitr. 1, 5 (2015). https://doi.org/10.1186/s40942-015-0005-8

    Article  Google Scholar 

  110. A.H. Kashani, C.L. Chen, J.K. Gahm, F. Zheng, G.M. Richter, P.J. Rosenfeld, Y. Shi, R.K. Wang, Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog. Retin. Eye Res. 60, 66–100 (2017). https://doi.org/10.1016/j.preteyeres.2017.07.002

    Article  Google Scholar 

  111. L. Wang, O. Murphy, N.G. Caldito, P.A. Calabresi, S. Saidha, Emerging applications of optical coherence tomography angiography (OCTA) in neurological research. Eye Vis. 5, 11 (2018). https://doi.org/10.1186/s40662-018-0104-3

    Article  Google Scholar 

  112. P.J. Foster, R. Buhrmann, H.A. Quigley, G.J. Johnson, The definition and classification of glaucoma in prevalence surveys. Br. J. Ophthalmol. 86(2), 238–42 (2002). https://doi.org/10.1136/bjo.86.2.238

    Article  Google Scholar 

  113. M. Bekollari, M. Dettoraki, V. Stavrou, A. Skouroliakou, P. Liaparinos, Investigating the structural and functional changes in the optic nerve in patients with early glaucoma using the optical coherence tomography (OCT) and RETeval system. Sensors 23(9), 4504 (2023). https://doi.org/10.3390/s23094504

    Article  ADS  Google Scholar 

  114. G. Mahmoudinezhad, S. Moghimi, J.A. Proudfoot, N. Brye, T. Nishida, A. Yarmohammadi, A. Kamalipour, L.M. Zangwill, R.N. Weinreb, Effect of testing frequency on the time to detect glaucoma progression with optical coherence tomography (OCT) and OCT angiography. Am. J. Ophthalmol. 245, 184–192 (2023). https://doi.org/10.1016/j.ajo.2022.08.030

    Article  Google Scholar 

  115. G. Wollstein, J.S. Schuman, L.L. Price, A. Aydin, P.C. Stark, E. Hertzmark, E. Lai, H. Ishikawa, C. Mattox, J.G. Fujimoto, L.A. Paunescu, Optical coherence tomography longitudinal evaluation of retinal nerve fiber layer thickness in glaucoma. Arch. Ophthalmol. 123(4), 464–70 (2005). https://doi.org/10.1001/archopht.123.4.464. (Erratum in: Arch Ophthalmol. 2005;123(9):1206)

    Article  Google Scholar 

  116. F.A. Medeiros, L.M. Zangwill, C. Bowd, R.M. Vessani, R. Susanna, R.N. Weinreb, Evaluation of retinal nerve fiber layer, optic nerve head, and macular thickness measurements for glaucoma detection using optical coherence tomography. Am. J. Ophthalmol. 139, 44–55 (2005). https://doi.org/10.1016/j.ajo.2004.08.069

    Article  Google Scholar 

  117. Y.Z. Tun, P. Aimmanee, A complete review of automatic detection, segmentation, and quantification of neovascularization in optical coherence tomography angiography images. Diagnostics (2023). https://doi.org/10.3390/diagnostics13223407

    Article  Google Scholar 

  118. X. Li, J. Li, J. **g, T. Ma, D. Mohar, A. Raney, S. Mahon, M. Brenner, P. Patel, K.K. Shung, Z. Chen, Q. Zhou, Integrated IVUS-OCT catheter for in vivo intravascular imaging, in IEEE International Ultrasonics Symposium, IUS (2012), pp. 1564–1567. https://doi.org/10.1109/ULTSYM.2012.0391

  119. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, Applications of optical coherence tomography in dermatology. J. Dermatol. Sci. 40, 85–94 (2005). https://doi.org/10.1016/j.jdermsci.2005.07.006

    Article  Google Scholar 

  120. L. Carrion, M. Lestrade, Z. Xu, G. Touma, R. Maciejko, M. Bertrand, Comparative study of optical sources in the near infrared for optical coherence tomography applications. J. Biomed. Opt. 12, 014017 (2007). https://doi.org/10.1117/1.2710242

    Article  ADS  Google Scholar 

  121. E.J. Marjanovic, V. Sharma, L. Smith, C. Pinder, T.L. Moore, J.B. Manning, G. Dinsdale, M. Berks, V.L. Newton, S. Wilkinson, M.R. Dickinson, A.L. Herrick, R.E.B. Watson, A.K. Murray, Polarisation-sensitive optical coherence tomography measurement of retardance in fibrosis, a non-invasive biomarker in patients with systemic sclerosis. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-06783-7

    Article  Google Scholar 

  122. K.H. Kim, M.C. Pierce, G. Maguluri, B.H. Park, S.J. Yoon, M. Lydon, R. Sheridan, J.F. de Boer, In vivo imaging of human burn injuries with polarization-sensitive optical coherence tomography. J. Biomed. Opt. 17, 066012 (2012). https://doi.org/10.1117/1.jbo.17.6.066012

    Article  ADS  Google Scholar 

  123. J.M. Schmitt, OCT elastography: imaging microscopic deformation and strain of tissue. Opt. Express 3(6), 199–211 (1998). https://doi.org/10.1364/OE.3.000199

    Article  ADS  Google Scholar 

  124. A. Grimwood, L. Garcia, J. Bamber, J. Holmes, P. Woolliams, P. Tomlins, Q.A. Pankhurst, Elastographic contrast generation in optical coherence tomography from a localized shear stress. Phys. Med. Biol. 55, 5515–5528 (2010). https://doi.org/10.1088/0031-9155/55/18/016

    Article  Google Scholar 

  125. J. Welzel, M. Bruhns, H.H. Wolff, Optical coherence tomography in contact dermatitis and psoriasis. Arch. Dermatol. Res. 295, 50–55 (2003). https://doi.org/10.1007/s00403-003-0390-y

    Article  Google Scholar 

  126. H. Morsy, S. Kamp, L. Thrane, N. Behrendt, B. Saunder, H. Zayan, E.A. Elmagid, G.B.E. Jemec, Optical coherence tomography imaging of psoriasis vulgaris: correlation with histology and disease severity. Arch. Dermatol. Res. 302, 105–111 (2010). https://doi.org/10.1007/s00403-009-1000-4

    Article  Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

No funding received.

Author information

Authors and Affiliations

Authors

Contributions

Ms. MV: conceptualization, writing—original draft. Dr. SV: supervision, writing—review and editing. Dr. SP: supervision, conceptualization, writing—review and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to S. Preethi.

Ethics declarations

Conflict of interest

There is no conflict of interest in this work.

Consent to participate

Yes.

Consent for publication

Yes.

Ethical approval

Yes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varghese, M., Varghese, S. & Preethi, S. Revolutionizing medical imaging: a comprehensive review of optical coherence tomography (OCT). J Opt (2024). https://doi.org/10.1007/s12596-024-01765-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01765-6

Keywords

Navigation