Log in

Fabrication of nanocrystalline SnO2 films by Nd:YAG pulsed laser deposition method for gas sensor applications

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

Nd:YAG Pulse Laser Deposition method (PLD) is successfully utilized for preparing nanostructured Tin Oxide (SnO2) thin film. This method gives different morphologies of SnO2 nanostructure where Sn acts as the basis material and the quartz represents the growth substrates. The characterization of morphological, structural, and optical properties is investigated using atomic force microscopy (AFM), X-ray diffraction (XRD), and ultraviolet–visible (UV–Vis) spectrometer. By varying the laser energy from 600 to 900 mJ, different morphologies of SnO2 thin film structure are examined giving a polycrystalline structure with a thickness range of (120.7–194.1 nm). By increasing laser energy, SnO2 thin films grain size was increased. The topography of the AFM image exhibits homogenous deposition surface of samples and the particle size increased by increasing laser energies. XRD for SnO2 nanoparticles displays a pure cube crystalline structure. The transmission and absorption of the prepared thin film samples are influenced by increasing laser energies. The band gap of SnO2 is reduced by increasing laser energies (3.094–3.775 eV). I–V measurements of the sample prepared with the energy of 600 mJ is more affected than others. The responses of sensor to 5–50 ppm of NO2 were studied at different laser energies. The sensitivity of thin films to NO2 gas was examined. The best sensitivity at 900 mJ is 49.8%. So, these results indicate that SnO2 is a promising material for gas sensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. E.M. Preiß, T. Rogge, A. Krauß, H. Seidel, Gas sensing by SnO2 thin films prepared by large-area pulsed laser deposition. Procedia Eng. 120, 88–91 (2015)

    Article  Google Scholar 

  2. T. Serin, A. Yildiz, N. Serin, Electrical Properties of Polycrystalline SnO2 Thin Films. Appl. Phys. Express 4(12), 121101 (2011)

    Article  ADS  Google Scholar 

  3. T. Serin, N. Serin, S. Karadeniz, H. Sarı, N. Tuğluoğlu, O. Pakma, Electrical, structural and optical properties of SnO2 thin films prepared by spray pyrolysis. J. Non Cryst. Solids 352(3), 209–215 (2006)

    Article  ADS  CAS  Google Scholar 

  4. S.S. Soumya, Optical, dielectric and structural properties of SnO2 nanoparticles via sol-gel method. J. Phys. Conf. Ser. 2426(1), 12039 (2023)

    Article  Google Scholar 

  5. N.S. Sabri, M.S.M. Deni, A. Zakaria, M.K. Talari, Effect of Mn do** on structural and optical properties of SnO2 nanoparticles prepared by mechanochemical processing. Phys. Procedia 25, 233–239 (2012)

    Article  ADS  CAS  Google Scholar 

  6. S. Das, V.J.P. Jayaraman, SnO2: A comprehensive review on structures and gas sensors. Prog. Mater. Sci. 66, 112–255 (2014)

    Article  CAS  Google Scholar 

  7. E. Preiss, A. Krauss, H. Seidel, Comparative study of large area pulsed laser deposited metal oxides for gas sensors applications, in 2015 Transducers-2015 18th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS), (2015), pp. 1499–1502.

  8. N. Barsan, J. Rebholz, U. Weimar, Conduction mechanism switch for SnO2 based sensors during operation in application relevant conditions; implications for modeling of sensing. Sens. Actuators B Chem. 207, 455–459 (2015)

    Article  CAS  Google Scholar 

  9. S.M.H. Al-Jawad, S.H. Sabeeh, A.A. Taha, H.A. Jassim, Studying structural, morphological and optical properties of nanocrystalline ZnO: Ag films prepared by sol–gel method for antimicrobial activity. J. Sol-Gel Sci. Technol. 87, 362–371 (2018)

    Article  CAS  Google Scholar 

  10. S.M.H. Al-Jawad, O.N. Salman, N.A. Yousif, Influence of growth time on structural, optical and electrical properties of TiO2 nanorod arrays deposited by hydrothermal method. Surf. Rev. Lett. 26(03), 1850155 (2019)

    Article  ADS  Google Scholar 

  11. H.A. Gatea, Impact of sintering temperature on crystallite size and optical properties of SnO2 nanoparticles. J. Phys. Conf. Ser. 1829(1), 12030 (2021)

    Article  CAS  Google Scholar 

  12. J.J.M. Vequizo, M. Ichimura, Fabrication of electrodeposited SnS/SnO2 heterojunction solar cells. Jpn. J. Appl. Phys. 51(10S), 10NC38 (2012)

    Article  Google Scholar 

  13. M. Karmaoui, A.B. Jorge, P.F. McMillan, A.E. Aliev, R.C. Pullar, J.A. Labrincha, D.M. Tobaldi, One-step synthesis, structure, and band gap properties of SnO2 nanoparticles made by a low temperature nonaqueous sol–gel technique. ACS Omega 3(10), 13227–13238 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. M.A. Qamar, S. Shahid, S.A. Khan, S. Zaman, M.N. Sarwar, Synthesis characterization, optical and antibacterial studies of Co-doped SnO2 nanoparticles. Dig. J. Nanomater. Biostruct. 12(4), 1127–1135 (2017)

    Google Scholar 

  15. M.M. Abdullah, M.H. Suhail, S.I. Abbas, Fabrication and testing of SnO2 thin films as a gas sensor. Arch. Appl. Sci. Res. 4(3), 1279–1288 (2012)

    CAS  Google Scholar 

  16. S.M. Kadhim, Manufacturing of bi-functional nano-sensor of nobel metal for hydrocarbon gas detection in petroleum sector using pulse laser deposition. Eng. Technol. J. 35(8), (2017)

  17. M.A. Fakhri, M.J. AbdulRazzaq, H.D. Jabbar, E.T. Salim, F.H. Alsultany, U. Hashim, Fabrication of UV photodetector based on GaN/Psi heterojunction using pulse laser deposition method: Effect of different laser wavelengths. Opt. Mater. (Amst.) 137, 113593 (2023)

    Article  CAS  Google Scholar 

  18. H.Z. Asl, S.M. Rozati, Spray deposition of n-type cobalt-doped CuO thin films: influence of cobalt do** on structural, morphological, electrical, and optical properties. J. Electron. Mater. 49(2), 1534–1540 (2020)

    Article  ADS  CAS  Google Scholar 

  19. A.D. Faisal, A.A. Aljubouri, W.K. Khalef, Photodetector fabrication based on heterojunction of CuO/SnO2/Si nanostructures. Bull. Mater. Sci. 45(2), 84 (2022)

    Article  CAS  Google Scholar 

  20. R. Jasrotia, P. Puri, V.P. Singh, R. Kumar, Sol–gel synthesized Mg–Ag–Mn nanoferrites for power applications. J. Sol-Gel Sci. Technol. 97, 205–212 (2021)

    Article  CAS  Google Scholar 

  21. T.K. Pathak, J.K. Rajput, V. Kumar, L.P. Purohit, H.C. Swart, R.E. Kroon, Transparent conducting ZnO–CdO mixed oxide thin films grown by the sol-gel method. J. Colloid Interface Sci. 487, 378–387 (2017)

    Article  ADS  CAS  PubMed  Google Scholar 

  22. A. Ahmed, M.N. Siddique, T. Ali, P. Tripathi, Influence of reduced graphene oxide on structural, optical, thermal and dielectric properties of SnO2 nanoparticles. Adv. Powder Technol. 29(12), 3415–3426 (2018)

    Article  CAS  Google Scholar 

  23. S. Ss, Optical parameters of nano metric SnO2 thin films deposited via sol-gel spin coating technique. Int. Res. J. Adv. Sci. Hub 3, 11–16 (2021)

    Article  Google Scholar 

  24. M. Miyake, K. Murase, T. Hirato, Y. Awakura, Hall effect measurements on CdTe layers electrodeposited from acidic aqueous electrolyte. J. Electroanal. Chem. 562(2), 247–253 (2004)

    Article  CAS  Google Scholar 

  25. C.B. Bhadrapriya, A.R. Varghese, G. Amarendra, S. Hussain, Sb: SnO2 thin films-synthesis and characterization. in 9th National Conference on Thermophysical Properties (NCTP-2017), vol. 2018, no. 1, p. 30006, (1951)

  26. S.S. Abbas, H. Aboud, Sol–Gel Grown SnO 2 nanoparticles: evaluation of structure, morphology, and Raman spectra. J. Electron. Mater. 46, 6381–6387 (2017)

    Article  ADS  CAS  Google Scholar 

  27. S.T. Kassim, H.A. Hadi, R.A. Ismail, Fabrication and characterization of high photosensitivity CuS/porous silicon heterojunction photodetector. Optik (Stuttg) 221, 165339 (2020)

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiba H. Abdullah.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest related to this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadhim, S.M., Hamed, E.K., Abdullah, H.H. et al. Fabrication of nanocrystalline SnO2 films by Nd:YAG pulsed laser deposition method for gas sensor applications. J Opt (2024). https://doi.org/10.1007/s12596-024-01738-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01738-9

Keywords

Navigation