Log in

A comparative analysis of basic and enhanced hole structures in photonic crystal fibers

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This study introduces a novel photonic crystal fiber designed with several zero-dispersion wavelengths with exceptional characteristics for dispersion compensation in telecommunication applications. Two distinct photonic crystal fibers were designed and compared: one with periodic arrangement of air holes, the other with 12 extra air holes. The performance metrics of the fibers were analyzed, revealing a notable advantage for the designed fiber with supplementary air holes. Moreover, the dispersion curve analysis provides an intriguing insight into the behavior of zero-dispersion wavelengths (ZDWs), showcasing the PCF with extra air holes as a potentially rich source of multiple ZDWs. This innovative PCF design holds the potential to advance dispersion compensation capabilities, enhancing the efficiency and quality of optical signal transmission in telecommunication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References:

  1. Y. Wang, Photonic crystal fibers: recent advances and future prospects. J. Lightwave Technol. 41(4), 867–883 (2021)

    Google Scholar 

  2. R.F. Cregan, B.J. Mangan, J.C. Knight, T.A. Birks, P.S.J. Russell, P.J. Roberts, D.C. Allan, Single-mode photonic band gap guidance of light in air. Science 285(5433), 1537–1539 (1999)

    Article  PubMed  CAS  Google Scholar 

  3. J.C. Knight, Photonic crystal fibers. Nature 424(6950), 847–851 (2003)

    Article  ADS  PubMed  CAS  Google Scholar 

  4. P.S.J. Russell, Photonic crystal fibers. Science 299(5605), 358–362 (2003)

    Article  ADS  PubMed  CAS  Google Scholar 

  5. T.A. Birks, W.J. Wadsworth, P.S.J. Russell, Supercontinum generation in tapered fibers. Opt. Lett. 25(19), 1415–1417 (2000)

    Article  ADS  PubMed  CAS  Google Scholar 

  6. F.M. Cox, Cavity-enhanced second-harmonic generation in photonic crystal fibers. Opt. Lett. 30(4), 320–322 (2005)

    Google Scholar 

  7. T.P. White, Solitary waves on a photonic chip. Nature 420(7175), 650–653 (2008)

    Google Scholar 

  8. F. Couny, F. Benabid, P.J. Roberts, P.S.J. Light, M.G. Raymer, Generation and photonic guidance of multi-octave optical-frequency combs. Science 318(5853), 1118–1121 (2007)

    Article  ADS  PubMed  CAS  Google Scholar 

  9. M. Szpulak, Large nonlinear effects in gas-filled hollow-core photonic crystal fibers. Opt. Lett. 32(9), 1035–1037 (2007)

    Google Scholar 

  10. X. Chen, Soliton trap** in gas-filled photonic crystal fiber. Opt. Express 18(7), 7131–7137 (2010)

    Google Scholar 

  11. J.C. Knight, J. Broeng, T.A. Birks, P.S.J. Russell, Photonic bandgap guidance in optical fibers. Science 282(5393), 1476–1478 (1998)

    Article  PubMed  CAS  Google Scholar 

  12. T.A. Birks, Y.W. Li, The shape of fiber tapers. Light Sci. Appl. 4, 432–438 (2015)

    Google Scholar 

  13. F. Poletti, D.J. Richardson, Hollow-core fibers for high power pulse delivery. Laser Photon. Rev. 6(1), 73–78 (2012)

    Google Scholar 

  14. D.J. Richardson, J.M. Fini, Microstructured optical fibers. Prog. Opt. 54, 1–7 (2013)

    Google Scholar 

  15. J.M. Dudley, J.R. Taylor, Supercontinuum generation in optical fibers (Cambridge University Press, Cambridge, 2010)

    Book  Google Scholar 

  16. J.C. Travers, High-power ultrafast fiber lasers. Nat. Photonics 12(7), 367–378 (2018)

    Google Scholar 

  17. C. Markos, P. Dallas, Dispersion control in optical fibers with microstructure. Prog. Quantum Electron. 37(3), 159–209 (2013)

    Google Scholar 

  18. Y. Yao, Recent progress in chalcogenide glass photonic crystal fibers. J. Lightwave Technol. 33(6), 1381–1388 (2015)

    Google Scholar 

  19. F. Benabid, Gas-filled kagome photonic crystal fibers. Opt. Express 23(4), 3571–3590 (2015)

    Google Scholar 

  20. B. Debord, Hollow-core fiber technology: the rising of the third generation. Optical Materials Express 6(2), 466–492 (2016)

    MathSciNet  Google Scholar 

  21. M.K. Hassan, Hollow-core photonic crystal fiber gas laser with single- and multi-mode operation. Opt. Express 25(9), 10563–10571 (2017)

    Google Scholar 

  22. Y. Zhang, Advances in microstructured optical fibers for supercontinuum generation. Opt. Fiber Technol. 49(1), 128–138 (2019)

    Google Scholar 

  23. M.L. Chin, Nonlinear optical sources using hollow-core photonic crystal fibers. IEEE J. Sel. Top. Quantum Electron. 26(1), 1–11 (2020)

    Google Scholar 

  24. P.S.J. Russell, Photonic crystal fibers: a review of single-mode photonic crystal fibers. IEEE J. Sel. Top. Quantum Electron. 28(6), 1500311 (2022)

    Google Scholar 

  25. A. Kudlinski, Hollow-core photonic crystal fiber for ultrafast nonlinear optics and applications. Adv. Photon. Res. 4(1), 2100132 (2023)

    Google Scholar 

  26. J.C. Knight, Photonic crystal fibers: a comprehensive review. Optical Commun. Netw. 15(5), B1–B20 (2023)

    Google Scholar 

  27. J.P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves. J. Comput. Phys. 114(2), 185–200 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  28. W. Shin, S. Fan, W. Shin, Choice of the perfectly matched layer boundary condition for frequency-domain Maxwell’s equations solvers. J. Comput. Phys. 231(8), 3406–3431 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  29. I.H. Malitson, Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am. 55(10), 1205–1209 (1965)

    Article  ADS  CAS  Google Scholar 

  30. I.K. Yakasai, P.E. Abas, S. Ali, F. Begum, Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation. Opt. Quant. Electron. 51, 1–16 (2019)

    Article  CAS  Google Scholar 

  31. F. Begum, P.E. Abas, Near infrared supercontinuum generation in silica based photonic crystal fiber. Prog. In Electromagn. Res. C 89, 149–159 (2019)

    Article  CAS  Google Scholar 

  32. K. Saitoh, M. Koshiba, T. Hasegawa, E. Sasaoka, Chromatic dispersion control in photonic crystal fibers: application to ultra-flattened dispersion. Opt. Express 11(8), 843–852 (2003)

    Article  ADS  PubMed  Google Scholar 

  33. S. Sen, M.S. Islam, B.K. Paul, M.I. Islam, S. Chowdhury, K. Ahmed, Ultra-low loss with single mode polymer-based photonic crystal fiber for THz waveguide. J. Opt. Commun. 40(4), 411–417 (2019)

    Article  Google Scholar 

  34. S. Rana, A.S. Rakin, M.R. Hasan, M.S. Reza, R. Leonhardt, D. Abbott, H. Subbaraman, Low loss and flat dispersion kagome photonic crystal fiber in the terahertz regime. Opt. Commun. 410, 452–456 (2018)

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Royal Global University for providing the required support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Phukan.

Ethics declarations

Competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Talukdar, P., Phukan, D. A comparative analysis of basic and enhanced hole structures in photonic crystal fibers. J Opt (2024). https://doi.org/10.1007/s12596-024-01730-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-024-01730-3

Keywords

Navigation