Log in

Optoelectronic devices based on configurable hysteresis of Schmitt trigger circuit control with the employment of CMOS technology

  • Research Article
  • Published:
Journal of Optics Aims and scope Submit manuscript

Abstract

This study has clarified the optoelectronic devices based on configurable hysteresis of Schmitt trigger circuit control with the employment of CMOS technology. Schmitt trigger (ST) is an electronics circuit, widely used in a sensor network to detect a signal with low amplitude in a noisy environment. It converts a variable input signal to a constant output level. In contrast to the comparator, an ST offers two independent switching voltages with positive feedback that enhances the depth of the switching threshold. Hysteresis width is an inbuilt feature of the trigger circuit, removing the irregularities or noise near the threshold region and sha** it into smooth output. The hysteresis width can be adjusted by a suitable variation in the aspect ratio of input and feedback transistors. In this work, conventional ST architecture modifies by configuring the series and/or parallel connection of n-channel and p-channel MOS devices to adjust the hysteresis voltage. The simulation result is obtained with Cadence Spectra with BSIM3V3 device models at 90 nm CMOS technology, and hysteresis width falls by reducing the feedback ratio of the increase with feedback ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig.1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of data

Simulation software.

References

  1. L.A.P. Melek, A.L. da Silva, M.C. Schneider, C. Galup-Montoro, analysis and design of the classical CMOS Schmitt trigger in subthreshold operation. IEEE Trans. Circuits Syst. I: Regul. Pap. 64(4), 869–878 (2016)

    Article  MATH  Google Scholar 

  2. T. Aoki, Y. Kurokawa, M. Kozuma, Semiconductor device having Schmitt trigger NAND circuit and Schmitt trigger inverter. U.S. Patent, 9(1), 245–589 (2016)

  3. S.H. Park, et al, FM noise immunity enhancement using Schmitt trigger logic gates in CMOS process, in Proceeding URSI Asia-Pacific Radio Science Conference (URSI AP-RASC). Seoul, South Korea (2016)

  4. D. Kualshetra, S. Akashe, Design and analysis of low voltage high performance Schmitt trigger using efficient leakage reduction technique. J. Act. Passive Electron. Dev. 14(2/3), 239–247 (2019)

    Google Scholar 

  5. S. Hwang, S. Jang, S. Bae, S.K. Lee, S.H. Lee, S. Fabiano, T.W. Kim, All-solid-state organic Schmitt trigger implemented by twin two-in-one ferroelectric memory transistor. Adv Electron. Mater. 10(5), 1901263 (2020)

    Article  MATH  Google Scholar 

  6. A. Kumar, Effect of body biasing over CMOS inverter. Int. J. Electron. Commun. Technol. 4(2), 1–3 (2013)

    ADS  MATH  Google Scholar 

  7. L. Khanfir, J. Mouine, Clock delay-based design for hysteresis programming and noise reduction in dynamic comparators. Analog Integr. Circuits Sig. Process. 12(1), 103–110 (2020)

    MATH  Google Scholar 

  8. A. Kumar, B. Chaturvedi, S. Maheshwari, A fully electronically controllable schmitt trigger and duty cycle-modulated waveform generator. Int. J. Circuit Theory Appl. 45(12), 2157–2180 (2017)

    Article  MATH  Google Scholar 

  9. N. Lotze, Y. Manoli, Ultra-sub-threshold operation of always-on digital circuits for IoT applications by use of Schmitt trigger gates. IEEE Trans. Circuits Syst. I: Regul. Pap. 64(11), 2920–2933 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Chaturvedi, A. Kumar, A novel electronically controlled Schmitt trigger with clockwise and anticlockwise hysteresis. AEU-Int. J. Electron. Commun. 89(1), 136–145 (2018)

    Article  MATH  Google Scholar 

  11. Z. Chen, S. Chen, A high-speed low voltage CMOS Schmitt trigger with adjustable hysteresis, in Proceeding IEEE/ACIS 16th International Conference on Computer and Information Science (ICIS) Wuhan, China (2017)

  12. A. Nejati, Y. Bastan, P. Amiri, M.H. Maghami, A low-voltage bulk-driven differential CMOS Schmitt trigger with tunable hysteresis. J. Circuits, Syst. Comput. 28(07), 1920004 (2019)

    Article  Google Scholar 

  13. J.I. Morales, F. Chierchie, P.S. Mandolesi, E.E. Paolini, A high resolution all digital pulse width modulator architecture with a tunable delay element in CMOS. Int. J. Circuit Theory Appl. 32(4), 897–906 (2020)

    MATH  Google Scholar 

  14. A. Kumar, R.S. Mishra, Challenge-response pair (CRP) generator using Schmitt trigger physical unclonable function. proc. Adv. Comput. Commun. Technol. 33(1), 213–223 (2019)

    Article  MATH  Google Scholar 

  15. A. Kumar, S.L. Tripathi, U. Subramaniam, Variability analysis of SBOX with CMOS 45 nm technology. Wirel. Pers. Commun. 45(3), 1277–1288 (2021)

    MATH  Google Scholar 

  16. A. Kumar, S.L. Tripathi, R.S. Mishra, METAPUF: a challenge response pair generator. Period. Eng. Nat. Sci. (PEN) 6(2), 58–63 (2018)

    MATH  Google Scholar 

  17. A. Kumar, S. Tripathi, SBOX under PVT variation. Analog Integr. Circuits Sig. Process. 105(1), 73–82 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  18. “CD40106BM.Hex Schmitt Trigger CMOS Hex Schmitt triggers” Texas instruments datasheet (2017)

  19. A.L. da Silva Júnior, L.A. PasiniMelek, C. Galup-Montoro, M. Cherem Schneider, Inadequacy of the classical formulation of the CMOS Schmitt trigger. Int. J. Circuit Theory Appl. 49(5), 1261–1273 (2021)

    Article  MATH  Google Scholar 

  20. W. Lew, R. Cadotte Jr, Gate pulsing gate ladder, U.S. Patent 9(2), 57–628 (2017)

  21. V. Chauhan, P. Garg, Compensated Schmitt trigger circuit for providing monotonic hysteresis response, U.S. Patent No US20060017482A1 (2017)

  22. S.M. Sharroush, Inverter-based voltage-controlled and programmable comparators. Int. J. Circuit Theory Appl. 45(1), 1–23 (2020)

    MATH  Google Scholar 

  23. J.B. Kuang, SOI CMOS Schmitt trigger circuits with controllable hysteresis, U.S. Patent 6(2), 441–663 (2002)

  24. F. Yuan, A high-speed differential CMOS Schmitt trigger with regenerative current feedback and adjustable hysteresis. Analog Integr. Circuits Sig. Process. 63(1), 121–127 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Janveja, A. Khan, V. Niranjan, Performance evaluation of subthreshold Schmitt trigger using body bias techniques, in Proceeding International Conference on Computational Techniques in Information and Communication Technologies (ICCTICT), New Delhi, India (2016)

  26. S. Minaei, E. Yuce, A simple Schmitt trigger circuit with grounded passive elements and its application to square/triangular wave generator. Circuits, Syst. Signal Process. 31, 877–888 (2012)

    Article  MATH  Google Scholar 

  27. C. Zhang, A. Srivastava, P.K. Ajmera, Low voltage CMOS Schmitt trigger circuits. Electron. Lett. 39(24), 1696–1698 (2003)

    Article  ADS  Google Scholar 

  28. J.B. Kuang, C.-T. Chuang, Restoration of controllable hysteresis in partially depleted SOI CMOS Schmitt trigger circuit. IEEE Trans. Circuits Syst. II Express Briefs 51(7), 349–353 (2007)

    Article  MATH  Google Scholar 

  29. J.M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuit Design: A Design Perspective” 2nd edn. 273–275 Pearson education

  30. D.S. Barlow, Self-adjusting Schmitt trigger, U.S. Patent. 7(1), 167–333 (2007).

  31. S. Song, Y. Kim, Novel in-memory computing adder using 8+ T SRAM. Electronics 11(6), 929 (2022)

    Article  MATH  Google Scholar 

  32. S.K. Kingra, V. Parmar, C.C. Chang, B. Hudec, T.H. Hou, M. Suri, SLIM: simultaneous logic-in-memory computing exploiting bilayer analog OxRAM devices. Sci. Rep. 10(1), 2567 (2020)

    Article  ADS  Google Scholar 

  33. C. Yeswanth, A. Acharya, In-memory computing based boolean and logical circuit design using 8T SRAM, in Proceedings of the 2021 Devices for Integrated Circuit (DevIC), Kalyani, India, 430–434 (2021)

  34. M.M. Eid, S. Urooj, N.M. Alwadai, A.N.Z. Rashed, AlGaInP optical source integrated with fiber links and silicon avalanche photo detectors in fiber optic systems. Indones. J. Electr. Eng. Comput. Sci. 23, 847–54 (2021)

    Google Scholar 

  35. S. Urooj, N.M. Alwadai, A. Ibrahim, A.N.Z. Rashed, Simulative study of raised cosine impulse function with hamming grating profile based chirp Bragg grating fiber. J. Opt. Commun. 42(1), 350–365 (2021)

    Google Scholar 

  36. A.N.Z. Rashed, W.F. Zaky, M.M. Eid, O.S. Faragallah, Dynamic response based on non-linear material for electrical and optical analogy of full optical oscillator. Opt. Quantum Electron. 53(1), 234–250 (2021)

    MATH  Google Scholar 

  37. A.N.Z. Rashed, W.F. Zaky, H.M. El-Hageen, A.M. Alatwi, Technical specifications for an all-optical switch for information storage and processing systems. Eur. Phys. J. Plus 136(8), 1100–1112 (2021)

    Article  MATH  Google Scholar 

  38. V. Sorathiya, O.S. Faragallah, H.S. El-Sayed, M.M. Eid, A.N.Z. Rashed, Nanofocusing of optical wave using staircase tapered plasmonic waveguide. Appl. Phys. B 128(6), 104 (2022)

    Article  ADS  MATH  Google Scholar 

  39. L.K. Smirani, A.N.Z. Rashed, S.H. Ahammad, M.A. Hossain, M.G. Daher, E. Fahmy, Conventional/linear/Lorentzian material gain semiconductor optical amplifiers performance signature with four wave mixing (FWM) nonlinearity in optical fiber communication systems. J. Opt. Commun. 43(2), 202–218 (2022)

    Google Scholar 

Download references

Acknowledgements

Not applicable.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Authors contributed equally in this work.

Corresponding authors

Correspondence to Ramachandran Thandaiah Prabu, Shaik Hasane Ahammad, Md. Amzad Hossain or Ahmed Nabih Zaki Rashed.

Ethics declarations

Conflict of interest

No competing interests.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Srinivas, M., Sahoo, S. et al. Optoelectronic devices based on configurable hysteresis of Schmitt trigger circuit control with the employment of CMOS technology. J Opt (2024). https://doi.org/10.1007/s12596-023-01503-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12596-023-01503-4

Keywords

Navigation