Log in

Analysis of Molecular Circuitry Integrated to Lethargus State of Caenorhabditis elegans: A Review

  • REVIEW ARTICLE
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

Sleep is a quintessential phenomenon of our nervous system. In spite of enduring research, the complexity of brain makes it more challenging to understand the mechanism underlying the sleep phase with numinous nature. Across the animal kingdom, most of the features related to sleep are evolutionary conserved. Therefore, for the holistic overview, model organisms like Caenorhabditis elegans signify the complicated events in a simplistic way that could be helpful to envisage the specificities governing sleep in higher organisms. The main objective of the review was to study the molecular signalling developmentally time sleep pathways leading to the lethargus state of Caenorhabditis elegans. The present article brings forth the characteristic features pertinent to the lethargus state of C. elegans. In addition, the review also highlighted different molecular components like neurons, neurotransmitters (neuropeptides), signalling molecules, transcription factors involved in the lethargus phase. Taken together, the gathered information would be helpful to understand the phenomenal changes associated with sleep. Though the knowledge gaps presented here would serve as an endeavour to be explored for future research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alicea, B. 2020. Raising the Connectome: The emergence of neuronal activity and behaviour in Caenorhabditis elegans. Frontiers in Cellular Neuroscience 14: 299.

    Article  Google Scholar 

  • Allen, A.T., K.N. Maher, K.A. Wani, K.E. Betts, and D.L. Chase. 2011. Coexpressed D1- and D2-like dopamine receptors antagonistically modulate acetylcholine release in Caenorhabditis elegans. Genetics 188: 579–590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardiel, E.L., A.C. Giles, A.J. Yu, T.H. Lindsay, S.R. Lockery, and C.H. Rankin. 2016. Dopamine receptor DOP-4 modulates habituation to repetitive photoactivation of a C elegans polymodal nociceptor. Learning & Memory 23 (10): 495–503. https://doi.org/10.1101/lm.041830.116. (PMID: 27634141; PMCID: PMC5026203).

    Article  CAS  Google Scholar 

  • Van der Auwera, P., L. Frooninckx, K. Buscemi, R.T. Vance, J. Watteyne, O. Mirabeau, L. Temmerman, W. De Haes, L. Fancsalszky, and A. Gottschalk. 2020. RPamide neuropeptides NLP-22 and NLP-2 act through GnRH-like receptors to promote sleep and wakefulness in C. elegans. Scientific Reports 10 (1): 1–15.

    Google Scholar 

  • Bennett, H.L., Y. Khoruzhik, D. Hayden, H. Huang, J. Sanders, M.B. Walsh, D. Biron, and A.C. Hart. 2018. Normal sleep bouts are not essential for C. elegans survival and FoxO is important for compensatory changes in sleep. BMC Neuroscience 19 (1): 1–23.

    Article  Google Scholar 

  • Bentley, B., R. Branicky, C.L. Barnes, Y.L. Chew, E. Yemini, E.T. Bullmore, P.E. Vertes, and W.R. Schafer. 2016. The multilayer connectome of Caenorhabditis elegans. PLoS Computational Biology 12: e1005283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brenner, S. 1974. The genetics of Caenorhabditis elegans. Genetics 77: 71–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calhoun, A.J., A. Tong, N. Pokala, J.A.J. Fitzpatrick, T.O. Sharpee, and S.H. Chalasani. 2015. Neural mechanisms for evaluating environmental variability in Caenorhabditis elegans. Neuron 86 (2): 428–441. https://doi.org/10.1016/j.neuron.2015.03.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carnell, L., J. Illi, S.W. Hong, and S.L. McIntire. 2005. The G-protein-coupled serotonin receptor SER-1 regulates egg laying and male mating behaviors in Caenorhabditis elegans. The Journal of Neuroscience: THe Official Journal of the Society for Neuroscience 25 (46): 10671–10681. https://doi.org/10.1523/JNEUROSCI.3399-05.2005.

    Article  CAS  PubMed  Google Scholar 

  • Cermak, N., S.K. Yu, R. Clark, Y.C. Huang, S.N. Baskoylu, and S.W. Flavell. 2020. Whole-organism behavioral profiling reveals a role for dopamine in state-dependent motor program coupling in C. elegans. eLife 9: e57093. https://doi.org/10.7554/eLife.57093. (PMID: 32510332; PMCID: PMC7347390).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chase, D.L., J.S. Pepper, and M.R. Koelle. 2004. Mechanism of extrasynaptic dopamine signaling in Caenorhabditis elegans. Nature Neuroscience 7: 1096–1103.

    Article  CAS  PubMed  Google Scholar 

  • Cho, J.Y., and P.W. Sternberg. 2014. Multilevel modulation of a sensory motor circuit during C. elegans sleep and arousal. Cell 156 (1–2): 249–260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dresen, A., S. Finkbeiner, M. Dottermusch, J.-S. Beume, Y. Li, G. Walz, and E. Neumann-Haefelin. 2015. Caenorhabditis elegans OSM-11 signalling regulates SKN-1/Nrf during embryonic development and adult longevity and stress response. Developmental Biology 400 (1): 118–131.

    Article  CAS  PubMed  Google Scholar 

  • Driver, R.J., A.L. Lamb, A.J. Wyner, and D.M. Raizen. 2013. DAF-16/FOXO regulates homeostasis of essential sleep-like behaviour during larval transitions in C. elegans. Current Biology 23 (6): 501–506.

    Article  CAS  PubMed  Google Scholar 

  • Flavell, S.W., D.M. Raizen, and Y.-J. You. 2020. Behavioural states. Genetics 216 (2): 315–332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fry, A.L., J.T. Laboy, H. Huang, A.C. Hart, and K.R. Norman. 2016. A conserved GEF for rho-family GTPases acts in an EGF signalling pathway to promote sleep-like quiescence in Caenorhabditis elegans. Genetics 202 (3): 1153–1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gonzales, D.L., J. Zhou, B. Fan, and J.T. Robinson. 2019. A microfluidic-induced C. elegans sleep state. Nature Communications 10 (1): 1–13.

    Article  CAS  Google Scholar 

  • Grubbs, J.J., L.E. Lopes, A.M. van der Linden, and D.M. Raizen. 2020. A salt-induced kinase is required for the metabolic regulation of sleep. PLoS Biology 18 (4): e3000220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harris-Warrick, R.M., B.R. Johnson, J.H. Peck, P. Kloppenburg, A. Ayali, and J. Skarbinski. 1998. Distributed effects of dopamine modulation in the crustacean pyloric network. Annals of the New York Academy of Sciences 860: 155–167.

    Article  CAS  PubMed  Google Scholar 

  • Hino, T., S. Hirai, T. Ishihara, and M. Fujiwara. 2021. EGL-4/PKG regulates the role of an interneuron in a chemotaxis circuit of C. elegans through mediating integration of sensory signals. Genes to Cells : Devoted to Molecular & Cellular Mechanisms 26 (6): 411–425. https://doi.org/10.1111/gtc.12849.

    Article  CAS  Google Scholar 

  • Honer, M., K. Buscemi, N. Barrett, N. Riazati, G. Orlando, and M.D. Nelson. 2020. Orcokinin neuropeptides regulate sleep in Caenorhabditis elegans. Journal of Neurogenetics 34 (3–4): 440–452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H., D.J. Hayden, C.-T. Zhu, H.L. Bennett, V. Venkatachalam, L.L. Skuja, and A.C. Hart. 2018. Gap junctions and NCA cation channels are critical for developmentally timed sleep and arousal in Caenorhabditis elegans. Genetics 210 (4): 1369–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, H., C.-T. Zhu, L.L. Skuja, D.J. Hayden, and A.C. Hart. 2017. Genome-wide screen for genes involved in Caenorhabditis elegans developmentally timed sleep. G3: Genes, Genomes, Genetics 7 (9): 2907–2917.

    Article  CAS  PubMed  Google Scholar 

  • Iino, Y., and K. Yoshida. 2009. Parallel use of two behavioral mechanisms for chemotaxis in Caenorhabditis elegans. The Journal of Neuroscience : THe Official Journal of the Society for Neuroscience 29 (17): 5370–5380.

    Article  CAS  PubMed  Google Scholar 

  • Iwanir, S., N. Tramm, S. Nagy, C. Wright, D. Ish, and D. Biron. 2013. The microarchitecture of C. elegans behaviour during lethargus: Homeostatic bout dynamics, a typical body posture, and regulation by a central neuron. Sleep 36 (3): 385–395.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jiang, M., K. Spicher, G. Boulay, Y. Wang, and L. Birnbaumer. 2001. Most central nervous system D2 dopamine receptors are coupled to their effectors by Go. Proc Natl Acad Sci U S a. 98: 3577–3582.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katz, M., F. Corson, S. Iwanir, D. Biron, and S. Shaham. 2018. Glia modulate a neuronal circuit for locomotion suppression during sleep in C. elegans. Cell Reports 22 (10): 2575–2583.

    Article  CAS  PubMed  Google Scholar 

  • Konietzka, J., M. Fritz, S. Spiri, R. McWhirter, A. Leha, S. Palumbos, W.S. Costa, A. Oranth, A. Gottschalk, and D.M. Miller III. 2020. Epidermal growth factor signalling promotes sleep through a combined series and parallel neural circuit. Current Biology. 30 (1): 1–16.

    Article  CAS  PubMed  Google Scholar 

  • Lawler, D.E., Y.L. Chew, J.D. Hawk, A. Aljobeh, W.R. Schafer, and D.R. Albrecht. 2021. Sleep analysis in adult C. elegans reveals state-dependent alteration of neural and behavioural responses. Journal of Neuroscience 41 (9): 1892–1907.

    Article  CAS  PubMed  Google Scholar 

  • Makino, M., E. Ulzii, R. Shirasaki, J. Kim, and Y.J. You. 2021. Regulation of Satiety Quiescence by Neuropeptide Signaling in Caenorhabditis elegans. Frontiers in Neuroscience 15: 678590. https://doi.org/10.3389/fnins.2021.678590.

    Article  PubMed  PubMed Central  Google Scholar 

  • Maluck, E., I. Busack, J. Besseling, F. Masurat, M. Turek, K.E. Busch, and H. Bringmann. 2020. A wake-active locomotion circuit depolarizes a sleep-active neuron to switch on sleep. PLoS Biology 18 (2): e3000361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCulloch, K.A., and A.E. Rougvie. 2014. Caenorhabditis elegans period homolog lin-42 regulates the timing of heterochronic miRNA expression. Proceedings of the National Academy of Sciences 111 (43): 15450–15455.

    Article  CAS  Google Scholar 

  • Meneely, P.M., C.L. Dahlberg, and J.K. Rose. 2019. Working with worms: Caenorhabditis elegans as a model organism. Current Protocols Essential Laboratory Techniques 19 (1): e35.

    Article  Google Scholar 

  • Monsalve, G.C., C. Van Buskirk, and A.R. Frand. 2011. LIN-42/PERIOD controls cyclical and developmental progression of C elegans molts. Current Biology : CB 21 (24): 2033–2045. https://doi.org/10.1016/j.cub.2011.10.054.

    Article  CAS  PubMed  Google Scholar 

  • Moore, H., H.J. Rose, and A.A. Grace. 2001. Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology 4: 410–419. https://doi.org/10.1016/S0893-133X(00)00188-3. (PMID: 11182536).

    Article  Google Scholar 

  • Moosavi, M., and G.R. Hatam. 2018. The sleep in Caenorhabditis elegans: What we know until now. Molecular Neurobiology 55 (1): 879–889.

    Article  CAS  PubMed  Google Scholar 

  • Mori, S., T. Satoh, H. Koide, M. Nakafuku, E. Villafranca, and Y. Kaziro. 1995. Inhibition of Ras/Raf interaction by anti-oncogenic mutants of neurofibromin, the neurofibromatosis type 1 (NF1) gene product, in cell-free systems. Journal of Biological Chemistry 270 (48): 28834–28838. https://doi.org/10.1074/jbc.270.48.28834. (PMID: 7499408).

    Article  CAS  PubMed  Google Scholar 

  • Nagy, S., N. Tramm, J. Sanders, S. Iwanir, I.A. Shirley, E. Levine, and D. Biron. 2014. Homeostasis in C. elegans sleep is characterized by two behaviourally and genetically distinct mechanisms. eLife 3: e04380.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nelson, M.D., and D.M. Raizen. 2013. A sleep state during C. elegans development. Current Opinion in Neurobiology 23 (5): 824–830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson, M., N. Trojanowski, J. George-Raizen, C. Smith, C.-C. Yu, C. Fang-Yen, and D. Raizen. 2013. The neuropeptide NLP-22 regulates a sleep-like state in Caenorhabditis elegans. Nature Communications 4 (1): 1–10.

    Article  Google Scholar 

  • Niu, L., Y. Li, P. Zong, P. Liu, Y. Shui, B. Chen, and Z.-W. Wang. 2020. Melatonin promotes sleep by activating the BK channel in C. elegans. Proceedings of the National Academy of Sciences 117 (40): 25128–25137.

    Article  CAS  Google Scholar 

  • Perales, R., D.M. King, C. Aguirre-Chen, and C.M. Hammell. 2014. LIN-42, the Caenorhabditis elegans PERIOD homolog, negatively regulates microRNA transcription. PLoS Genetics 10 (7): e1004486.

    Article  PubMed  PubMed Central  Google Scholar 

  • Puhl, J.G., and K.A. Mesce. 2008. Dopamine activates the motor pattern for crawling in the medicinal leech. Journal of Neuroscience 28 (16): 4192–4200. https://doi.org/10.1523/JNEUROSCI.0136-08.2008. (PMID: 18417698; PMCID: PMC2529178).

    Article  CAS  PubMed  Google Scholar 

  • Raizen, D.M., J.E. Zimmerman, M.H. Maycock, U.D. Ta, Y.-J. You, M.V. Sundaram, and A.I. Pack. 2008. Lethargus is a Caenorhabditis elegans sleep-like state. Nature 451 (7178): 569–572.

    Article  CAS  PubMed  Google Scholar 

  • Rengarajan, S., K.A. Yankura, M.L. Guillermin, W. Fung, and E.A. Hallem. 2019. Feeding state sculpts a circuit for sensory valence in Caenorhabditis elegans. Proc Natl Acad Sci U S a. 116 (5): 1776–1781. https://doi.org/10.1073/pnas.1807454116. (Epub 2019 Jan 16. PMID: 30651312; PMCID: PMC6358703).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salazar, J.L., S.-A. Yang, and S. Yamamoto. 2020. Post-developmental roles of notch signalling in the nervous system. Biomolecules 10 (7): 985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanyal, S., R.F. Wintle, K.S. Kindt, W.M. Nuttley, R. Arvan, P. Fitzmaurice, E. Bigras, D.C. Merz, T.E. Hébert, D. van der Kooy, W.R. Schafer, J.G. Culotti, and H.H. Van Tol. 2004. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO Journal 23 (2): 473–482. https://doi.org/10.1038/sj.emboj.7600057. (Epub 2004 Jan 22. PMID: 14739932; PMCID: PMC1271763).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sawin, E.R., R. Ranganathan, and H.R.C. Horvitz. 2000. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 3: 619–631. https://doi.org/10.1016/s0896-6273(00)81199-x. (PMID: 10896158).

    Article  Google Scholar 

  • Schwarz, J., J.P. Spies, and H. Bringmann. 2012. Reduced muscle contraction and a relaxed posture during sleep-like Lethargus. Worm 1 (1): 12–14. https://doi.org/10.4161/worm.19499.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharples, S.A., K. Koblinger, J.M. Humphreys, and P.J. Whelan. 2014. Dopamine: A parallel pathway for the modulation of spinal locomotor networks. Front Neural Circuits. 16 (8): 55. https://doi.org/10.3389/fncir.2014.00055.PMID:24982614;PMCID:PMC4059167.

    Article  Google Scholar 

  • Singh, K., M.Y. Chao, G.A. Somers, H. Komatsu, M.E. Corkins, J. Larkins-Ford, T. Tucey, H.M. Dionne, M.B. Walsh, E.K. Beaumont, D.P. Hart, S.R. Lockery, and A.C. Hart. 2011. C. elegans Notch signaling regulates adult chemosensory response and larval molting quiescence. Current Biology : CB 21 (10): 825–834. https://doi.org/10.1016/j.cub.2011.04.010.

    Article  CAS  PubMed  Google Scholar 

  • Singh, K., J.Y. Ju, M.B. Walsh, M.A. DiIorio, and A.C. Hart. 2014. Deep conservation of genes required for both Drosophila melanogaster and Caenorhabditis elegans sleep includes a role for dopaminergic signalling. Sleep 37 (9): 1439–1451.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spies, J., and H. Bringmann. 2018. Automated detection and manipulation of sleep in C. elegans reveals depolarization of a sleep-active neuron during mechanical stimulation-induced sleep deprivation. Scientific Reports 8 (1): 1–10.

    Article  Google Scholar 

  • Sugiura, M., S. Fuke, S. Suo, N. Sasagawa, H.H. Van Tol, and S. Ishiura. 2005. Characterization of a novel D2-like dopamine receptor with a truncated splice variant and a D1-like dopamine receptor unique to invertebrates from Caenorhabditis elegans. Journal of Neurochemistry 94: 1146–1157.

    Article  CAS  PubMed  Google Scholar 

  • Suo, S., N. Sasagawa, and S. Ishiura. 2002. Identification of a dopamine receptor from Caenorhabditis elegans. Neuroscience Letters 319: 13–16.

    Article  CAS  PubMed  Google Scholar 

  • Svensson, E., M.A. Wikström, R.H. Hill, and S. Grillner. 2003. Endogenous and exogenous dopamine presynaptically inhibits glutamatergic reticulospinal transmission via an action of D2-receptors on N-type Ca2+ channels. European Journal of Neuroscience 3: 447–454. https://doi.org/10.1046/j.1460-9568.2003.02466.x. (PMID: 12581163).

    Article  Google Scholar 

  • Tononi, G., and C. Cirelli. 2014. Sleep and the price of plasticity: From synaptic and cellular homeostasis to memory consolidation and integration. Neuron 81 (1): 12–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trojanowski, N.F., and D.M. Raizen. 2016. Call it worm sleep. Trends in Neurosciences 39 (2): 54–62.

    Article  CAS  PubMed  Google Scholar 

  • Tsalik, E.L., T. Niacaris, A.S. Wenick, K. Pau, L. Avery, and O. Hobert. 2003. LIM homeobox gene-dependent expression of biogenic amine receptors in restricted regions of the C elegans nervous system. Developmental Biology 263: 81–102.

    Article  CAS  PubMed  Google Scholar 

  • Turek, M., J. Besseling, J.-P. Spies, S. König, and H. Bringmann. 2016. Sleep-active neuron specification and sleep induction require FLP-11 neuropeptides to systemically induce sleep. eLife 5: e12499.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turek, M., and H. Bringmann. 2014. Gene expression changes of Caenorhabditis elegans larvae during molting and sleep-like lethargus. PLoS ONE 9 (11): e113269.

    Article  PubMed  PubMed Central  Google Scholar 

  • Turek, M., I. Lewandrowski, and H. Bringmann. 2013. An AP2 transcription factor is required for a sleep-active neuron to induce sleep-like quiescence in C. elegans. Current Biology 23 (22): 2215–2223.

    Article  CAS  PubMed  Google Scholar 

  • Walker, D.S., and W.R. Schafer. 2020. Distinct roles for innexin gap junctions and hemichannels in mechanosensation. eLife 9: e50597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, H.Y., A.S. Undie, and E. Friedman. 1995. Evidence for the coupling of Gq protein to D1-like dopamine sites in rat striatum: Possible role in dopamine-mediated inositol phosphate formation. Molecular Pharmacology 48: 988–994.

    CAS  PubMed  Google Scholar 

  • Wang, D., Y. Yu, Y. Li, Y. Wang, and D. Wang. 2014. Dopamine receptors antagonistically regulate behavioral choice between conflicting alternatives in C elegans. PLoS ONE 9 (12): e115985. https://doi.org/10.1371/journal.pone.0115985.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, Y., F. Masurat, J. Preis, and H. Bringmann. 2018. Sleep counteracts aging phenotypes to survive starvation-induced developmental arrest in C. elegans. Current Biology. 28 (22): 3610–3624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu, M.N., and D.M. Raizen. 2011. Notch signalling: a role in sleep and stress. Current Biology 21 (10): R397–R398.

    Article  CAS  PubMed  Google Scholar 

  • Zielinski, M.R., J.T. McKenna, and R.W. McCarley. 2016. Functions and mechanisms of sleep. AIMS Neuroscience 3 (1): 67.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

All the authors who had actively participated in the preparation of manuscript is highly acknowledge for their timely support and sharing of their views. The corresponding author JSH and AC designs the core area of the review. Authors –LM, NB and OSD, KMD, MAD, contributed in the design of research questions, data and framing the objective of the review in searching literature reviews, computing etc. We are thankful to Negenome Bio Solutions Pvt Ltd for their constant support.

Funding

No funding or grants have been issued for this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joykishan Sharma Hanjabam.

Ethics declarations

Conflict of interest

No conflict of interest has been declared by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanjabam, J.S., Devi, O.S., Collins, A. et al. Analysis of Molecular Circuitry Integrated to Lethargus State of Caenorhabditis elegans: A Review. Proc Zool Soc 77, 155–163 (2024). https://doi.org/10.1007/s12595-024-00524-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-024-00524-6

Keywords

Navigation