Log in

Responses of Soil Nematodes to Combined Bio-Organo-Mineral Fertilizers on Upland Rice Crop** in the Highlands of Madagascar

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

Upland rainfed rice crop** in the highlands of Madagascar is strongly limited by poor Ferralsol mineral fertility. There is an urgent need to identify efficient and sustainable fertilization practices that improve soil fertility without inducing pest proliferation. For that purpose, using a field trial for 2 successive years, we tested the effect of 16 fertilization practices on the abundance and taxonomic diversity of soil active nematodes, which are known to be biological indicators of soil fertility. We tested both fertilization practices traditionally used by farmers and innovative ones based on the assemblage of organic, mineral and biological (earthworms and mycorrhiza) fertilizers. We identified eight types of practices: (1) no fertilization; (2) fertilization with NPK and urea; (3) low input rates (3 t dry matter ha−1) of organic fertilizers without NPK; (4) low input rates of organic fertilizers with NPK; (5) high input rates (6 t dry matter ha−1) of organic fertilizers; (6) high input rates of organic fertilizers with mineral fertilizers; (7) high input rates of a mixture of organic fertilizers and (8) high input rates of a mixture of organic fertilizer with mineral fertilizers. After 2 years, we identified 41 soil nematode taxa. The taxonomic composition of the nematode communities revealed that Ferralsols are a stressful environment for the soil biota. The low abundance of opportunistic bacterivores indicated that the different fertilization practices did not significantly and deeply increase the amount of plant-available nutrients, and thus soil fertility. However, organic fertilizers significantly increased the abundance of omni-predators, indicating a moderately mature food web. Some practices induced worrying increases in the endoparasitic Meloidogyne and Pratylenchus, which requires monitoring of root symptoms to avoid the establishment of their populations. Monitor soil nematode communities in upland rice growing on Ferralsols could be used as agronomic indicators to promote sustainable rice production systems in Madagascar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The nematode taxonomic dataset generated during this study is available in the supplementary materials.

References

  • Akhtar, M., and A. Malik. 2000. Roles of organic soil amendments and soil organisms in the biological control of plant-parasitic nematodes: A review. Bioresource Technology 74 (1): 35–47. https://doi.org/10.1016/S0960-8524(99)00154-6.

    Article  CAS  Google Scholar 

  • Allen-Morley, C.R., and D.C. Coleman. 1989. Resilience of soil biota in various food webs to freezing perturbations. Ecology 70 (4): 1127–1141. https://doi.org/10.2307/1941381.

    Article  Google Scholar 

  • Andriamananjara, A., T. Rakotoson, T. Razafimbelo, L. Rabeharisoa, M.P. Razafimanantsoa, and D. Masse. 2019. Farmyard manure improves phosphorus use efficiency in weathered P deficient soil. Nutrient Cycling in Agroecosystems 115 (3): 407–425. https://doi.org/10.1007/s10705-019-10022-3.

    Article  CAS  Google Scholar 

  • Arancon, N.Q., C.A. Edwards, S.S. Lee, and E. Yardim. 1998. Management of plant parasitic nematode populations by use of vermicomposts. BCPC Conference - Pests & Diseases 2002 (1): 1–6.

    Google Scholar 

  • Bilgrami, A.L., 2008. Biological control potentials of predatory nematodes. In Integrated management and biocontrol of vegetable and grain crops nematodes (pp. 3–28). Springer, Dordrecht.

  • Blanchart, E., C. Villenave, A. Viallatoux, B. Barthès, C. Girardin, A. Azontonde, and C. Feller. 2006. Long-term effect of a legume cover crop (Mucuna pruriens var. utilis) on the communities of soil macrofauna and nematofauna, under maize cultivation, in southern Benin. European Journal of Soil Biology 42 (SUPPL. 1): 136–144. https://doi.org/10.1016/j.ejsobi.2006.07.018.

    Article  Google Scholar 

  • Blanchart, E., O. Ratsiatosika, H. Raveloson, T. Razafimbelo, M. Razafindrakoto, M. Sester, T. Becquer, L. Bernard, and J. Trap. 2019. Nitrogen supply reduces the earthworm-silicon control on rice blast disease in a Ferralsol. Applied Soil Ecology. 145: 103341.

    Article  Google Scholar 

  • Bongers, T. 1990. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 83 (1): 14–19.

    Article  PubMed  Google Scholar 

  • Bongers, T., and M. Bongers. 1998. Functional diversity of nematodes. Applied Soil Ecology 10 (3): 239–251. https://doi.org/10.1016/S0929-1393(98)00123-1.

    Article  Google Scholar 

  • Bongers, T., H. Van Der Meulen, and G. Korthals. 1997. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Applied Soil Ecology 6 (2): 195–199. https://doi.org/10.1016/S0929-1393(96)00136-9.

    Article  Google Scholar 

  • Bonkowski, M., B. Griffiths, and C. Scrimgeour. 2000. Substrate heterogeneity and microfauna in soil organic “hotspots” as determinants of nitrogen capture and growth of ryegrass. Applied Soil Ecology 14 (1): 37–53. https://doi.org/10.1016/S0929-1393(99)00047-5.

    Article  Google Scholar 

  • Briar, S.S., P.S. Grewal, N. Somasekhar, D. Stinner, and S.A. Miller. 2007. Soil nematode community, organic matter, microbial biomass and nitrogen dynamics in field plots transitioning from conventional to organic management. Applied Soil Ecology 37 (3): 256–266. https://doi.org/10.1016/j.apsoil.2007.08.004.

    Article  Google Scholar 

  • Briar, S.S., S.A. Miller, D. Stinner, M.D. Kleinhenz, and P.S. Grewal. 2011. Effects of organic transition strategies for peri-urban vegetable production on soil properties, nematode community, and tomato yield. Applied Soil Ecology 47 (2): 84–91. https://doi.org/10.1016/j.apsoil.2010.12.001.

    Article  Google Scholar 

  • Bulluck, L.R., K.R. Barker, and J.B. Ristaino. 2002. Influences of organic and synthetic soil fertility amendments on nematode trophic groups and community dynamics under tomatoes. Applied Soil Ecology 21 (3): 233–250. https://doi.org/10.1016/S0929-1393(02)00089-6.

    Article  Google Scholar 

  • Cardoso, I.M., and T.W. Kuyper. 2006. Mycorrhizas and tropical soil fertility. Agriculture, Ecosystems & Environment 116: 72–84. https://doi.org/10.1016/j.agee.2006.03.011.

    Article  Google Scholar 

  • Chapuis, E., G. Besnard, S. Andrianasetra, M. Rakotomalala, H.T. Nguyen, and S. Bellafiore. 2016. First report of the root-knot nematode (Meloidogyne graminicola) in Madagascar rice fields. Australasian Plant Disease Notes 11 (1): 2014–2017. https://doi.org/10.1007/s13314-016-0222-5.

    Article  Google Scholar 

  • Chen, J.H., 2006. The combined use of chemical and organic fertilizers and/or biofertilizer for crop growth and soil fertility. In International workshop on sustained management of the soil-rhizosphere system for efficient crop production and fertilizer use, 16, No. 20, pp. 1–11. Land Development Department Bangkok Thailand.

  • Chen, D., S. Zheng, Y. Shan, F. Taube, and Y. Bai. 2013. Vertebrate herbivore-induced changes in plants and soils: Linkages to ecosystem functioning in a semi-arid steppe. Functional Ecology 27 (1): 273–281. https://doi.org/10.1111/1365-2435.12027.

    Article  Google Scholar 

  • Chen, J., and H. Ferris. 1999. The effects of nematode grazing on nitrogen mineralization during fungal decomposition of organic matter. Soil Biology and Biochemistry 31 (9): 1265–1279. https://doi.org/10.1016/S0038-0717(99)00042-5.

    Article  CAS  Google Scholar 

  • Coll, P., E. Le Cadre, and C. Villenave. 2012. How are nematode communities affected during a conversion from conventional to organic farming in southern French vineyards? Nematology 16 (PART6): 665–676. https://doi.org/10.1163/156854112X624195.

    Article  Google Scholar 

  • Coyne, D.L., K.L. Sahrawat, and R.A. Plowright. 2004. The influence of mineral fertilizer application and plant nutrition on plant-parasitic nematodes in upland and lowland rice in Côte d’Ivoire and its implications in long term agricultural research trials. Experimental Agriculture 40 (2): 245–256. https://doi.org/10.1017/S0014479703001595.

    Article  CAS  Google Scholar 

  • Djigal, D., S. Saj, B. Rabary, E. Blanchart, and C. Villenave. 2012. Mulch type affects soil biological functioning and crop yield of conservation agriculture systems in a long-term experiment in Madagascar. Soil and Tillage Research 118: 11–21. https://doi.org/10.1016/j.still.2011.10.008.

    Article  Google Scholar 

  • Dutta, S., R. Pal, A. Chakraborty, and K. Chakrabarti. 2003. Influence of integrated plant nutrient supply system on soil quality restoration in a red and laterite soil: Einfluss integrierter pflanzennährstoff versorgung auf die wiederherstellun der bodenqualität von rotem und laterit boden. Archives of Agronomy and Soil Science 49 (6): 631–637. https://doi.org/10.1080/03650340310001599722.

    Article  CAS  Google Scholar 

  • Ferris, H., T. Bongers, and R.G.M. De Goede. 2001. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Applied Soil Ecology 18 (1): 13–29. https://doi.org/10.1016/S0929-1393(01)00152-4.

    Article  Google Scholar 

  • Ferris, H., B.S. Griffiths, D.L. Porazinska, T.O. Powers, K.H. Wang, and M. Tenuta. 2012. Reflections on plant and soil nematode ecology: Past, present and future. Journal of Nematology 44 (2): 115–126.

    PubMed  PubMed Central  Google Scholar 

  • Ferris, H., R.C. Venette, and K.M. Scow. 2004. Soil management to enhance bacterivore and fungivore nematode populations and their nitrogen mineralisation function. Applied Soil Ecology 25 (1): 19–35. https://doi.org/10.1016/j.apsoil.2003.07.001.

    Article  Google Scholar 

  • Flor-Peregrín, E., R. Azcón, V. Martos, S. Verdejo-Lucas, and M. Talavera. 2014. Effects of dual inoculation of mycorrhiza and endophytic, rhizospheric or parasitic bacteria on the root-knot nematode disease of tomato. Biocontrol Science and Technology 24 (10): 1122–1136. https://doi.org/10.1080/09583157.2014.925091.

    Article  Google Scholar 

  • Hill, M.O. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54 (2): 427–432.

    Article  Google Scholar 

  • Hu, J., G. Chen, W.M. Hassan, J. Lan, W. Si, W. Wang, G. Li, and G. Du. 2022. The impact of fertilization intensity on soil nematode communities in a Tibetan Plateau grassland ecosystem. Applied Soil Ecology 170: 104258. https://doi.org/10.1016/j.apsoil.2021.104258.

    Article  Google Scholar 

  • Hu, J., G.R. Chen, W.M. Hassan, H. Chen, J. Li, and G. Du. 2017. Fertilization influences the nematode community through changing the plant community in the Tibetan Plateau. European Journal of Soil Biology 78: 7–16. https://doi.org/10.1016/j.ejsobi.2016.11.001.

    Article  CAS  Google Scholar 

  • Husein Malkawi, A.I., A.S. Alawneh, and O.T. Abu-Safaqah. 1999. Effects of organic matter on the physical and the physicochemical properties of an illitic soil. Applied Clay Science 14 (5–6): 257–278. https://doi.org/10.1016/S0169-1317(99)00003-4.

    Article  CAS  Google Scholar 

  • Ilieva-Makulec, K., and G. Makulec. 2007. Does the activity of the earthworm Aporrectodea caliginosa modify the plant diversity effect on soil nematodes? European Journal of Soil Biology 43: 157–164. https://doi.org/10.1016/j.ejsobi.2007.08.042.

    Article  Google Scholar 

  • Ingham, R.E., J.A. Trofymow, and D.C. Coleman. 1985. Interactions of bacteria, fungi, and their nematode grazers: effects on nutrient cycling and plant growth. Ecological society of America stable. Ecological Monographs 55 (1): 119–140.

    Article  Google Scholar 

  • IUSS Working Group WRB, 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome

  • Jian-Feng, H.U.A., L.I.N. **an-Gui, B.A.I. Jian-Feng, S.H.A.O. Yu-Fang, Y.I.N. Rui, and Q. Jiang. 2010. Effects of arbuscular mycorrhizal fungi and earthworm on nematode communities and arsenic uptake by maize in arsenic-contaminated soils. Pedosphere 20 (2): 163–173.

    Article  Google Scholar 

  • Jiang, Y., B. Sun, C. **, and F. Wang. 2013. Soil aggregate stratification of nematodes and microbial communities affects the metabolic quotient in an acid soil. Soil Biology and Biochemistry 60: 1–9. https://doi.org/10.1016/j.soilbio.2013.01.006.

    Article  CAS  Google Scholar 

  • Lafont, A., J.-M. Risède, G. Loranger-Merciris, C. Clermont-Dauphin, M. Dorel, B. Rhino, and P. Lavelle. 2007. Effects of the earthworm Pontoscolex corethrurus on banana plants infected or not with the plant-parasitic nematode Radopholus similis. Pedobiologia 51: 311–318.

    Article  CAS  Google Scholar 

  • Lavelle, P., S. Barot, M. Blouin, T. Decaëns, J.J. Jimenez, and P. Jouquet. 2007. Earthworms as key actors in self-organized soil systems. Ecosystem engineers: plants to Protists. Theoretical Ecology Series 405: 77.

    Article  Google Scholar 

  • Le Bayon, R.-C., and R. Milleret. 2009. Effects of earthworms on phosphorus dynamics–a review. Dynamic Soil, Dynamic Plant 3: 21–27.

    Google Scholar 

  • Li, Q., H. Bai, W. Liang, J. **a, S. Wan, and W.H. van der Putten. 2013. Nitrogen addition and warming independently influence the belowground micro-food web in a temperate steppe. PLoS ONE 8 (3): 1–10. https://doi.org/10.1371/journal.pone.0060441.

    Article  CAS  Google Scholar 

  • Li, Q., Y. Jiang, W. Liang, Y. Lou, E. Zhang, and C. Liang. 2010. Long-term effect of fertility management on the soil nematode community in vegetable production under greenhouse conditions. Applied Soil Ecology 46 (1): 111–118. https://doi.org/10.1016/j.apsoil.2010.06.016.

    Article  Google Scholar 

  • Liu, T., X. Chen, F. Hu, W. Ran, Q. Shen, H. Li, and J.K. Whalen. 2016b. Carbon-rich organic fertilizers to increase soil biodiversity: Evidence from a meta-analysis of nematode communities. Agriculture, Ecosystems and Environment 232: 199–207. https://doi.org/10.1016/j.agee.2016.07.015.

    Article  Google Scholar 

  • Liu, T., J.K. Whalen, Q. Shen, and H. Li. 2016a. Increase in soil nematode abundance due to fertilization was consistent across moisture regimes in a paddy rice-upland wheat system. European Journal of Soil Biology 72: 21–26. https://doi.org/10.1016/j.ejsobi.2015.12.001.

    Article  Google Scholar 

  • Murphy, J., and J.P. Riley. 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Mwangi, W.M. 1996. Low use of fertilizers and low productivity in sub-Saharan Africa. Nutrient Cycling in Agroecosystems 47 (2): 135–147. https://doi.org/10.1007/BF01991545.

    Article  Google Scholar 

  • Neher, Deborah A. 1999. Nematode communities in organically and conventionally managed agricultural soils. Journal of Nematology 31 (2): 142–154.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neher, Deborah A. 2001. Role of nematodes in soil health and their use as indicators. Journal of Nematology 33 (4): 161–168.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Neher, D.A., T.R. Weicht, and M.E. Barbercheck. 2012. Linking invertebrate communities to decomposition rate and nitrogen availability in pine forest soils. Applied Soil Ecology 54: 14–23. https://doi.org/10.1016/j.apsoil.2011.12.001.

    Article  Google Scholar 

  • Ohno, T., and L.M. Zibilske. 1991. Determination of low concentration of phosphorus in soil extracts using malachite green. Soil Sci Soc Am J 55: 892–895.

    Article  CAS  Google Scholar 

  • Oka, Y. 2010. Mechanisms of nematode suppression by organic soil amendments-A review. Applied Soil Ecology 44: 101–115. https://doi.org/10.1016/j.apsoil.2009.11.003.

    Article  Google Scholar 

  • Okada, H., and H. Harada. 2007. Effects of tillage and fertilizer on nematode communities in a Japanese soybean field. Applied Soil Ecology 35 (3): 582–598. https://doi.org/10.1016/j.apsoil.2006.09.008.

    Article  Google Scholar 

  • Puissant, J., C. Villenave, C. Chauvin, C. Plassard, E. Blanchart, and J. Trap. 2021. Quantification of the global impact of agricultural practices on soil nematodes: A meta-analysis. Soil Biology and Biochemistry 161: 108383. https://doi.org/10.1016/j.soilbio.2021.108383.

    Article  CAS  Google Scholar 

  • Rabeharisoa, L., O.R. Razanakoto, M.P. Razafimanantsoa, T. Rakotoson, F. Amery, and E. Smolders. 2012. Larger bioavailability of soil phosphorus for irrigated rice compared with rainfed rice in Madagascar: Results from a soil and plant survey. Soil Use and Management 28 (4): 448–456. https://doi.org/10.1111/j.1475-2743.2012.00444.x.

    Article  Google Scholar 

  • Rakotomalala, R. 2005. TANAGRA: un logiciel gratuit pour l’enseignement et la recherche. Actes de EGC, RNTI-E3 2.

  • Raminoarison, M., T. Razafimbelo, T. Rakotoson, T. Becquer, E. Blanchart, and J. Trap. 2020. Multiple-nutrient limitation of upland rainfed rice in ferralsols: A greenhouse nutrient-omission trial. Journal of Plant Nutrition 43 (2): 270–284. https://doi.org/10.1080/01904167.2019.1676906.

    Article  CAS  Google Scholar 

  • Raminoarison, M., E. Blanchart, T. Razafimbelo, L. Thuriès, and J. Trap. 2022. Chemical and biochemical quality of organic and/or mineral fertilization resources-A dataset from the Highlands of Madagascar. Data in Brief 43: 108458

  • Ratsiatosika, O., E. Blanchart, T. Razafimbelo, M. Razafindrakoto, K. vom Brocke, T.V. Cao-Hamadou, J.M. Rakotomalala Andriamarosata, A. Ramanantsoanirina, and J. Trap. 2021. Does rice breeding affect the ability of plants to interact with earthworms in nutrient-depleted Ferralsols? Applied Soil Ecology 163 (March): 103958. https://doi.org/10.1016/j.apsoil.2021.103958.

    Article  Google Scholar 

  • Ratsiatosika, O., L. Bernard, B. Rabary, I. Rainihanjarimanana, R. Randriamanantsoa, T. Razafimbelo, M. Razafindrakoto, J. Trap, and E. Blanchart. 2019. Earthworm functional groups, residue quality and management impact on upland rice growth and yield–an experimental study in the Madagascar highlands. Journal of Experimental Agriculture International 30: 1–14.

    Article  Google Scholar 

  • Ratsiatosika, Onja, M. Razafindrakoto, T. Razafimbelo, M. Rabenarivo, T. Becquer, L. Bernard, J. Trap, and E. Blanchart. 2021b. Earthworm inoculation improves upland rice crop yield and other agrosystem services in Madagascar. Agriculture (switzerland) 11 (1): 1–14. https://doi.org/10.3390/agriculture11010060.

    Article  CAS  Google Scholar 

  • Raveloson, H., I. Ratsimiala Ramonta, D. Tharreau, and M. Sester. 2018. Long-term survival of blast pathogen in infected rice residues as major source of primary inoculum in high altitude upland ecology. Plant Pathology 67: 610–618.

    Article  Google Scholar 

  • Razanamalala, K., R.A. Fanomezana, T. Razafimbelo, T. Chevallier, J. Trap, E. Blanchart, and L. Bernard. 2018. The priming effect generated by stoichiometric decomposition and nutrient mining in cultivated tropical soils: Actors and drivers. Applied Soil Ecology 126 (December 2017): 21–33. https://doi.org/10.1016/j.apsoil.2018.02.008.

    Article  Google Scholar 

  • Renčo, M., and P. Kováčik. 2012. Response of plant parasitic and free living soil nematodes to composted animal manure soil amendments. Journal of Nematology 44 (4): 329–336.

    PubMed  PubMed Central  Google Scholar 

  • Sackett, T.E., A.T. Classen, and N.J. Sanders. 2010. Linking soil food web structure to above- and belowground ecosystem processes: A meta-analysis. Oikos 119 (12): 1984–1992. https://doi.org/10.1111/j.1600-0706.2010.18728.x.

    Article  Google Scholar 

  • Sánchez-Moreno, S., and H. Ferris. 2007. Suppressive service of the soil food web: Effects of environmental management. Agriculture, Ecosystems and Environment 119 (1–2): 75–87. https://doi.org/10.1016/j.agee.2006.06.012.

    Article  Google Scholar 

  • Sánchez-Moreno, S., H. Minoshima, H. Ferris, and L.E. Jackson. 2006. Linking soil properties and nematode community composition: Effects of soil management on soil food webs. Nematology 8 (5): 703–715. https://doi.org/10.1163/156854106778877857.

    Article  Google Scholar 

  • Seinhorst, J. 1962. Modifications of the elutriation method for extracting nematodes from soil. Nematologica 8: 117–128.

    Article  Google Scholar 

  • Sester, M., H. Raveloson, D. Tharreau, and T. Becquer. 2019. Difference in blast development in upland rice grown on an Andosol vs a Ferralsol. Crop Protection 115: 40–46.

    Article  Google Scholar 

  • Talwana, H., Z. Sibanda, W. Wanjohi, W. Kimenju, N. Luambano-Nyoni, C. Massawe, R.H. Manzanilla-López, K.G. Davies, D.J. Hunt, R.A. Sikora, D.L. Coyne, S.R. Gowen, and B.R. Kerry. 2016. Agricultural nematology in East and Southern Africa: Problems, management strategies and stakeholder linkages. Pest Management Science 72 (2): 226–245. https://doi.org/10.1002/ps.4104.

    Article  CAS  PubMed  Google Scholar 

  • Tenenhaus, M. 1998. La régression PLS. Paris.

    Google Scholar 

  • Torrini, G., P.F. Roversi, C.F. Cesaroni, and L. Marianelli. 2020. Pest risk analysis of rice root-knot nematode (Meloidogyne graminicola) for the Italian territory. EPPO Bulletin 50 (2): 330–339. https://doi.org/10.1111/epp.12666.

    Article  Google Scholar 

  • Trap, J., M.P. Ranoarisoa, S. Raharijaona, L. Rabeharisoa, C. Plassard, E.H. Mayad, L. Bernard, T. Becquer, and E. Blanchart. 2021. Agricultural practices modulate the beneficial activity of bacterial-feeding nematodes for plant growth and nutrition: Evidence from an original intact soil core technique. Sustainability (Switzerland). https://doi.org/10.3390/su13137181.

  • Trap, J., E. Blanchart, O. Ratsiatosika, M. Razafindrakoto, T. Becquer, A. Andriamananjara, and C. Morel. 2021. Effects of the earthworm Pontoscolex corethrurus on rice P nutrition and plant-available soil P in a tropical Ferralsol. Applied Soil Ecology 160: 103867. https://doi.org/10.1016/j.apsoil.2020.103867.

    Article  Google Scholar 

  • Trap, J., M. Bonkowski, C. Plassard, C. Villenave, and E. Blanchart. 2016. Ecological importance of soil bacterivores for ecosystem functions. Plant and Soil 398 (1–2): 1–24. https://doi.org/10.1007/s11104-015-2671-6.

    Article  CAS  Google Scholar 

  • van den Hoogen, J., S. Geisen, D. Routh, H. Ferris, W. Traunspurger, D.A. Wardle, R.G.M. de Goede, B.J. Adams, W. Ahmad, W.S. Andriuzzi, R.D. Bardgett, M. Bonkowski, R. Campos-Herrera, J.E. Cares, T. Caruso, L. de Brito Caixeta, X. Chen, S.R. Costa, R. Creamer, and T.W. Crowther. 2019. Soil nematode abundance and functional group composition at a global scale. Nature 572 (7768): 194–198. https://doi.org/10.1038/s41586-019-1418-6.

    Article  CAS  PubMed  Google Scholar 

  • Van Soest, P.J., and R.H. Wine. 1967. Use of detergents in the analysisof fibrous feeds, IV. Determination of plant cell-wall constituents. Journal of the Association of Official Analytical Chemists 50: 50–55.

    Google Scholar 

  • Vieira Júnior, J.O.L., R.C. Pereira, R.L. Soto, I.M. Cardoso, E.A. Mondino, R.L.L. Berbara, and E. Sá Mendonça. 2021. Organic fertilization influences nematode diversity and maturity index in coffee tree plantations using an agroforestry system. Journal of Nematology 53: 1–13.

    Article  Google Scholar 

  • Villenave, C., T. Bongers, K. Ekschmitt, P. Fernandes, and R. Oliver. 2003. Changes in nematode communities after manuring in millet fields in Senegal. Nematology 5 (3): 351–358. https://doi.org/10.1163/156854103769224340.

    Article  Google Scholar 

  • Villenave, C., B. Rabary, J.-L. Chotte, E. Blanchart, and D. Djigal. 2009. Impact of direct seeding mulch-based crop** systems on soil nematodes in a long-term experiment in Madagascar. Pesquisa Agropecuária Brasileira 44 (8): 949–953. https://doi.org/10.1590/s0100-204x2009000800022.

    Article  Google Scholar 

  • Villenave, C., B. Rabary, E. Kichenin, D. Djigal, and E. Blanchart. 2010b. Earthworms and Plant residues modify nematodes in tropical crop** soils (Madagascar): A Mesocosm experiment. Applied and Environmental Soil Science 2010: 1–7. https://doi.org/10.1155/2010/323640.

    Article  Google Scholar 

  • Villenave, C., S. Saj, A.L. Pablo, S. Sall, D. Djigal, J.L. Chotte, and M. Bonzi. 2010a. Influence of long-term organic and mineral fertilization on soil nematofauna when growing Sorghum bicolor in Burkina Faso. Biology and Fertility of Soils 46 (7): 659–670. https://doi.org/10.1007/s00374-010-0471-y.

    Article  CAS  Google Scholar 

  • Wang, K.H., R. McSorley, A. Marshall, and R.N. Gallaher. 2006. Influence of organic Crotalaria juncea hay and ammonium nitrate fertilizers on soil nematode communities. Applied Soil Ecology 31 (3): 186–198. https://doi.org/10.1016/j.apsoil.2005.06.006.

    Article  Google Scholar 

  • Wardle, D.A., and G.W. Yeates. 1993. The dual importance of competition and predation as regulatory forces in terrestrial ecosystems: Evidence from decomposer food-webs. Oecologia 93 (2): 303–306. https://doi.org/10.1007/BF00317685.

    Article  CAS  PubMed  Google Scholar 

  • Woods, L.E., C.V. Cole, E.T. Elliott, R.V. Anderson, and D.C. Coleman. 1982. Nitrogen transformations in soil as affected by bacterial-microfaunal interactions. Soil Biology and Biochemistry 14 (2): 93–98. https://doi.org/10.1016/0038-0717(82)90050-5.

    Article  CAS  Google Scholar 

  • Yeates, G.W., T. Bongers, R.G.M. De Goede, D.W. Freckman, and S.S. Georgieva. 1993. Feeding habits in soil nematode families and genera-an outline for soil ecologists. Journal of Nematology 25 (3): 315–331.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yeates, G.W., and W. Gregor. 2003. Nematodes as soil indicators: Functional and biodiversity aspects. Biology and Fertility of Soils 37 (4): 199–210. https://doi.org/10.1007/s00374-003-0586-5.

    Article  Google Scholar 

  • Zhang, Z., X. Zhang, M. Mahamood, S. Zhang, S. Huang, and W. Liang. 2016. Effect of long-term combined application of organic and inorganic fertilizers on soil nematode communities within aggregates. Scientific Reports 6 (July): 1–12. https://doi.org/10.1038/srep31118.

    Article  CAS  Google Scholar 

  • Zhao, J., F. Wang, J. Li, B. Zou, X. Wang, Z. Li, and S. Fu. 2014. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biology and Biochemistry 75: 1–10. https://doi.org/10.1016/j.soilbio.2014.03.019.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the Agropolis Foundation (Investissements d'Avenir Programme, ANR-10-LABX-0001-01) under the framework of the SECuRE (ID 1605-007) project. This work was also supported by the European Union and African Union under the EcoAfrica project or Ecological intensification pathways for the future of crop-livestock integration in African agriculture (AURG II-1-075-2016). We would like to thank Andrianantenaina Hilaire Damase Razafimahafaly, Miora Rakotoarivelo, Kanto Razanamalala, Bertrand Muller, Richard Randriamanantsoa, Bodovololona Rabary and Aude Ripoche for their technical assistance in the field.

Funding

This study was funded by the Agropolis Foundation (Investissements d'Avenir Programme) under the framework of the SECuRE (ID 1605-007) project. This work was also supported by the European Union and African Union under the EcoAfrica project or Ecological intensification pathways for the future of crop-livestock integration in African agriculture (AURG II-1- 075-2016).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors contributed to the experimental setup, material preparation and data collection. The data analyses were performed by SR and the first draft of the manuscript was written by SR and JT. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Jean Trap.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 748 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raharijaona, S., Blanchart, E., Razafindrakoto, M. et al. Responses of Soil Nematodes to Combined Bio-Organo-Mineral Fertilizers on Upland Rice Crop** in the Highlands of Madagascar. Proc Zool Soc 76, 224–240 (2023). https://doi.org/10.1007/s12595-023-00470-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-023-00470-9

Keywords

Navigation