Log in

Earthworm Community Structures in Three Wetland Ecosystems with Reference to Soil Physicochemical Properties

  • Research Article
  • Published:
Proceedings of the Zoological Society Aims and scope Submit manuscript

Abstract

In the present study, the earthworm community structures and their relationship with physico-chemical properties of soil in three wetland ecosystems were studied. A total of six species of earthworms were reported from these sites i.e. Metaphire posthuma, Amynthas morrisi, Lampito mauritii, Octochaetona beatrix, Eutyphoeus waltoni and Eutyphoeus nichlosoni. A significant positive correlation of earthworm individuals with the clay, silt, K and moisture was observed while a negative correlation was observed with soil EC, TDS, Cr, Ni, Zn, and Fe. The principal component analysis was applied to predict the key soil factors responsible for affecting the earthworm abundance. The two major components viz. C1 and C2 with variance (%) of 58.92 and 41.08 respectively were resulted from this analysis which reveals the effects of different soil variables on earthworm distribution and abundance. Harike wetland had minimum earthworm abundance as the soil of Harike wetland has the highest content of EC, TDS and heavy metals. This study is indenture with only soil properties but further investigation is required to predict earthworm species based on vegetation, cultivation and other environmental factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aggarwal, S.K. 2009. Heavy metal pollution. New Delhi: A. P. H. Publishing Corporation.

    Google Scholar 

  • Ahangar, A.G., and A. Keshtehgar. 2015. Influence of heavy metals on earthworms, soil microbial community and mammals. Journal of Novel Applied Sciences 4: 125–134.

    Google Scholar 

  • Audusseau, H., F. Vandenbulcke, C. Dume, V. Deschins, M. Pauwels, A. Gigon, M. Bagard, and L. Dupont. 2020. Impacts of metallic trace elements on an earthworm community in an urban wasteland: Emphasis on the bioaccumulation and genetic characteristics in Lumbricus castaneus. Science of the Total Environment 718: 137259.

    Article  CAS  PubMed  Google Scholar 

  • Bartz, M.L.C., A. Pasini, and G.G. Brown. 2013. Earthworms as soil quality indicators in Brazilian no-tillage systems. Applied Soil Ecology 69: 39–48.

    Article  Google Scholar 

  • Birkas, M., L. Bottlik, A. Stingli, C. Gyuricza, and M. Jolánkai. 2010. Effect of soil physical state on the earthworms in Hungary. Applied and Environmental Soil Science. https://doi.org/10.1155/2010/830853.

    Article  Google Scholar 

  • Bouyoucos, G.J. 1962. Hydrometer method improved for making particle size analysis of soils. Agronomy Journal 54: 464–465.

    Article  Google Scholar 

  • Bremner, J.M., and R.G. Mulvaney. 1982. Nitrogen total. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis. Am Sco Agron, Madison, Wisconsin, pp. 575–624.

  • Briones, M.J.I., and O. Schmidt. 2017. Conventional tillage decreases the abundance and biomass of earthworms and alters their community structure in a global meta-analysis. Global Change Biology 23: 4396–4419.

    Article  PubMed  Google Scholar 

  • Carnovale, D., G. Baker, A. Bissett, and P. Thrall. 2015. Earthworm composition, diversity and biomass under three land use systems in south-eastern Australia. Applied Soil Ecology 88: 32–40.

    Article  Google Scholar 

  • Chan, K.Y., and I. Barchia. 2007. Soil compaction controls the abundance, biomass and distribution of earthworms in a single dairy farm in south-eastern Australia. Soil and Tillage Research 94: 75–82.

    Article  Google Scholar 

  • Crumsey, J.M., J.M. Le Moine, C.S. Vogel, and K.J. Nadelhoffer. 2014. Historical patterns of exotic earthworm distributions inform contemporary associations with soil physical and chemical factors across a northern temperate forest. Soil Biology and Biochemistry 68: 503–514.

    Article  CAS  Google Scholar 

  • Curry, J.P. 2004. Factors affecting the abundance of earthworms in soils. Earthworm Ecology 9: 113.

    Google Scholar 

  • De Wandeler, H., R. Sousa-Silva, E. Ampoorter, H. Bruelheide, M. Carnol, S.M. Dawud, G. Dănilă, L. Finer, S. Hättenschwiler, M. Hermy, B. Jaroszewicz, F.X. Joly, S. Müller, M. Pollastrini, S. Ratcliffe, K. Raulund-Rasmussen, F. Selvi, F. Valladares, K. Van Meerbeek, K. Verheyen, L. Vesterdal, and B. Muys. 2016. Drivers of earthworm incidence and abundance across European forests. Soil Biology and Biochemistry 99: 167–178.

    Article  CAS  Google Scholar 

  • Dewi, W.S., and M. Senge. 2015. Earthworm diversity and ecosystem services under threat. Reviews in Agricultural Science 3: 25–35.

    Article  Google Scholar 

  • Dhar, S., and P.S. Chaudhuri. 2020. Earthworm Communities in Paddy (Oryza sativa) Fields of West Tripura (India). Proceedings of the Zoological Society 73: 273–284.

    Article  Google Scholar 

  • Edwards, C.A., and P.J. Bohlen. 1996. Biology and Ecology of Earthworms. London: Chapman & Hall.

    Google Scholar 

  • Ezeokoli, O.T., O.G. Oladipo, C.C. Bezuidenhout, R.A. Adeleke, and M.S. Maboeta. 2021. Assessing the ecosystem support function of South African coal mining soil environments using earthworm (Eisenia andrei) bioassays. Applied Soil Ecology 157: 103771.

  • Fonte, S.J., T. Winsome, and J. Six. 2009. Earthworm populations in relation to soil organic matter dynamics and management in California tomato crop** systems. Applied Soil Ecology 41: 206–214.

    Article  Google Scholar 

  • Fragoso, C., and P. Lavelle. 1992. Earthworm communities of tropical rain forests. Soil Biology and Biochemistry 24: 1397–1408.

    Article  Google Scholar 

  • Frazao, J., R.G. de Goede, L. Brussaard, J.H. Faber, J.C. Groot, and M.M. Pulleman. 2017. Earthworm communities in arable fields and restored field margins, as related to management practices and surrounding landscape diversity. Agriculture, Ecosystems and Environment 248: 1–8.

    Article  Google Scholar 

  • Gates, G.E. 1972. Burmese earthworms: An introduction to the systematic and biology of megadrile oligochaetes with special reference to Southeast Asia. Transactions of the American Philosophical Society 62: 1e326.

    Article  Google Scholar 

  • Giannitsopoulos, M.L., P.J. Burgess, and R.J. Rickson. 2020. Effects of conservation tillage drills on soil quality indicators in a wheat–oilseed rape rotation: Organic carbon, earthworms and water-stable aggregates. Soil Use and Management 36: 139–152.

    Article  Google Scholar 

  • Jamatia, S.K.S., and P.S. Chaudhuri. 2017. Earthworm community structure under tea plantations (Camellia sinensis) of Tripura (India). Tropical Ecology 58: 105–113.

    Google Scholar 

  • Jänsch, S., L. Steffens, H. Höfer, F. Horak, M. Roß-Nickoll, D. Russell, A. Toschki, and J. Römbke. 2013. State of knowledge of earthworm communities in German soils as a basis for biological soil quality assessment. Soil Organisms 85: 215–233.

    Google Scholar 

  • John, M.K. 1970. Colorimetric determination of phosphorus in soil and plant material with ascorbic acid. Soil Science 109: 214–220.

    Article  CAS  Google Scholar 

  • Julka, J.M. 1988. The Fauna of India and Adjacent Countries: Megadrile Oligochaeta (Earthworms), Zoological Survey of India, Kolkata

  • Kaur, J., H. Walia, S.O. Mabwoga, and S. Arora. 2017. Water quality monitoring of an international wetland at Harike, Punjab and its impact on biological systems. Applied Water Science 7: 1107–1115.

    Article  CAS  Google Scholar 

  • Kumar, S., V. Sharma, R.V. Bhoyar, J.K. Bhattacharyya, and T. Chakrabarti. 2008. Effect of heavy metals on earthworm activities during vermicomposting of municipal solid waste. Water Environment Research 80: 154–161.

    Article  CAS  PubMed  Google Scholar 

  • Latifi, F., F. Musa, and A. Musa. 2020. Heavy metal content in soil and their bioaccumulation in earthworms (Lumbricus terrestris L.). Agriculture and Forestry 66: 57–67.

    Google Scholar 

  • Lee, E.P., Y.S. Han, S.I. Lee, K.T. Cho, J.H. Park, and Y.H. You. 2017. Effect of nutrient and moisture on the growth and reproduction of Epilobium hirsutum L., an endangered plant. Journal of Ecology and Environment 41: 1–9.

    Article  Google Scholar 

  • Liu, C.W., K.H. Lin, and Y.M. Kuo. 2003. Application of factor analysis in the assessment of groundwater quality in a blackfoot disease area in Taiwan. Science of Total Environment 313: 77–89.

    Article  CAS  Google Scholar 

  • Liu, C., C. Duan, X. Meng, M. Yue, H. Zhang, P. Wang, Y. **ao, Z. Hou, Y. Wang, and Y. Pan. 2020. Cadmium pollution alters earthworm activity and thus leaf-litter decomposition and soil properties. Environmental Pollution 267: 115410. https://doi.org/10.1016/j.envpol.2020.115410.

    Article  CAS  PubMed  Google Scholar 

  • Moos, J.H., S. Schrader, H.M. Paulsen, and G. Rahmann. 2016. Occasional reduced tillage in organic farming can promote earthworm performance and resource efficiency. Applied Soil Ecology 103: 22–30.

    Article  Google Scholar 

  • Morgan, J.E., and A.J. Morgan. 1999. The accumulation of metals (Cd, Cu, Pb, Zn and Ca) by two ecologically contrasting earthworm species (Lumbricus rubellus and Aporrectodea caliginosa): Implications for ecotoxicological testing. Applied Soil Ecology 13: 9–20.

    Article  Google Scholar 

  • Nelson, D.W., and L.E. Sommers. 1996. Total carbon and organic carbon and organic matter. In Method of Soil Analysis, ed. A.L. Page, R.H. Miller, and D.R. Keeney, 539–579. Madison: American Society of Agronomy.

    Google Scholar 

  • Paliwal, R. 2014. Oligochaete Diversity in Gobindsagar and Nangal Dam Wetlands (H. P. & Pb.) India. Records of the Zoological Survey of India 114: 559–562.

    Google Scholar 

  • Phillips, H.R., C.A. Guerra, M.L. Bartz, M.J. Briones, G. Brown, O. Ferlian, and E.M. Bach. 2019. Global distribution of earthworm diversity. Science 366: 480–485.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Phillips, H.R., E.M. Bach, M.L. Bartz, J.M. Bennett, R. Beugnon, M.J. Briones, and E.R. Webster. 2021. Global data on earthworm abundance, biomass, diversity and corresponding environmental properties. Scientific Data 8: 136. https://doi.org/10.1038/s41597-021-00912-z.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rybak, A.V., E.S. Belykh, T.A. Maystrenko, D.M. Shadrin, Y.I. Pylina, I.F. Chadin, and I.O. Velegzhaninov. 2020. Genetic analysis in earthworm population from area contaminated with radionuclides and heavy metals. Science of the Total Environment 273: 137920.

    Article  CAS  Google Scholar 

  • Salehi, A., N. Ghorbanzadeh, and E. Kahneh. 2013. Earthworm biomass and abundance, soil chemical and physical properties under different poplar plantations in the north of Iran. Journal of Forest Science 56: 223–229.

    Article  Google Scholar 

  • Sankar, A.S., and A. Patnaik. 2018. Impact of soil physico-chemical properties on distribution of earthworm populations across different land use patterns in southern India. The Journal of Basic and Applied Zoology 79: 50. https://doi.org/10.1186/s41936-018-0066-y.

    Article  Google Scholar 

  • Sathianarayanan, A., and A.B. Khan. 2006. Diversity, distribution and abundance of earthworms in Pondicherry region. Tropical Ecology 47: 139–144.

    Google Scholar 

  • Sehar, T., G.S. Gowher, M.Y. Zargar, and Z.A. Baba. 2016. Identification and screening of earthworm species from various temperate areas of Kashmir Valley for Vermicomposting. Advances in Recycling and Waste Management 1: 102.

    Google Scholar 

  • Shi, Y., Y. Shi, and L. Zheng. 2020. Individual and cellular responses of earthworms (Eisenia fetida) to endosulfan at environmentally related concentrations. Environmental Toxicology and Pharmacology 74: 103299.

    Article  CAS  PubMed  Google Scholar 

  • Shrestha, N. 2021. Factor analysis as a tool for survey analysis. American Journal of Applied Mathematics and Statistics 9: 4–11.

    Article  Google Scholar 

  • Siddiqui, S. 2020. Interaction of Earthworm Activity with Soil Structure and Enzymes. In Biology of Composts (pp. 87–106). Springer, Cham

  • Singh, S., J. Singh, and A.P. Vig. 2016a. Earthworm as ecological engineers to change the physico-chemical properties of soil: Soil vs vermicast. Ecological Engneering 90: 1–5.

    Article  CAS  Google Scholar 

  • Singh, S., J. Singh, and A.P. Vig. 2016b. Effect of abiotic factors on the distribution of earthworms in different land use patterns. Journal of Basic and Applied Zoology 74: 41–50.

    Article  Google Scholar 

  • Singh, J., S. Singh, S.A. Bhat, A.P. Vig, and M. Schädler. 2018. Eco-friendly method for the extraction of earthworms: Comparative account of formalin, AITC and Allium cepa as extractant. Applied Soil Ecology 124: 141–145.

    Article  Google Scholar 

  • Singh, S., A. Sharma, K. Khajuria, J. Singh, and A.P. Vig. 2020. Soil properties changes earthworm diversity indices in different agro-ecosystem. BMC Ecology 20: 1–14. https://doi.org/10.1186/s12898-020-00296-5.

    Article  CAS  Google Scholar 

  • Singh, J., E. Cameron, T. Reitz, M. Schädler, and N. Eisenhauer. 2021. Grassland management effects on earthworm communities under ambient and future climatic conditions. European Journal of Soil Science 72: 343–355.

    Article  CAS  Google Scholar 

  • Solomou, A.D., A.I. Sfougaris, E.M. Vavoulidou, and C. Csuzdi. 2013. Species richness and density of earthworms in relation to soil factors in olive orchard production systems in Central Greece. Communications in Soil Science and Plant Analysis 44: 301–311.

    Article  CAS  Google Scholar 

  • Suthar, S. 2009. Earthworm communities a bioindicator of arable land management practices: A case study in semiarid region of India. Ecological Indicators 9: 588–594.

    Article  CAS  Google Scholar 

  • Tamartash, R., and S.M. Ehsani. 2020. The effect of earthworms on plant diversity and soil properties under different landuses. Acta Ecologica Sinica. https://doi.org/10.1016/j.chnaes.2020.06.008.

    Article  Google Scholar 

  • Van Schaik, L., J. Palm, J. Klaus, E. Zehe, and B. Schröder. 2016. Potential effects of tillage and field borders on within-field spatial distribution patterns of earthworms. Agriculture Ecosystem and Environment 228: 82–90.

    Article  Google Scholar 

  • Varol, M., B. Gökot, A. Bekleyen, and B. Şen. 2012. Water quality assessment and apportionment of pollution sources of Tigris River (Turkey) using multivariate statistical techniques—a case study. River Research and Applications 28: 1428–1438.

    Article  Google Scholar 

  • Verma, R., and S. Suthar. 2018. Performance assessment of horizontal and vertical surface flow constructed wetland system in wastewater treatment using multivariate principal component analysis. Ecological Engineering 116: 121–126.

    Article  Google Scholar 

  • Verma, F., S. Singh, J. Singh, S.S. Dhaliwal, C. Parkash, V. Kumar, and R. Kumar. 2021a. Assessment of heavy metal contamination and its effect on earthworms in different types of soils. International Journal of Environmental Science and Technology. https://doi.org/10.1007/s13762-021-03297-z.

    Article  Google Scholar 

  • Verma, F., S. Singh, J. Singh, S.S. Dhaliwal, and C. Parkash. 2021b. Assessment of Earthworm Community Structure in Industrial and Non-industrial Soils. Asian Journal of Biological and Life Sciences 10: 183–190.

    Article  CAS  Google Scholar 

  • Wang, K., Y. Qiao, H. Zhang, S. Yue, H. Li, X. Ji, and L. Liu. 2018. Bioaccumulation of heavy metals in earthworms from field contaminated soil in a subtropical area of China. Ecotoxicology and Environmental Safety 148: 876–883.

    Article  CAS  Google Scholar 

  • **e, T., M. Wang, W. Chen, and H. Uwizeyimana. 2018. Impacts of urbanization and landscape patterns on the earthworm communities in residential areas in Bei**g. Science of the Total Environment 626: 1261–1269.

    Article  CAS  PubMed  Google Scholar 

  • Yu, Y., X. Li, G. Yang, Y. Wang, X. Wang, L. Cai, and X. Liu. 2019. Joint toxic effects of cadmium and four pesticides on the earthworm (Eisenia fetida). Chemosphere 227: 489–495.

    Article  CAS  PubMed  Google Scholar 

  • Yvan, C., S. Stéphane, C. Stéphane, B. Pierre, R. Guy, and B. Hubert. 2012. Role of earthworms in regenerating soil structure after compaction in reduced tillage systems. Soil Biology and Biochemistry 55: 93–103.

    Article  CAS  Google Scholar 

  • Zhang, C., J. Dai, X. Chen, H. Li, and P. Lavelle. 2020. Effects of a native earthworm species (Amynthas morrisi) and Eisenia fetida on metal fractions in a multi-metal polluted soil from South China. Acta Oecologica 102: 103503.

    Article  Google Scholar 

  • Zhou, H., T. Zhang, J. Zhuang, M. Xu, X. Liu, Q. Shi, and D. Zhou. 2020. Study on the regulation of earthworm physiological function under cadmium stress based on a compound mathematical model. Environmental Toxicology and Pharmacology 80: 103499.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Science and Engineering Research Board (SERB), Department of Science and Technology, GOI, New Delhi for financial assistance in the form of a Major research project letter No SR/SO/AS-030/2013. We are also thankful to Dr. J. M. Julka (Ex Scientist, Zoological Survey of India), Shoolini University, Solan (Himachal Pradesh, India) for confirmation of identified earthworm species.

Funding

Science and Engineering Research Board (SERB), Department of Science and Technology (DST), New Delhi (Project Letter No SR/SO/AS-030/2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaswinder Singh.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Singh, J. & Vig, A.P. Earthworm Community Structures in Three Wetland Ecosystems with Reference to Soil Physicochemical Properties. Proc Zool Soc 75, 231–241 (2022). https://doi.org/10.1007/s12595-022-00436-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12595-022-00436-3

Keywords

Navigation