Log in

Rare Earth Element Metallogeny in Indian Continental Shelf and Ocean Floor

  • Research Articles
  • Published:
Journal of the Geological Society of India

Abstract

There is a progressively growing demand for rare earth elements due to their applications in electronics and several high technology fields. Also, current build up in demand is due to consistent thrusts on clean energy where role of rare earth element (REE) is critical for manufacturing rare earth permanent magnets (REPM) that are needed, among other fields, in turbines for renewable energy, hybrid electric vehicles and full electric vehicles. Accordingly, to take stock of the situation with respect to REE potentiality of the Indian continental shelves and ocean floor basins a critical synthesis has been presented. India’s exploration programme remained focused mostly on polymetallic manganese nodules in the Central Indian Ocean below the ocean surface with a view to become self-sufficient in strategic metals like Co, Cu and Ni. Significantly, apart from Mn (18–36 Wt.%) and Fe (5–15 Wt.%), the nodules revealed appreciably high amount of Cu (up to 1.86 Wt.%), Ni (up to 1.54 Wt.%) and Co (up to 0.40 Wt.%). The REE concentrations in Fe-Mn crusts from Afanasy Nikitin Seamount (ANS), comprising clusters of seamounts with a minimum depth of about 160 m, lying in the Equatorial East Indian Ocean, reveal significantly high Ce-positive anomalies, with average Ce content of 1209 ppm that is substantially higher, relative to Ce content (718 ppm) in mid-Pacific seamount nodules. Known total REE plus Y (REY) content in Fe-Mn crusts and nodules from Indian Ocean is up to 2511 ppm that is substantially higher and attractive. In addition, REE abundances in crusts from Andaman Sea (up to 1680 ppm) and Lakshadweep sea (200 ppm La; 150 ppm Y) are also encouraging. Though REE data on limited samples from limited areas are available, the values are quite encouraging and deserve serious attention for evaluating crusts and sea floor muds from Indian continental shelves and ocean floor for their REE potentiality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschuler, Z.S. (1980) The geochemistry of trace elements in marine phosphorites: Part 1. Characteristic abundance and enrichment. In: Bentor, Y.K. (Ed.), Marine Phosphorites. SEPM Spec. Publ., v.29, pp.19–30.

  • Altschuler, Z.S., Berman, S. and Cuttita, F. (1967) Rare earths in phosphorites — geochemistry and potential recovery. U.S. Geol. Surv. Prof. Paper 575B, pp.1–9.

  • Balaram, V. (2019) Rare earth elements: a review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geoscience Frontiers, v. 10, pp.1285–1303.

    Article  Google Scholar 

  • Balaram, V., Banakar, V.K., Subramanyam, K.S.V., Roy, P., Satyanarayanan, M., Ram Mohan, M. and Sawant, S.S. (2012) Yttrium and rare earth element contents in seamount cobalt crusts in the Indian Ocean. Curr. Sci., v. 103(11), pp.1334–1338.

    Google Scholar 

  • Banakar, V.K. (1996) India’s manganese nodule mine site in the central Indian ocean. Curr. Sci., v.70(1), pp. 11–13.

    Google Scholar 

  • Banakar, V.K. (2010) Deep-sea ferromanganese deposits and their resource potential for India. Jour. Indian Inst. Sci., v.90, pp.535–541.

    Google Scholar 

  • Banakar, V.K., Hein, J.R., Rajani, R.P. and Chodankar, A.R. (2007) Platimun group elements and gold in ferromanganese crusts from Afanasy-Nikitin Seamount, Eastern Equatorial Indian Ocean. Jour. Earth System Sci., v. 116, pp.3–13.

    Article  Google Scholar 

  • Banakar, V.K. and Hein, J.R. (2010) Growth response of a deep-water ferromanganese crust to evolution of the Neogene Indian Ocean. Marine Geol., v. 162, pp.529–540.

    Article  Google Scholar 

  • Banerjee, R. (2008) Manganese nodules as a possible source of precious metals. Curr. Sci., v.87, pp.278–279.

    Google Scholar 

  • Banerjee, R. and Mukhopadhyay, R. (1991) Nature and distribution of manganese nodules from three sediment domains of the Central Indian Basin, Indian Ocean. Geo-Marine Lett., v. 11, pp.39–43.

    Article  Google Scholar 

  • Berke, Jeremy (2018) Japan discovered a rare-earth mineral deposit that can supply the world for centuries. Business Insider, 30 December 2018 (Google.com)

  • Binnemans, K., Jones, P.T., Van Acker, K., Blanpain, B., Mishra, B. and Apelian, D. (2013). Rare-earth economics: The balance problem. Jour. Minerals, Metals and Materials, v.65(7), pp.846–848.

    Article  Google Scholar 

  • Binnemans, K. and Jones, P. T. (2015). Rare earths and the balance problem. Jour. Sustainable Metall., v. 1(1), pp.29–38.

    Article  Google Scholar 

  • Bu, W.R., Shi, X.F. and Peng, J.T. (2003) Geochemical characteristics of seamount ferromanganese nodules from mid-Pacific Ocean. Chinese Sci. Bull., v.48, pp.98–105.

    Article  Google Scholar 

  • Chakraborty, D. and Saha, B.K. (2021) Heavy minerals from Gopalpur coast, Odisha with special reference to ilmenite: implication to provenance. Jour. Geol. Soc. India, v. 97(8), pp.859–866. doi:https://doi.org/10.1007/s12594-021-1784-1

    Article  Google Scholar 

  • Charlu, T.K. and Kalluraya, V.K.K. (1997) Ferromanganese encrustation from Lakshadweep area, Arabia Sea. Jour. Geol. Soc. India, v.49(4), pp.389–394.

    Google Scholar 

  • Condie, K.C. (2011) Earth as an Evolving Planetary System. Second Edition, Elsevier, 574p.

  • Cronan, D.S. and Moorby, S.A. (1981) Manganese nodules and ferromanganese deposits from the Indian Ocean. Jour. Geol. Soc. London, v.138, pp.527–529.

    Article  Google Scholar 

  • Cui, Y., Liu, J., Ren, X. and Shi, X. (2009) Geochemistry of rare earth elements in cobalt-rich crusts from the Mid-Pacific M Seamount. Jour. Rare Earths, v. 27(1), pp.169–176.

    Article  Google Scholar 

  • Dhana Raju, R., Ali, M.A., Krishnan, S. (Eds) (2001) Special Issue on Beach and Inland Heavy Mineral Sand Deposits of India. Exploration and Research for Atomic Minerals, no.13, pp.1–159.

  • Dinesh, A.C., Nisha, N.V., Varghese, S., Pillai, R., Prasad, D., Baraik, S., Ramesh, R.P., Joshi, R.K., Meitei, S.I., Jishnu, B.K., Manoj, R.V. and Nagasundaram, M. (2020) Extensive occurrence of Fe-Mn crusts and nodules on seamounts in the southern Andaman sea, India. Curr. Sci., v. 119(4), pp.704–708.

    Article  Google Scholar 

  • Ghosh, S.K. (1988) Trace metals in ferromanganese nodules and host sediments of the Indian Ocean. Jour. Geol. Soc. India, v.32(1), pp.40–47.

    Google Scholar 

  • Glasby, G.P., Mountain, B., Vineesh, T.C., Banakar, V., Ramesh, R. and Ren, X. (2010) Role of hydrology in the formation of Co-rich Mn crusts from the Equatorial N Pacific, Equatorial S Indian Ocean and the NE Atlantic Ocean. Resource Geol., v.60(2), pp.165–177.

    Article  Google Scholar 

  • Gonzalez, F.J., Somoza, L., Maldonado, A., Lunar, R., Martinez-Frias, J., Martin-Rubi, J.A. and Carrion, M.C. (2010) High technology elements in Co-rich ferromanganese crusts from the Scotia sea. Revista de la Sociedad Espanola de Mineralogia, v.13, pp.113–114.

    Google Scholar 

  • Goodenough, K.M., Wall, F. and Merriman, D. (2017) The rare earth elements: demand, global resources and challenges for resourcing future generations. Natural Resour. Res., doi: https://doi.org/10.1007/s11053-017-9336-5.

  • Gujar, A.R., Nagendernath, B. and Banerjee, R. (1988) Marine minerals — The Indian perspective. Marine Mining, v.7, pp.317–350.

    Google Scholar 

  • Henderson, P. (1996) The rare earth elements: introduction and review. In: A.P. Jones, F. Wall and T.C. Williams (Eds.), Rare Earth Minerals: Chemistry, origin and ore deposits. Mineral. Soc., Series 7: Chapman & Hall Publishing Ltd., pp.1–17.

  • Hein, J.R. (2012) Prospects for rare earth elements from marine minerals. International Seaboard Authority briefing paper 02/12. International Seaboard Authority Kingston, Jamaica, pp.1–4.

  • Hein, J.R., Bohrson, W.A., Schulz, M.S., Noble, M. and Clague, D.A. (1992) Variations in fine-scale composition of a central Pacific ferromanganese crust: paleographic implications. Paleoceano., v.7, pp.63–77.

    Article  Google Scholar 

  • Hein, J.R., Yeh, H.-W., Gunn, S.H., Sliter, W.V., Benninger, L.M. and Wang, C.-H. (1993) Two major Cenozoic episodes of phosphogenesis recorded in equatorial Pacific seamount deposits. Paleoceano., v.8, pp.293–311.

    Article  Google Scholar 

  • Hein, J.R., Koschinsky, A., Bau, M., Manheim, F.T., Kang, J.-K. and Roberts, I. (2000) Cobalt-rich ferromanganese crusts in the Pacific. In: Cronan, D.D. (Ed.), Handbook of marine mineral deposits. CRC Press, Boca, Raton, FL, pp.239–279.

    Google Scholar 

  • Hein, J.R., Koschinsky, A., Mikesell, M., Mizell, K., Glenn, C.R. and Wood, R. (2016) Marine phosphorites as potential resources for heavy rare earth element and yttrium. Minerals, v.6, pp.88, doi:https://doi.org/10.3390/min6030088

    Article  Google Scholar 

  • Hein, J.R. and Cherkashov, G. (2017) Preface for ore geology reviews special issue: Marine mineral deposits: new resources for base, precious and critical metals. Ore Geol. Rev., v.87, pp.1–2.

    Article  Google Scholar 

  • Indian Bureau of Mines (IBM) (2019) Indian Minerals Year Book 2019 (Part-III: Mineral Reviews), 58th Edition, Rare Earths. (Advance Release) September 2020, Ministry of Mines, Government of India, Nagpur, pp.24–1 to 24–10.

    Google Scholar 

  • Jordens, A., Cheng, Y. P. and Waters, K. E. (2013) A review of the beneficiation of rare earth element bearing minerals. Minerals Engg., v.41, pp.97–114.

    Article  Google Scholar 

  • Kato, Y., Fu**aga, K., Nakamura, K., Takaya, Y., Kitamura, K., Ohta, J., Toda, R., Nakashima, T., Iwamori, H. (2011) Deep-sea mud in the Pacific Ocean as a potential resource for rare-earth elements. Nature Geoscience, v. 4, pp.535–539.

    Article  Google Scholar 

  • Koschinsky, A., Van Gerven, M. and Halbach, P. (1995) First investigations of massive ferromanganese crusts in the NE Atlantic in comparison with hydrogenetic Pacific occurrences. Mar. Georesour. Geotechnol., v. 13, pp.375–391.

    Article  Google Scholar 

  • Kumar, P. and Bharadwaj, M.D. (2018) Indian rare-earth industry: need and opportunity for revival and growth. https://www.researchgate.net/publication/323656626

  • Lide, D.R. (1997) Abundance of elements in the earth’s crust and sea. In: CRC Handbook of Physics and Chemistry, 78th ed. CRC Press, Boca Raton, pp.14

    Google Scholar 

  • Lie, D., Yu Fu, Sun, X. and Wei, Z. (2020) Critical metal enrichment mechanism of deep-sea hydrogenetic nodules: insights from mineralogy and elemental mobility. Ore Geol. Rev., v. 118. doi:https://doi.org/10.1016/j.oregeorev.2020.103371

  • Loveson VJ, Chandrasekar N, Sinha A (eds) (2005) Development Planning of Coastal Placer Minerals (Placer-2005). Allied Publishers Pvt. Ltd., New Delhi.

    Google Scholar 

  • Machacek, E. and Fold, N. (2014). Alternative value chains for rare earths: The Anglo-deposit developers. Resources Policy, v. 42, pp. 53–64.

    Article  Google Scholar 

  • Maciag, L., Kotlinski, R. and Borowka, R.K.(2011) Lithological vaiability of siliceous clayey silts from IOM area (Clarion-Clipperton fracture zone, East Pacific). Gornictow I Geoinzynieria, v.34(4/1), pp. 243–255.

    Google Scholar 

  • Maciag, L. and Zawadzki, D. (2019) Spatial variability and resources estimation of selected critical metals and rare earth elements in surface sediments from the Clarion-Clipperton fracture zone, equatorial Pacific Ocean, Intercontinental claim area. IAMG2019 — Proceedings, S1209, pp.174–178.

    Google Scholar 

  • Mangini, A., Halbach, P., Puteanus, D. and Segl, M. (1987) Chemistry and growth history of Central Pacific Mn-crusts and their economic importance. In: Marine mineral advances in research and resource assessment. D. Redidel, Dordrecht, pp.811–821.

    Google Scholar 

  • Manheim, F.T. (1986) Marine cobalt resources. Science, v.232, pp.600–608.

    Article  Google Scholar 

  • McArthur, J.M. and Walsh, J.N. (1984) Rare-earth geochemistry of phosphorites. Chemical Geol., v.47, pp.191–220.

    Article  Google Scholar 

  • Mukhopadhyay, R. (1987) Morphological variations in polymetallic nodules from some selected stations in the Central Indian Ocean. Geo-Marine Lett., v.7, pp.45–51.

    Article  Google Scholar 

  • Nath, B.N., Balaram, V., Sudhakar, M. and Pluger, W.L. (1992) Rare earth element geochemistry of ferromanganese deposits from the Indian Ocean. Marine Geochem., v.38, pp.185–208.

    Google Scholar 

  • Nath, B.N., Roelandts, I., Sudhakar, M., Pluger, W.L. and Balaram, V. (1994) Cerium anomaly variations in ferromanganese nodules and crusts from the Indian Ocean. Marine Geol., v. 120, pp.385–400.

    Article  Google Scholar 

  • Nath, B.N., Rao, K.M. and Rao, Ch. M. (2000) Rare earth elements and uranium in phosphatic nodules from the Continental Margins of India. Marine authigenesis. From Global to microbial. SEPM (Society for Sedimentary Geology) Spec. Publ. No.66, pp.221–232.

  • Pak, S.-J., Seo, I., Lee, K.-Y. and Hyeong, K. (2019) Rare earth elements and other critical metals in deep seabed mineral deposits: composition and implications for resource potential. Minerals, v.9(3) doi:https://doi.org/10.3390/min9010003

  • Piper, D.Z. (1974) Rare earth elements in ferromanganese nodules and other marine phases. Geochim. Cosmochim. Acta, v.38, pp.1007–1022.

    Article  Google Scholar 

  • Pourmand, A., Dauphas, N. and Ireland, T.J. (2012) A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: revising CI-chondrite and Post-Archaean Australian Shale (PAAS) abundances. Chemical Geol., v.291, pp.38–54.

    Article  Google Scholar 

  • Puteanus, D. and Halbach, P. (1998) Correlation of Co concentration and growth rate — a method for age determination of ferromanganese crusts. Chemical Geology, v.69, pp.73–85.

    Article  Google Scholar 

  • Rajamanickam G.V. (2000) Light-heavy minerals on the Indian continental shelf including beaches. In: David S. Cronan (Ed.) Handbook of Marine Mineral Deposits, CRC Press, London, pp.13–26.

    Google Scholar 

  • Rajamanickam, G.V. (Ed) (2001) Handbook of placer mineral deposits. New Academic Publishers, Delhi, pp.1–327.

    Google Scholar 

  • Rajamanickam, G.V., Chandrasekar, N., Angusamy, N., Loveson, V.J. (2004) Status of beach placer mineral exploration in India. In: Loveson VJ, Misra DD (eds) National Workshop and Seminar on sustainable development of coastal placer minerals (PLACER-2002). Allied Publishers Pvt. Ltd., New Delhi, pp.9–21.

    Google Scholar 

  • Rajani, R.P., Banakar, V.K., Partiban, G. and Mudholkar, A.V. (2005) Compositional variation and genesis of ferromanganese crusts of the Afanasiy-Nikitin Seamount, Equatorial Indian Ocean. Jour. Earth Syst. Sci., v. 114, pp. 51–61.

    Article  Google Scholar 

  • Rao, V.P.C. (1987) Mineralogy of polymetallic nodules and associated sediments from the Central Indian Ocean Basin. Marine Geology, v.74, pp.154–157.

    Article  Google Scholar 

  • Ren, X., Glasby, G.P., Liu, J., Shi, X. and Yin, J. (2007) Fine-scale compositional variations in a Co-rich Mn crust from the Marcus-Wake Seamount cluster in the western Pacific based on electron microprobe analysis (EPMA). Mar. Geophys. Res., v.28, pp.165–182.

    Article  Google Scholar 

  • Roskill (2016a). Rare earths: Global industry, markets and outlook (16th ed.). London, UK: Roskill.

    Google Scholar 

  • Roskill (2016b). Lithium: Global industry, markets and outlook (13th ed.). London, UK: Roskill.

    Google Scholar 

  • Singh, Y. (2019) Rare-earth resources of India. Jour. Geol. Soc. India, v.94(1), pp. 109, doi: https://doi.org/10.1007/s12594-019-1276-8.

    Article  Google Scholar 

  • Singh, Y. (2020a) Rare earth element resources: Indian context. SESS, Springer, 395p.

  • Singh, Y. (2020b) Rare earth element geochemistry of monazites from beach sand deposits of Indian coasts: implications for clean energy. Jour. Appl. Geochem., v.22(3), pp.209–220.

    Google Scholar 

  • Singh, Y. (2020c) Strategic and critical element potential of Indian carbonatites. Jour. Geosciences Res., v.5(2), pp.161–170.

    Google Scholar 

  • Shaw, D.M., Cramer, J.J., Higgines, M.D. and Truscott, M.G. (1986) Composition of the Canadian Precambrian shield and the continental crust of the earth. Geol. Soc. Spec. Publ., No.24, Blackwell, pp.275–282.

  • Smith Stegen, K. (2015). Heavy rare earths, permanent magnets, and renewable energies: An imminent crisis. Energy Policy, v.79, 1–8.

    Article  Google Scholar 

  • Spedding, F.H. (1978) Prologue. In: Gschneidner Gschneidner, Jr., K.A. and Eyring, L. (Eds.), Handbook on the Physics and Chemistry of Rare Earths, v. 1, pp. xv–xxv, North Holland, Amsterdam.

    Google Scholar 

  • Surya Prakash, L., Ray, D., Paropkari, A.L., Mudholkar, A.V., Satyanarayanan, M., Sreenivas, B., Chandrasekharam, D., Kota, D., Kamesh Raju, K.A., Kaisary, S., Balaram, V. and Gurav, T. (2012) Distribution of REEs and yttrium among major geochemical phases of marine Fe-Mn-oxides: comparative study between hydrogenous and hydrothermal deposits. Chemical Geol., v.312, pp.127–137.

    Article  Google Scholar 

  • Taylor, S.R. and McLennan, S.M. (1985) The continental crust: its composition and evolution. Blackwell, 312p.

  • Takaya, Y., Yasukawa, K., Kawasaki, T., Fu**aga, K., Ohta, J., Usui, Y., Nakamura, K., Kimura, J.I., Chang, Q., Hamada, M., Dodbiba, G., Nozaki, T., Iijima, K., Morisawa, T., Kuwahara, T., Ishida, Y., Ichimura, T., Kitazume, M., Fujita, T. and Kato, Y. (2018) The tremendous potential of deep-sea mud as a source of rare-earth elements. Scientific Reports, 8–5763, doi: https://doi.org/10.1030/s41598-010-23940-5.

  • Udinstev, G.B. (1975) Geological and geophysical atlas of the Indian Ocean. Inter-Governmental Oceanographic Commission. UNESCO, Pergamon, New York, 51p.

    Google Scholar 

  • United Nations Conference on Trade and Development (UNCTAD) (2014) Commodities at a glance (No. 5), New York & Geneva.

  • United Nations Environment Programme (UNEP) (2013) Metal Recycling: Opportunities, Limits, Infrastructure. A Report of the Working Group on the Global Metal Flows to the International Resource Panel.

  • Reuter, M.A., Hudson, C., Van Schaik, A., Heiskanen, K., Meskers, C. and Hageluken, C. US Department of Energy (2017) Report on Rare Earth Elements from Coal and Coal By products. Report to Congress, January 2017, pp. 1–43.

  • Varghese, S., Ramesh, R.P., Pillai, R., Joseph, S.R., Gopakumar, B., Sathilkumar, R., Joshi, R.K., Guha, P.D., Manoj, R.V. and Nagasundaram, M. (2021) Accumulation and enrichment of platinum group elements in hydrogenous Fe-Mn crust and nodules from the Andaman sea, India. Curr. Sci., v.120(11), pp.1740–1748.

    Article  Google Scholar 

  • Wakita, H., Rey, P. and Schmitt, R.A. (1971) Abundances of the 14 rare earth elements and 12 other elements in Apollo 12 samples. In: Levinson, A.A. (Ed.), Proceedings of the Second Lunar Science Conference. MIT Press, Cambridge, MA, pp.1319–1329.

    Google Scholar 

  • Weaver, B.L. and Tarney, J. (1984) Major and trace element composition of the continental lithosphere. In: Pollack, H.N. and Murthy, V.R. (Ed.), Structure and Evolution of the Continental Lithosphere. Phys. Chem. Earth, v.15, Pergamon Press, pp.39–68.

  • Wedepohl, K.H. (1995) The composition of the continental crust. Geochim. Cosmochim. Acta, v.59, pp.1217–1232.

    Article  Google Scholar 

  • Weng Z.H., Zowitt S.M., Mudd G.M. and Haque N.A. (2015) Detailed assessment of global rare earth element resources: opportunities and challenges. Econ. Geol., v.110, pp.1925–1952.

    Article  Google Scholar 

  • **e, F., Zhang, T.A., Dreisinger, D. and Doyle, F. (2014) A critical review on solvent extraction of rare earths from aqueous solutions. Minerals Engg., v.56, pp.10–28.

    Article  Google Scholar 

  • Yasukawa, K., Nakamura, K., Fu**aga, K., Machida, S., Ohta, J., Takaya, Y. and Kato, Y. (2015) Rare-earth, major and trace element geochemistry of deep-sea sediments in the Indian Ocean: implications for the potential distribution of REY-rich mud in the Indian Ocean. Geochemical Jour., v.49(6), pp.621–635.

    Article  Google Scholar 

  • Yu-Ling, **e, Zeng-qian Hou, Richard, J. Goldfarb, **ang Guo and Lei, Wang, (2017) Rare earth element deposits in China, https://pubs.er.usgs.gov/publication/7018924.

  • Zhou, B., Li, Z. and Chen (2017) Global potential of rare earth resources and rare earth demand from clean technologies. Minerals, v.7, p.203; doi: 103390/min7110203

    Article  Google Scholar 

Download references

Acknowledgements

I express my deep gratitude to Shri T.M. Mahadevan for his insightful comments, which improved earlier version of the manuscript significantly. I am also thankful to Dr. Md. Ismaiel and Dr. Saju Varghese for fruitful discussions. This is a slightly modified version of the paper presented in a Virtual National Seminar organised jointly by North-Eastern Hill University, Shillong and Geological Society of India, Bengaluru during September 21–23, 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamuna Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, Y. Rare Earth Element Metallogeny in Indian Continental Shelf and Ocean Floor. J Geol Soc India 97, 1396–1402 (2021). https://doi.org/10.1007/s12594-021-1878-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12594-021-1878-9

Navigation