Log in

A Comprehensive Study on the Consequences of Gap-Graded Sands Considering the Loss of Fine Particles

  • Engineering Geology
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Water and sand leakage disasters are likely to occur during construction in water-rich sand layer areas, resulting in ground collapse. The stress-strain action characteristics of discontinuous graded sand under different internal erosion degrees, and the evolution mechanism of water and sand leakage disasters caused by the internal erosion need to be further explored. Therefore, this paper takes the discontinuous graded sand in a water rich sand layer area in Nanchang City of China as the research object. Considering the influence of different fine particle losses (0, 10%, 20% and 30%) under the internal erosion of sand, the salt solution method is used to realize the specified loss of fine particles in the internal erosion. The stress-strain behavior after the loss of fine particles due to internal erosion is studied by triaxial shear test. Meanwhile, the physical model test and PFC-CFD method are both used to study the evolution rules of water and sand leakage disaster considered the influence of internal erosion degrees. Results show that: (1) under the same confining pressure, the peak failure strength of sand samples decreases along with the increase of fine particle loss. (2) In the water and sand leakage test of saturated sand, a natural filter channel is formed above the observed soil arch. The greater the loss of fine particles, the steeper and wider the collapse settlement area. (3) The relationship between the cumulative amount of water and sand leakage and time is nonlinear. The total mass loss of sand increases along with the increase of internal erosion degree. (4) After the soil arch is formed around the damaged opening, the sand continues to converge above the soil arch under the action of water flow, resulting in the dense convergence of contact force chains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

Download references

Acknowledgments

This research is funded by the Natural Science Foundation of China (No. 41962015). The final publication is available at Springer via https://doi.org/10.1007/s12583-022-1764-4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Faming Huang.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, W., Gan, Y., Cui, Y. et al. A Comprehensive Study on the Consequences of Gap-Graded Sands Considering the Loss of Fine Particles. J. Earth Sci. 35, 597–612 (2024). https://doi.org/10.1007/s12583-022-1764-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-022-1764-4

Key Words

Navigation