Log in

Composition of Pancarli Magmatic Ni-Cu±(PGE) Sulfide Deposit in the Cadomian-Avalonian Belt, Eastern Turkey

  • Mineral Deposits
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Pancarli Ni-Cu±(PGE) sulfide deposit occurs in the Neoproterozoic basement complex of the Bitlis massif, which is one of the Andean-type active continental margin fragments with arc-type assemblages represented by the Cadomian orogenic belt. Pancarli sulfides are associated with quartzo-feldspathic gneisses (country rock) and mafic intrusions (host rock). Composed of only semi-massive ore, the Ni-Cu±(PGE) sulfide deposit is a small-scale deposit, and it does not contain net-textured and disseminated ore. The mineral assemblage comprises pyrrhotite, pentlandite, and chalcopyrite. The semi-massive ore samples contain 2.2 wt.%−2.9 wt.% Ni, 0.8 wt.%−2.2 wt.% Cu (Cu/(Cu+Ni)=0.2−0.5) and 0.13 wt.%−0.17 wt.% Co. The Cu/Ni ratios (average 0.57) are consistent with the segregation of sulfides from a basaltic magma. Low Pt+Pd100%S values of 0.08 ppm−0.89 ppm, relatively low Pt/Pd ratios of 0.2–1.4, and Pd/Ir ratios of 4.5–39 have also been revealed. These values demonstrate that the magma reached S saturation before its emplacement and the mineralization with high Cu/Pd ratios formed by sulfides segregated from a PGE-depleted magma. δ34S isotope values (average −3.1‰) of Pancarli sulfides are lower than mantle source. Negative δ34S value indicates contamination from surrounding rocks. Concerning the composition, remobilization style and magma type, the Pancarli Ni-Cu±(PGE) sulfide deposit is similar to the deposits associated with Andean-type magmatic arcs located in the convergent plate margin settings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Arndt, N. T., Lesher, C. M., Czamanske, G. K., 2005. Mantle-Derived Magmas and Magmatic Ni-Cu-PGE Deposits. In: Hedenquist, J. W., Thompson, J. F. H., Goldfarb, R. J., et al., eds., Economic Geology 100th Anniversary Volume. Society of Economic Geologists. 5–24. https://doi.org/10.5382/av100.02

  • Barnes, S.-J., Couture, J. F., Sawyer, E. W., et al., 1993. Nickel-Copper Occurrences in the Belleterre-Angliers Belt of the Pontiac Subprovince and the Use of Cu-Pd Ratios in Interpreting Platinum-Group Element Distributions. Economic Geology, 88(6): 1402–1418. https://doi.org/10.2113/gsecongeo.88.6.1402

    Article  Google Scholar 

  • Barnes, S.-J., Francis, D., 1995. The Distribution of Platinum-Group Elements, Nickel, Copper, and Gold in the Muskox Layered Intrusion, Northwest Territories, Canada. Economic Geology, 90(1): 135–154. https://doi.org/10.2113/gsecongeo.90.1.135

    Article  Google Scholar 

  • Barnes, S.-J., Gole, M. J., Hill, R. E. T., 1988. The Agnew Nickel Deposit, Western Australia; Part II, Sulfide Geochemistry, with Emphasis on the Platinum-Group Elements. Economic Geology, 83(3): 537–550. https://doi.org/10.2113/gsecongeo.83.3.537

    Article  Google Scholar 

  • Barnes, S.-J., Lightfoot, P. C., 2005. Formation of Magmatic Nickel Sulfide Ore Deposits and Processes Affecting Their Copper and Platinum Group Element Contents. Economic Geology. 100th Anniversary Volume. 179–213

  • Barnes, S.-J., Maier, W. D., 1999. The Fractionation of Ni, Cu, and the Noble Metals in Silicate and Sulphide Liquids. Geological Association of Canada Short Course Notes, 13: 69–106

    Google Scholar 

  • Barnes, S.-J., Makovicky, E., Makovicky, M., et al., 1997a. Partition Coefficients for Ni, Cu, Pd, Pt, Rh, and Ir between Monosulphide Solid Solution and Sulphide Liquid and the Formation of Compositionally Zoned Ni-Cu Sulphide Bodies by Fractional Crystallization of Sulphide Liquid. Canadian Journal of Earth Sciences, 34(4): 366–374. https://doi.org/10.1139/e17-032

    Article  Google Scholar 

  • Barnes, S.-J., Zientek, M., Severson, M. J., 1997b. Ni, Cu, Au and Platinum Group Element Contents of Sulfides Associated with Intraplate Magmatism: A Synthesis. Canadian Journal of Earth Sciences, 34(4): 337–351. https://doi.org/10.1139/e17-030

    Article  Google Scholar 

  • Barnes, S.-J., Naldrett, A. J., Gorton, M. P., 1985. The Origin of the Fractionation of Platinum-Group Elements in Terrestrial Magmas. Chemical Geology, 53(3/4): 303–323. https://doi.org/10.1016/0009-2541(85)90076-2

    Article  Google Scholar 

  • Barrett, F. M., Binns, R. A., Groves, D. I., et al., 1977. Structural History and Metamorphic Modification of Archean Volcanic-Type Nickel Deposits, Yilgarn Block, Western Australia. Economic Geology, 72(7): 1195–1223. https://doi.org/10.2113/gsecongeo.72.7.1195

    Article  Google Scholar 

  • Bédard, P., Barnes, S.-J., 2002. A Comparison of the Capacity of FAICP-MS and FA-INAA to Determine Platinum-Group Elements and Gold in Geological Samples. Journal of Radioanalytical and Nuclear Chemistry, 254: 319–329. https://doi.org/10.1023/a:1021632118200

    Article  Google Scholar 

  • Boer, R. H., Meyer, F. M., Cawthorn, R. G., 1994. Stable Isotopic Evidence for Crustal Contamination and Desulfidation of the Cupriferous Koperberg Suite, Namaqualand, South Africa. Geochimica et Cosmochimica Acta, 58(12): 2677–2687. https://doi.org/10.1016/0016-7037(94)90137-6

    Article  Google Scholar 

  • Boray, A., 1973. The Structure and Metamorphism of the Bitlis Area, Southeast Turkey: [Dissertation]. Londra University, England. 233

    Google Scholar 

  • Boyd, R., Mathiesen C. O., 1979. The Nickel Mineralization of the Rana Mafic Intrusion, Nordland, Norway. The Canadian Mineralogist, 17(2): 287–298

    Google Scholar 

  • Boyd, R., McDade, J. M., Millard, H. T., et al., 1987. Platinium Metal Geochemistry of the Bruvann Nickel-Copper Deposit, Rána, North Norway. Norsk Geologisk Tidsskrift, Oslo. 67: 205–213

    Google Scholar 

  • Çağatay, M. N., 1987. The Pancarli Nickel-Copper Sulfide Mineralization, Eastern Turkey. Mineralium Deposita, 22(3): 163–171. https://doi.org/10.1007/bf00206605

    Article  Google Scholar 

  • Casquet, C., Galindo, C., Tornos, F., et al., 2001. The Aguablanca Cu-Ni Ore Deposit (Extremadura, Spain), a Case of Synorogenic Orthomagmatic Mineralization: Age and Isotope Composition of Magmas (Sr, Nd) and Ore (S). Ore Geology Reviews, 18(3/4): 237–250. https://doi.org/10.1016/s0169-1368(01)00033-6

    Article  Google Scholar 

  • Cawthorn, R. G., Meyer, F. M., 1993. Petrochemistry of the Okiep Copper District Basic Intrusive Bodies, Northwestern Cape Province, South Africa. Economic Geology, 88(3): 590–605. https://doi.org/10.2113/gsecongeo.88.3.590

    Article  Google Scholar 

  • Crocket, J. H., 2002. Platinum-Group Element Geochemistry of Mafic and Ultramafic Rocks. Canadian Institute Mining Metallurgy and Petroleum, 54: 177–210

    Google Scholar 

  • Distler, V. V., Malesvsky, A. Y., Laputina, I. P., 1977. Distribution of Platinoids between Pyrrhotite and Pentlandite in Crystallization of a Sulfide Melt. Geochemica International, 14: 30–40

    Google Scholar 

  • Durazzo, A., Taylor, L. A., 1982. Exsolution in the Mss-Pentlandite System: Textural and Genetic Implications for Ni-Sulfide Ores. Mineralium Deposita, 17(3): 313–332. https://doi.org/10.1007/bf00204463

    Article  Google Scholar 

  • Eckstrand, O. R., Hulbert, L. J., 1987. Selenium and the Source of Sulfur in Magmatic Nickel and Platinum Deposits. Geol. Assoc. Can.-Min. Assoc. Can. Abstr. Programs 12. 40

  • Fleet, M. E., Chryssoulis, S. L., Stone, W. E., et al., 1993. Partitioning of Platinum-Group Elements and Au in the Fe-Ni-Cu-S System: Experiments on the Fractional Crystallization of Sulfide Melt. Contributions to Mineralogy and Petrology, 115(1): 36–44. https://doi.org/10.1007/bf00712976

    Article  Google Scholar 

  • Genç, S., 1977. Geological Evolution of the Southern Margin of the Bitlis Massif, Lice-Kulp District, SE Turkey: [Dissertation]. Wales University, Cardiff. 281

    Google Scholar 

  • Genç, S., 1985. Discussion on the Parent Problem of Gneisses and Amphibolites in the Lice-Kulp (Diyarbakir) and Çökekyazi-Gökay Areas of the Bitlis Massif. Geological Engineering, 23: 31–38

    Google Scholar 

  • Genç, S., 1990. Petrography, Metamorphism, and Genesis of Metamorphics in the Çökekyazi Gökay (Hizan, Bitlis) Area of the Bitlis Massif. Geological Bulletin of Turkey, 33: 1–14

    Google Scholar 

  • Göncüoğlu, M. C., Turhan, N., 1984. Geology of the Bitlis Metamorphic Belt. In: Tekeli, O., Göncüoğlu, M. C., eds., International Symposium on Geology of the Taurus Belt Proceedings. Mineral Research and Exploration Institute of Turkey, Ankara. 237–244

    Google Scholar 

  • Hall, R., 1976. Ophiolite Emplacement and the Evolution of the Taurus Suture Zone, Southeastern Turkey. Geological Society of America Bulletin, 87(7): 1078. https://doi.org/10.1130/0016-7606(1976)87<1078:oeateo>2.0.co;2

    Article  Google Scholar 

  • Helvaci, C., Griffin, W. L., 1984. Rb-Sr Geochronology of the Bitlis Massif, Avnik (Bingöl) Area, S.E. Turkey. Geological Society, London, Special Publications, 17(1): 403–413. https://doi.org/10.1144/gsl.sp.1984.017.01.28

    Article  Google Scholar 

  • Hirano, H., Boyali, I., 1980. Geology of the Nickel-Copper Deposits in Pancarli Area (Bitlis Massif, Eastern Turkey). General Directorate of Mineral Research and Exploration Report No. 1746. 33 Ankara

  • Hoatson, D. M., Blake, D. H., 2000. Geology and Economic Potential of the Palaeoproterozoic Layered Mafic-Ultramafic Intrusions in the East Kimberley, Western Australia. Australian Geological Survey Organization, Canberra. 246–469

    Google Scholar 

  • Hoffman, E. L., Naldrett, A. J., Alcock, R. A., et al., 1979. The Noble Metal Content of Ore in the Levack West and Little Stobie Mines, Ontario. Canadian Mineralogist, 17: 437–451

    Google Scholar 

  • Huang, S. F., Wang, W., 2019. Origin of the Fan**gshan Mafic-Ultramafic Rocks, Western Jiangnan Orogen, South China: Implications for PGE Fractionation and Mineralization. Journal of Earth Science, 30(2): 258–271. https://doi.org/10.1007/s12583-018-1201-x

    Article  Google Scholar 

  • Konnunaho, J. P., Hanski, E. J., Bekker, A., et al., 2013. The Archean Komatiite-Hosted, PGE-Bearing Ni-Cu Sulfide Deposit at Vaara, Eastern Finland: Evidence for Assimilation of External Sulfur and Post-Depositional Desulfurization. Mineralium Deposita, 48(8): 967–989. https://doi.org/10.1007/s00126-013-0469-0

    Article  Google Scholar 

  • Li, C., Barnes, S.-J., Makovicky, E., et al., 1996. Partitioning of Nickel, Copper, Iridium, Rhenium, Platinum, and Palladium between Monosulphide Solid Solution and Sulphide Liquid: Effects of Composition and Temperature. Geochimica et Cosmochimica Acta, 60: 1231–1238. https://doi.org/10.1016/0016-7037(96)00009-9

    Article  Google Scholar 

  • Li, C., Naldrett, A. J., 1999. Geology and Petrology of the Voisey’s Bay Intrusion: Reaction of Olivine with Silicate and Sulfide Liquids. Lithos, 47(1/2): 1–13. https://doi.org/10.1016/s0024-4937(99)00005-5

    Article  Google Scholar 

  • Maier, W. D., 2000. Platinum-Group Elements in Cu-Sulphide Ores at Carolusberg and East Okiep, Namaqualand, South Africa. Mineralium Deposita, 35(5): 422–429. https://doi.org/10.1007/s001260050253

    Article  Google Scholar 

  • Maier, W. D., Andreoli, M. A. G., Groves, D. I., et al., 2012. Petrogenesis of Cu-Ni Sulphide Ores from O’okiep and Kliprand, Namaqualand, South Africa: Constraints from Chalcophile Metal Contents. South African Journal of Geology, 115(4): 499–514. https://doi.org/10.2113/gssajg.115.4.499

    Article  Google Scholar 

  • Maier, W. D., Barnes, S.-J., 1996. Unusually High Concentrations of Magnetite at Caraiba and Other Cu-Sulfide Deposits in the Curaçá Valley, Bahia, Brazil. The Canadian Mineralogist, 34: 717–731

    Google Scholar 

  • Maier, W. D., Barnes, S.-J., 1999. The Origin of Cu Sulfide Deposits in the Curaca Valley, Bahia, Brazil: Evidence from Cu, Ni, Se, and Platinum-Group Element Concentrations. Economic Geology, 94(2): 165–183. https://doi.org/10.2113/gsecongeo.94.2.165

    Article  Google Scholar 

  • Maier, W. D., Barnes, S.-J., Chinyepi, G., et al., 2008. The Composition of Magmatic Ni-Cu-(PGE) Sulfide Deposits in the Tati and Selebi-Phikwe Belts of Eastern Botswana. Mineralium Deposita, 43(3): 373–373. https://doi.org/10.1007/s00126-007-0169-8

    Article  Google Scholar 

  • Makkonen, H., 2015. Ni Deposits of the Vammala and Kotalahti Belt. In: Maier, W. D., O’Brien, H., Lahtinen, R., eds., Mineral Deposits of Finland. Elsevier, Amsterdam. 253–285

    Chapter  Google Scholar 

  • Manor, M. J., 2014. Convergent Margin Ni-Cu-PGE Deposits: Geology, Geochronology, and Geochemistry of the Giant Mascot Magmatic Sulfide Deposit, Hope, British Columbia: [Dissertation]. University of British Columbia, Vancouver. 371

    Google Scholar 

  • Mavrogenes, J. A., O’Neill, H. S. C., 1999. The Relative Effects of Pressure, Temperature and Oxygen Fugacity on the Solubility of Sulfide in Mafic Magmas. Geochimica et Cosmochimica Acta, 63(7/8): 1173–1180. https://doi.org/10.1016/s0016-7037(98)00289-0

    Article  Google Scholar 

  • McDonough, W. F., Sun, S. S., 1995. The Composition of the Earth. Chemical Geology, 120(3/4): 223–253. https://doi.org/10.1016/0009-2541(94)00140-4

    Article  Google Scholar 

  • MTA, 2002. Geological Map of Turkey, Scale 1/500 000. Mineral Research and Exploration, Ankara

    Google Scholar 

  • Mungall, J. E., Hanley, J. J., Arndt, N. T., et al., 2006. Evidence from Meimechites and Other Low-Degree Mantle Melts for Redox Controls on Mantle-Crust Fractionation of Platinum-Group Elements. Proceedings of the National Academy of Sciences, 103(34): 12695–12700. https://doi.org/10.1073/pnas.0600878103

    Article  Google Scholar 

  • Naldrett, A. J., 1989. Magmatic Sulphide Deposits. Oxford Monographs on Geology and Geophysics, No. 14. Oxford University Press, New York, Oxford. 186

    Google Scholar 

  • Naldrett, A. J., 2004. Magmatic Sulfide Deposits. Springer, Berlin, Heidelberg, New York. 727

    Book  Google Scholar 

  • Naldrett, A. J., Asif, M., Krstic, S., et al., 2000. The Composition of Mineralization at the Voisey’s Bay Ni-Cu Sulfide Deposit, with Special Reference to Platinum-Group Elements. Economic Geology, 95(4): 845–865. https://doi.org/10.2113/gsecongeo.95.4.845

    Google Scholar 

  • Oberhänsli, R., Koralay, E., Candan, O., et al., 2013. Late Cretaceous Eclogitic High-Pressure Relics in the Bitlis Massif. Geodinamica Acta, 26(3/4): 175–190. https://doi.org/10.1080/09853111.2013.858951

    Article  Google Scholar 

  • Ohmoto, H., 1986. Stable Isotope Geochemistry of Ore Deposits. In: Valley J. W., Taylor, H. P. Jr., O’Neil, J. R., eds., Stable Isotopes in High Temperature Geological Processes. Reviews in Mineralogy and Geochemistry, 16: 491–559

    Google Scholar 

  • Okay, A. I., Arman, M. B., Göncüoğlu, M. C., 1985. Petrology and Phase Relations of the Kyanite-Eclogites from Eastern Turkey. Contributions to Mineralogy and Petrology, 91(2): 196–204. https://doi.org/10.1007/bf00377767

    Article  Google Scholar 

  • Paktunc, A. D., 1990. Comparative Geochemistry of Platinum-Group Elements of Nickel-Copper Sulfide Occurrences Associated with Mafic-Ultramafic Intrusions in the Appalachian Orogen. Journal of Geochemical Exploration, 37(1): 101–111. https://doi.org/10.1016/0375-6742(90)90085-o

    Article  Google Scholar 

  • Peltonen, P., 2005. Mafic-Ultramafic Intrusions of the Svecofennian Orogeny. In: Lehtinen, M., Nurmi, P. A., Rämö, O. T., eds., Precambrian of Finland—A Key to the Evolution of the Fennoscandian Shield. Elsevier, Amsterdam. 413–447

    Google Scholar 

  • Perinçek, D., 1980. Volcanics of Triassic Age in Bitlis Metamorphic Rocks. Geological Bulletin of Turkey, 23: 201–211

    Google Scholar 

  • Piña, R., Lunar, R., Ortega, L., et al., 2006. Petrology and Geochemistry of Mafic-Ultramafic Fragments from the Aguablanca Ni-Cu Ore Breccia, Southwest Spain. Economic Geology, 101(4): 865–881. https://doi.org/10.2113/gsecongeo.101.4.865

    Article  Google Scholar 

  • Queffurus, M., Barnes, S.-J., 2015. A Review of Sulfur to Selenium Ratios in Magmatic Nickel-Copper and Platinum-Group Element Deposits. Ore Geology Reviews, 69: 301–324. https://doi.org/10.1016/j.oregeorev.2015.02.019

    Article  Google Scholar 

  • Ripley, E. M., 1999. Systematics of Sulphur and Oxygen Isotopes in Mafic Igneous Rocks and Related Cu-Ni-PGE Mineralization. In: Keays, R. R., Lesher, C. M., Lightfoot, P. C., et al., eds., Dynamic Processes in Magmatic Ore Deposits and Their Application in Mineral Exploration. Geological Association of Canada, Short Course Notes, Volume 13. 133–158

  • Ripley, E. M., Li, C. S., 2013. Sulfide Saturation in Mafic Magmas: Is External Sulfur Required for Magmatic Ni-Cu-(PGE) Ore Genesis?. Economic Geology, 108(1): 45–58. https://doi.org/10.2113/econgeo.108.1.45

    Article  Google Scholar 

  • Ripley, E. M., Li, C., Shin, D., 2002. Paragneiss Assimilation in the Genesis of Magmatic Ni-Cu-Co Sulfide Mineralization at Voisey’s Bay, Labrador: 34S, 13C, and Se/S Evidence. Economic Geology, 97(6): 1307–1318. https://doi.org/10.2113/gsecongeo.97.6.1307

    Article  Google Scholar 

  • Ripley, E. M., Lightfoot, P. C., Li, C. S., et al., 2003. Sulfur Isotopic Studies of Continental Flood Basalts in the Noril’sk Region: Implications for the Association between Lavas and Ore-Bearing Intrusions. Geochimica et Cosmochimica Acta, 67(15): 2805–2817. https://doi.org/10.1016/s0016-7037(03)00102-9

    Article  Google Scholar 

  • Ripley, E. M., Park, Y. R., Li, C. S., et al., 1999. Sulfur and Oxygen Isotopic Evidence of Country Rock Contamination in the Voisey’s Bay Ni-Cu-Co Deposit, Labrador, Canada. Lithos, 47(1/2): 53–68. https://doi.org/10.1016/s0024-4937(99)00007-9

    Article  Google Scholar 

  • Ripley, E. M., Sarkar, A., Li, C., 2005. Mineralogic and Stable Isotope Studies of Hydrothermal Alteration at the **chuan Ni-Cu Deposit, China. Economic Geology, 100(7): 1349–1361. https://doi.org/10.2113/gsecongeo.100.7.1349

    Article  Google Scholar 

  • Schulz, K. J., Chandler, V. W., Suzanne, W., et al., 2010. Magmatic Sulfide Rich Nickel-Copper Deposits Related to Picrite and (or) Tholeiitic Basalt Dike Sill Complexes: A Preliminary Deposit Model. U.S. Geological Survey Open-File Report 2010–1179. 25

  • Seat, Z., Beresford, S. W., Grguric, B. A., et al., 2009. Reevaluation of the Role of External Sulfur Addition in the Genesis of Ni-Cu-PGE Deposits: Evidence from the Nebo-Babel Ni-Cu-PGE Deposit, West Musgrave, Western Australia. Economic Geology, 104(4): 521–538. https://doi.org/10.2113/gsecongeo.104.4.521

    Article  Google Scholar 

  • Şengün, M., 1993. The Metamorphism and the Relationship between Infra and Suprastructures of the Bitlis Massif—Turkey. Bull. Min. Res. Expl., 115: 1–13

    Google Scholar 

  • Şengün, M., Çağlayan, A., Sevin, M., 1991. The Bitlis Massif: Geology of Bitlis-Tatvan-Hizan-Şirvan Area. General Directorate of the Mineral Research and Exploration Report No. 9105. 200

  • Su, B. X., Qin, K. Z., Sun, H., et al., 2012. Olivine Compositional Map** of Mafic-Ultramafic Complexes in Eastern **njiang (NW China): Implications for Cu-Ni Mineralization and Tectonic Dynamics. Journal of Earth Science, 23(1): 41–53. https://doi.org/10.1007/s12583-012-0232-y

    Article  Google Scholar 

  • Thakurta, J., Ripley, E. M., Li, C., 2014. Platinum Group Element Geochemistry of Sulfide-Rich Horizons in the Ural-Alaskan-Type Ultramafic Complex of Duke Island, Southeastern Alaska. Economic Geology, 109(3): 643–659. https://doi.org/10.2113/econgeo.109.3.643

    Article  Google Scholar 

  • Thompson, J. F. H., Naldrett, A. J., 1984. Sulphide-Silicate Reactions as a Guide to Ni-Cu-Co Mineralization in Central Maine. Inst. Min. and Metall., London

    Google Scholar 

  • Tornos, F., Casquet, C., Galindo, C., et al., 2001. A New Style of Ni-Cu Mineralization Related to Magmatic Breccia Pipes in a Transpressional Magmatic Arc, Aguablanca, Spain. Mineralium Deposita, 36(7): 700–706. https://doi.org/10.1007/s001260100204

    Article  Google Scholar 

  • Tornos, F., Galindo, C., Casquet, C., et al., 2006. The Aguablanca Ni-(Cu) Sulfide Deposit, SW Spain: Geologic and Geochemical Controls and the Relationship with a Midcrustal Layered Mafic Complex. Mineralium Deposita, 41(8): 737–769. https://doi.org/10.1007/s00126-006-0090-6

    Article  Google Scholar 

  • Türkünal, S., 1980. Geology of the Eastern and Southeastern Anatolia. Chamber of Geophysical Engineers, Ankara, 8. 64

    Google Scholar 

  • Ustaömer, P. A., Ustaömer, T., Collins, A. S., et al., 2009. Cadomian (Ediacaran-Cambrian) Arc Magmatism in the Bitlis Massif, SE Turkey: Magmatism along the Develo** Northern Margin of Gondwana. Tectonophysics, 473(1/2): 99–112. https://doi.org/10.1016/j.tecto.2008.06.010

    Article  Google Scholar 

  • Ustaömer, P. A., Ustaömer, T., Gerdes, A., et al., 2012. Evidence of Precambrian Sedimentation/Magmatism and Cambrian Metamorphism in the Bitlis Massif, SE Turkey Utilising Whole-Rock Geochemistry and U-Pb LA-ICP-MS Zircon Dating. Gondwana Research, 21(4): 1001–1018. https://doi.org/10.1016/j.gr.2011.07.012

    Article  Google Scholar 

  • Yildirim, N., Gören, B., Dönmez, C., et al., 2016. Magmatic Ni-Sulfide Mineralization in the Precambrian Massif, Eastern Turkey (Bitlis-Pancarli). 69th Geological Congress of Turkey, MTA Ankara

  • Yilmaz, O., Michel, R., Vialette, Y., et al., 1981. Réinterprétation des Données Isotopiques Rb-Sr Obtenues Sur Les Métamorphites de La Partie Méridionale Du Massif de Bitlis (Turquie). Sciences Géologiques Bulletin, 34(1): 59–73. https://doi.org/10.3406/sgeol.1981.1590

    Article  Google Scholar 

  • Yilmaz, Y., Yiğitbaş, E., Genç, Ş. C., 1993. Ophiolitic and Metamorphic Assemblages of Southeast Anatolia and Their Significance in the Geological Evolution of the Orogenic Belt. Tectonics, 12(5): 1280–1297. https://doi.org/10.1029/93tc00597

    Article  Google Scholar 

  • Zientek, M. L., Likhachev, A. P., Kunilov, V. E., et al., 1994. Cumulus Processes and the Composition of Magmatic Ore Deposits: Examples from the Talnakh District, Russia. Ontario Geological Survey Special Publication, Ontario. 5: 373–392

    Google Scholar 

Download references

Acknowledgments

This study was supported by the General Directorate of Mineral Research and Exploration. We thank Serkan Özkümüş, Mahmut Eroğlu for their help in the field study, Yunus Sönmez for drawing of the figures and Drs. Neşe Oyal and Emin Çifçi for proofreading of this paper. We thank Michael Zientek and Eero Hanski for their constructive criticism and suggestions. We are also, grateful to Drs, Peter Lightfoot, Sarah-Jane Barnes, and Phil D. Sounders for their help on the geochemical calculations. The final publication is available at Springer via https://doi.org/10.1007/s12583-020-1299-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esra Yildirim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim, E., Yildirim, N., Dönmez, C. et al. Composition of Pancarli Magmatic Ni-Cu±(PGE) Sulfide Deposit in the Cadomian-Avalonian Belt, Eastern Turkey. J. Earth Sci. 31, 536–550 (2020). https://doi.org/10.1007/s12583-020-1299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-020-1299-5

Key Words

Navigation