Log in

Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 3: Applied geomechanics, petrophysics and reservoir modeling

  • Invited Review Article
  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Modeling geomechanical properties of shales to make sense of their complex properties is at the forefront of petroleum exploration and exploitation application and has received much research attention in recent years. A shale’s key geomechanical properties help to identify its “fracibility” its fluid flow patterns and rates, and its in-place petroleum resources and potential commercial reserves. The models and the information they provide, in turn, enable engineers to design drilling patterns, fracture-stimulation programs and materials selection that will avoid formation damage and optimize recovery of petroleum. A wide-range of tools, technologies, experiments and mathematical techniques are deployed to achieve this. Characterizing the interconnected fracture, permeability and porosity network is an essential step in understanding a shales highly-anisotropic features on multiple scales (nano to macro). Well-log data, and its petrophysical interpretation to calibrate many geomechanical metrics to those measured in rock samples by laboratory techniques plays a key role in providing affordable tools that can be deployed cost-effectively in multiple well bores. Likewise, microseismic data helps to match fracture density and propagation observed on a reservoir scale with predictions from simulations and laboratory tests conducted on idealised/simplified discrete fracture network models. Shales complex wettability, adsorption and water imbibition characteristics have a significant influence on potential formation damage during stimulation and the short-term and long-term flow of petroleum achievable. Many gas flow mechanisms and models are proposed taking into account the multiple flow mechanisms involved (e.g., desorption, diffusion, slippage and viscous flow operating at multiple porosity levels from nano- to macro-scales). Fitting historical production data and well decline curves to model predictions helps to verify whether model’s geomechanical assumptions are realistic or not. This review discusses the techniques applied and the models developed that are relevant to applied geomechanics, highlighting examples of their application and the numerous outstanding questions associated with them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References Cited

  • Adachi, J., Siebrits, E., Peirce, A., et al., 2007. Computer Simulation of Hydraulic Fractures. International Journal of Rock Mechanics and Mining Sciences, 44(5): 739–757. doi:10.1016/j.ijrmms.2006.11.006

    Article  Google Scholar 

  • Aguilera, R., 2014. Flow Units: From Conventional to Tight-Gas to Shale-Gas to Tight-Oil to Shale-Oil Reservoirs. SPE Reservoir Evaluation & Engineering, 17(2): 190–208. doi:10.2118/165360-pa

    Article  Google Scholar 

  • Ajao, O., Iwu, C. F., Dalamarinis, P., et al., 2013. Case Studies for the Fracturing of Highly Diverse Gas Reservoirs. Journal of Natural Gas Science and Engineering, 14: 34–41. doi:10.1016/j.jngse.2013.05.001

    Article  Google Scholar 

  • Al-Anazi, A., Gates, I. D., 2010. On the Capability of Support Vector Machines to Classify Lithology from Well Logs. Natural Resources Research, 19(2): 125–139. doi:10.1007/s11053-010-9118-9

    Article  Google Scholar 

  • Alkouh, A., McKetta, S., Wattenbarger, R. A., 2014. Estimation of Effective-Fracture Volume Using Water-Flowback and Production Data for Shale-Gas Wells. Journal of Canadian Petroleum Technology, 53(5): 290–303. doi:10.2118/166279-pa

    Article  Google Scholar 

  • Ambrose, R. J., Hartman, R. C., Diaz-Campos, M., et al., 2010. New Pore-Scale Considerations for Shale Gas in Place Calculations. In: SPE Unconventional Gas Conference, Pittsburgh, PA. SPE 131772

    Book  Google Scholar 

  • Arya, G., Chang, H. C., Maginn, E. J., 2001. A Critical Comparison of Equilibrium, Non-Equilibrium and Boundary-Driven Molecular Dynamics Techniques for Studying Transport in Microporous Materials. The Journal of Chemical Physics, 115(17): 8112–8124. doi:10.1063/1.1407002

    Article  Google Scholar 

  • Bennion, D. B., Thomas, F. B., Ma, T., 2000. Formation Damage Processes Reducing Productivity of Low Permeability Gas Reservoirs. Presented at SPE Rocky Mountain Regional/Low Permeability Reservoirs Symposium and Exhibition, March 12–15, 2000, Denver, Colorado. SPE 60325

    Book  Google Scholar 

  • Bhandari, A. R., Flemings, P. B., Polito, P. J., et al., 2015. Erratum To: Anisotropy and Stress Dependence of Permeability in the Barnett Shale. Transport in Porous Media, 108(3): 733–733. doi:10.1007/s11242-015-0482-0

    Article  Google Scholar 

  • Bhattacharya, S., Carr, T. R., Pal, M., 2016. Comparison of Supervised and Unsupervised Approaches for Mudstone Lithofacies Classification: Case Studies from the Bakken and Mahantango-Marcellus Shale, USA. Journal of Natural Gas Science and Engineering, 33: 1119–1133. doi:10.1016/j.jngse.2016.04.055

    Article  Google Scholar 

  • Borysenko, A., Clennell, B., Sedev, R., et al., 2009. Experimental Investigations of the Wettability of Clays and Shales. Journal of Geophysical Research, 114(B7): 1–11. doi:10.1029/2008jb005928

    Article  Google Scholar 

  • Bowker, K. A., 2007. Barnett Shale Gas Production, Fort Worth Basin: Issues and Discussion. AAPG Bulletin, 91(4): 523–533. doi:10.1306/06190606018

    Article  Google Scholar 

  • Britt, L. K., Schoeffler, J., 2009. The Geomechanics of a Shale Play: What Makes a Shale Prospective. SPE 125525: 9

    Google Scholar 

  • Brooks, R. H., Corey, A. T., 1964. Hydraulic Properties of Porous Media. Hydro Paper No. 3. Colorado State University, CO, USA. 37

    Google Scholar 

  • Cai, J. C., Ghanbarian, B., Xu, P., et al., 2016. Virtual Special Issue: Advanced Theoretical and Numerical Approaches and Applications to Enhanced Gas Recovery. Journal of Natural Gas Science and Engineering, 37: 579–583. doi:10.1016/j.jngse.2016.12.006

    Article  Google Scholar 

  • Cardneaux, A. P., 2012. Map** of the Oil Window in the Eagle Ford Shale Play of Southwest Texas Using Thermal Modeling and Log Overlay Analysis: [Dissertation]. Louisiana State University, Louisiana. 74

    Google Scholar 

  • Cha, M. S., Yin, X. L., Kneafsey, T., et al., 2014. Cryogenic Fracturing for Reservoir Stimulation––Laboratory Studies. Journal of Petroleum Science and Engineering, 124: 436–450. doi:10.13039/100000015

    Article  Google Scholar 

  • Chakraborty, N., Karpyn, Z. T., Liu, S., et al., 2017. Permeability Evolution of Shale during Spontaneous Imbibition. Journal of Natural Gas Science and Engineering, 38: 590–596. doi:10.13039/100000015

    Article  Google Scholar 

  • Chen, D., Pan, Z. J., Ye, Z. H., 2015. Dependence of Gas Shale Fracture Permeability on Effective Stress and Reservoir Pressure: Model Match and Insights. Fuel, 139: 383–392. doi:10.1016/j.fuel.2014.09.018

    Article  Google Scholar 

  • Chen, D., Pan, Z. J., Ye, Z. H., et al., 2016. A Unified Permeability and Effective Stress Relationship for Porous and Fractured Reservoir Rocks. Journal of Natural Gas Science and Engineering, 29: 401–412. doi:10.1016/j.jngse.2016.01.034

    Article  Google Scholar 

  • Chen, M. J., Kang, Y. L., Li, X. C., et al., 2016. Investigation of Multi-Scale Gas Transport Behavior in Organic-Rich Shale. Journal of Natural Gas Science and Engineering, 36: 1188–1198. doi:10.1016/j.jngse.2016.03.061

    Article  Google Scholar 

  • Cheng, L. S., Jia, P., Rui, Z. H., et al., 2017. Transient Responses of Multifractured Systems with Discrete Secondary Fractures in Unconventional Reservoirs. Journal of Natural Gas Science and Engineering, 41: 49–62. doi:10.13039/501100005154

    Article  Google Scholar 

  • Clarkson, C. R., 2013. Production Data Analysis of Unconventional Gas Wells: Review of Theory and Best Practices. International Journal of Coal Geology, 109/110: 101–146. doi:10.1016/j.coal.2013.01.002

    Article  Google Scholar 

  • Clarkson, C. R., Bustin, R. M., 2000. Binary Gas Adsorption/Desorption Isotherms: Effect of Moisture and Coal Composition Upon Carbon Dioxide Selectivity over Methane. International Journal of Coal Geology, 42(4): 241–271. doi:10.1016/s0166-5162(99)00032-4

    Article  Google Scholar 

  • Clarkson, C. R., Haghshenas, B., Ghanizadeh, A., et al., 2016. Nanopores to Megafractures: Current Challenges and Methods for Shale Gas Reservoir and Hydraulic Fracture Characterization. Journal of Natural Gas Science and Engineering, 31: 612–657. doi:10.1016/j.jngse.2016.01.041

    Article  Google Scholar 

  • Clarkson, C. R., Jensen, J. L., Chipperfield, S., 2012. Unconventional Gas Reservoir Evaluation: What do We Have to Consider?. Journal of Natural Gas Science and Engineering, 8: 9–33. doi:10.1016/j.jngse.2012.01.001

    Article  Google Scholar 

  • Crafton, J. W., 2008, Modeling Flowback Behavior or Flowback Equals “Slowback”. Society of Petroleum Engineers, In: SPE: Tight Gas Completions Conference, Texas. SPE 119894. doi:10.2118/119894-MS

    Google Scholar 

  • Crain, E. A., 2014. A 12-Step Program to Reduce Uncertainty in Kerogenrich Reservoirs. GeoConvention Canadian Society of Petroleum Geologists, Calgary. 1–11

    Google Scholar 

  • Crawford, E., Senters, C. W., Bullard, K. E., et al., 2014. Granite Wash Optimization Validating Completion and Production Techniques. Presented at the SPE Annual Technical Conference and Exhibition, October 27–29, 2014, Amsterdam, Netherlands. doi:10.2118/170923-MS

    Book  Google Scholar 

  • Cudjoe, S., Vinassa, M., Henrique Bessa Gomes, J., et al., 2016. A Comprehensive Approach to Sweet-Spot Map** for Hydraulic Fracturing and CO2 Huff-N-Puff Injection in Chattanooga Shale Formation. Journal of Natural Gas Science and Engineering, 33: 1201–1218. doi:10.1016/j.jngse.2016.03.042

    Article  Google Scholar 

  • Curtis, J. B., 2002. Fractured Shale-Gas Systems. AAPG Bulletin, 86(11): 1921–1938. doi:10.1306/61eeddbe-173e-11d7-8645000102c1865d

    Google Scholar 

  • Daal, J. A., Economides, M. J., 2006. Optimization of Hydraulically Fractured Wells in Irregularly Shaped Drainage Areas. SPE 98047

    Book  Google Scholar 

  • Darcy, H., 1856. Les Fontaines Publiques de la Ville de Dijon. Dalmont, Paris (in French)

    Google Scholar 

  • Davis, E., 2009. Hydraulic Fracture Diagnostics and Reservoir Diagnostics. [2017-09-04]. http://www.ieaghg.org/docs/monitoring/5mtg/Pinnacle_BD%20Overview%20EJD.pdf

    Google Scholar 

  • Ding, W. L., Li, C., Li, C. Y., et al., 2012. Fracture Development in Shale and Its Relationship to Gas Accumulation. Geoscience Frontiers, 3(1): 97–105. doi:10.1016/j.gsf.2011.10.001

    Article  Google Scholar 

  • Donnelly, B., Perfect, E., McKay, L. D., et al., 2016. Capillary Pressure––Saturation Relationships for Gas Shales Measured Using a Water Activity Meter. Journal of Natural Gas Science and Engineering, 33: 1342–1352. doi:10.1016/j.jngse.2016.05.014

    Article  Google Scholar 

  • Dubinin, M. M., Astakhov, V. A., 1971. Development of the Concepts of Volume Filling of Micropores in the Adsorption of Gases and Vapors by Microporous Adsorbents. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 20(1): 3–7. doi:10.1007/bf00849307

    Article  Google Scholar 

  • Economides, M. J., Oligney, R. E., Valkó, P., 2002. Applying Unified Fracture Design to Natural Gas Wells. World Oil, 223: 50–62

    Google Scholar 

  • Elijah, O., 2011. An NMR Study of Shale Wettability: [Dissertation]. University of Oklahoma, Norman

    Google Scholar 

  • Fang, C. L., Amro, M., Jiang, G. S., et al., 2016. Laboratory Studies of Non-Marine Shale Porosity Characterization. Journal of Natural Gas Science and Engineering, 33: 1181–1189. doi:10.1016/j.jngse.2016.04.006

    Article  Google Scholar 

  • Fatahi, H., Hossain, M. M., Fallahzadeh, S. H., et al., 2016. Numerical Simulation for the Determination of Hydraulic Fracture Initiation and Breakdown Pressure Using Distinct Element Method. Journal of Natural Gas Science and Engineering, 33: 1219–1232. doi:10.1016/j.jngse.2016.03.029

    Article  Google Scholar 

  • Fathi, E., Tinni, A., Akkutlu, I. Y., 2012. Correction to Klinkenberg Slip Theory for Gas Flow in Nano-Capillaries. International Journal of Coal Geology, 103: 51–59. doi:10.1016/j.coal.2012.06.008

    Article  Google Scholar 

  • Fertl, W., 1976. Abnormal Formation Pressures: Implications to Exploration, Drilling and Production of Oil and Gas Reservoirs: Development in Petroleum Science 2. Elsevier Scientific Publications Company, Amsterdam. 382

    Google Scholar 

  • Firouzi, M., Wilcox, J., 2012. Molecular Modeling of Carbon Dioxide Transport and Storage in Porous Carbon-Based Materials. Microporous and Mesoporous Materials, 158: 195–203. doi:10.1016/j.micromeso.2012.02.045

    Article  Google Scholar 

  • Gandossi, L., 2013. An Overview of Hydraulic Fracturing and Other Formation Stimulation Technologies for Shale Gas Production: European Union Joint Research Centre Report EUR 26347 EN. European Union Joint Research Centre, Publications Office of the European Union, Luxembourg. 64. doi:10.2790/99937

    Google Scholar 

  • Garipov, T. T., Karimi-Fard, M., Tchelepi, H. A., 2016. Discrete Fracture Model for Coupled Flow and Geomechanics. Computational Geosciences, 20(1): 149–160. doi:10.1007/s10596-015-9554-z

    Article  Google Scholar 

  • Ghaderi, S. M., Clarkson, C. R., 2016. Estimation of Fracture Height Growth in Layered Tight/Shale Gas Reservoirs Using Flowback Gas Rates and Compositions––Part I: Model Development. Journal of Natural Gas Science and Engineering, 36: 1018–1030. doi:10.1016/j.jngse.2016.05.058

    Article  Google Scholar 

  • Ghanbarian, B., Hunt, A. G., Ewing, R. P., et al., 2013. Tortuosity in Porous Media: A Critical Review. Soil Science Society of America Journal, 77(5): 1461–1477. doi:10.2136/sssaj2012.0435

    Article  Google Scholar 

  • Ghanbarian, B., Hunt, A. G., et al., 2014. Universal Scaling of the Formation Factor in Porous Media Derived by Combining Percolation and Effective Medium Theories. Geophysical Research Letters, 41(11): 3884–3890. doi:10.1002/2014gl060180

    Article  Google Scholar 

  • Gherabati, S. A., Browning, J., Male, F., et al., 2016. The Impact of Pressure and Fluid Property Variation on Well Performance of Liquid-Rich Eagle Ford Shale. Journal of Natural Gas Science and Engineering, 33: 1056–1068. doi:10.1016/j.jngse.2016.06.019

    Article  Google Scholar 

  • Gholami, R., Rasouli, V., Sarmadivaleh, M., et al., 2016. Brittleness of Gas Shale Reservoirs: A Case Study from the North Perth Basin, Australia. Journal of Natural Gas Science and Engineering, 33: 1244–1259. doi:10.1016/j.jngse.2016.03.013

    Article  Google Scholar 

  • Ghorbani, A., Zamora, M., Cosenza, P., 2009. Effects of Desiccation on the Elastic Wave Velocities of Clay-Rocks. International Journal of Rock Mechanics and Mining Sciences, 46(8): 1267–1272. doi:10.1016/j.ijrmms.2009.01.009

    Article  Google Scholar 

  • Glover, P. W. J., 2016. Archie’s Law––A Reappraisal. Solid Earth, 7(4): 1157–1169. doi:10.5194/se-7-1157-2016

    Article  Google Scholar 

  • Gong, D. G., Qu, Z. Q., Guo, T. K., et al., 2016. Variation Rules of Fracture Initiation Pressure and Fracture Starting Point of Hydraulic Fracture in Radial Well. Journal of Petroleum Science and Engineering, 140: 41–56. doi:10.13039/501100001809

    Article  Google Scholar 

  • Goswick, R. A., LaRue, J. L., 2014. Utilizing Oil Soluble Tracers to Understand Stimulation Efficiency along the Lateral. In: Presented at the SPE Annual Technical Conference and Exhibition, October 27–29, 2014, Amsterdam, Netherlands. doi:10.2118/170929-MS

    Book  Google Scholar 

  • Guo, T. K., Qu, Z. Q., Gong, D. G., et al., 2016. Numerical Simulation of Directional Propagation of Hydraulic Fracture Guided by Vertical Multi-Radial Boreholes. Journal of Natural Gas Science and Engineering, 35: 175–188. doi:10.13039/501100001809

    Article  Google Scholar 

  • Gupta, S., 2009. Unconventional Fracturing Fluids for Tight Gas Reservoirs. SPE Hydraulic Fracturing Technology Conference. Society of Petroleum Engineers, the Woodlands, Texas

    Book  Google Scholar 

  • Guzmán, J. D., Pineda, D., Franco, C. A., et al., 2017. Effect of Nanoparticle Inclusion in Fracturing Fluids Applied to Tight Gas-Condensate Reservoirs: Reduction of Methanol Loading and the Associated Formation Damage. Journal of Natural Gas Science and Engineering, 40: 347–355. doi:10.13039/501100007222

    Article  Google Scholar 

  • Hackley, P. C., Cardott, B. J., 2016. Application of Organic Petrography in North American Shale Petroleum Systems: A Review. International Journal of Coal Geology, 163: 8–51. doi:10.1016/j.coal.2016.06.010

    Article  Google Scholar 

  • Haghshenas, B., Aquino, S. D., Clarkson, C. R., et al., 2015. Use of Gas Adsorption Data to Extract Diffusivity/Permeability from Shale Reservoir Drill Cuttings: Implications for Reservoir Characterization of Horizontal Laterals in Western Canadian Shale Plays. Presented at the SPE/CSUR Unconventional Resources Conference Held in Calgary, October 20–22, 2015, Alberta. SPE 175979

    Google Scholar 

  • Han, K., Ju, Y. W., Wang, G. C., et al., 2016. Shale Composition and Pore Structure Variations in the Progradation Direction: A Case Study of Transitional Shales in the Xu-Huai District, Southern North China. Journal of Natural Gas Science and Engineering, 36: 1178–1187. doi:10.13039/501100001809

    Article  Google Scholar 

  • Hartman, C., Bhatta, N., Lasswell, P., 2008. Recent Advances in the Analytical Methods Used for Shale Gas Reservoir Gas-in-Place Assessment. Oral Presentation, SPE Shale Gas Production Conference held in Fort Worth, November 16–18, 2008, Texas

    Google Scholar 

  • Hartman, R. C., Ambrose, R. J., Akkutlu, Y. I., et al., 2011. Shale Gas-in-Place Calculations Part II d Multi-Component Gas Adsorption Effects. Paper Presented at the SPE Unconventional Gas Conference Held in the Woodlands, June 14–16, 2011, Texas. SPE 144097

    Google Scholar 

  • He, J. H., Ding, W. L., Jiang, Z. X., et al., 2016. Logging Identification and Characteristic Analysis of the Lacustrine Organic-Rich Shale Lithofacies: A Case Study from the Es 3 L Shale in the Jiyang Depression, Bohai Bay Basin, Eastern China. Journal of Petroleum Science and Engineering, 145: 238–255. doi:10.13039/501100001809

    Article  Google Scholar 

  • Hermanrud, C., Wensaas, L., Teige, G., et al., 1998. Shale Porosities from Well Logs on Haltenbanken (Offshore Mid-Norway) Show Noinfluence of Overpressuring. In: Law, B. E., ed., Abnormal Pressures in Hydrocarbon Environments. AAPG Memoir, 70: 65–85

    Google Scholar 

  • Hestor, T. C., 2005. Estimation of Gas-Production Potential Using Well Logs, Cretaceous of Northern Montana. USGS Scientific Investigations Report 2005-5082, 32

    Google Scholar 

  • Hill, D. G., Lombardi, T. E., Martin, J. P., 2002. Fractured Shale Gas Potential in New York, in Fletcher, Steve. Chairperson Proceedings in Forty-First Annual Ontario Petroleum Institute Conference, Ontario-New York Oil and Gas Conference, Niagara Falls, Ontario, Canada, Nov. 4–6, 2002, London, Ontario, Ontario Petroleum Institute, 41: 49

    Google Scholar 

  • Hill, D. G., Nelson, C. R., 2000. Gas Productive Fractured Shales: An Overview and Update. Gas TIPS, 6(3): 4–13

    Google Scholar 

  • Horsrud, P., Sønstebø, E. F., Bøe, R., 1998. Mechanical and Petrophysical Properties of North Sea Shales. International Journal of Rock Mechanics and Mining Sciences, 35(8): 1009–1020. doi:10.1016/s0148-9062(98)00162-4

    Article  Google Scholar 

  • Hu, Y. N., Devegowda, D., Sigal, R., 2016. A Microscopic Characterization of Wettability in Shale Kerogen with Varying Maturity Levels. Journal of Natural Gas Science and Engineering, 33: 1078–1086. doi:10.1016/j.jngse.2016.06.014

    Article  Google Scholar 

  • Hu, Y., Devegowda, D., Striolo, A., et al., 2013. A Pore Scale Study Describing the Dynamics of Slick Water Distribution in Shale Gas Formations Following Hydraulic Fracturing. Presented at the Unconventional Resources Conference-USA, April 10–12, 2013, the Woodlands, Texas. SPE 164552

    Google Scholar 

  • Hunt, J. M., 1990. Generation and Migration of Petroleum from Abnormally Pressured Fluid Compartments: Reply. AAPG Bulletin, 75: 1–12. doi:10.1306/0c9b27e5-1710-11d7-8645000102c1865d

    Google Scholar 

  • Jang, H., Lee, W., Kim, J., et al., 2016. Novel Apparatus to Measure the Low-Permeability and Porosity in Tight Gas Reservoir. Journal of Petroleum Science and Engineering, 142: 1–12. doi:10.13039/501100003052

    Article  Google Scholar 

  • Jarvie, D. M., Hill, R. J., Ruble, T. E., et al., 2007. Unconventional Shale-Gas Systems: The Mississippian Barnett Shale of North-Central Texas as one Model for Thermogenic Shale-Gas Assessment. AAPG Bulletin, 91(4): 475–499. doi:10.1306/12190606068

    Article  Google Scholar 

  • Javadpour, F., Fisher, D., Unsworth, M., 2007. Nanoscale Gas Flow in Shale Gas Sediments. Journal of Canadian Petroleum Technology, 46(10): 55–61. doi:10.2118/07-10-06

    Article  Google Scholar 

  • Jiang, T., Rylander, E., Singer, P., et al., 2013. Integrated Petrophysical Interpretation of Eagle Ford Shale with 1D and 2D Nuclear Magnetic Resonance (NMR). Society of Petrophysicists and Well-Log Analysts. SPWLA 54th Annual Logging Symposium, June 22–26, 2013, New Orleans, Louisiana. SPWLA-2013-LL

    Google Scholar 

  • **, X. C., Shah, S. N., Roegiers, J. C., 2015. An Integrated Petrophysics and Geomechanics Approach for Fracability Evaluation in Shale Reservoirs. SPE Hydraulic Fracturing Technology Conference, February 4–6, 2015, the Woodlands, Texas, USA. SPE168589

    Google Scholar 

  • Josh, M., Esteban, L., Piane, C. D., et al., 2012. Laboratory Characterisation of Shale Properties. Journal of Petroleum Science and Engineering, 88/89: 107–124. doi:10.13039/100004366

    Article  Google Scholar 

  • Kanfar, M. S., Clarkson, C. R., 2016. Reconciling Flowback and Production Data: A Novel History Matching Approach for Liquid Rich Shale Wells. Journal of Natural Gas Science and Engineering, 33: 1134–1148. doi:10.1016/j.jngse.2016.04.042

    Article  Google Scholar 

  • Kazemi, M., Takbiri-Borujeni, A., 2016. Non-Equilibrium Molecular Dynamics Simulation of Gas Flow in Organic Nanochannels. Journal of Natural Gas Science and Engineering, 33: 1087–1094. doi:10.13039/100005714

    Article  Google Scholar 

  • Khan, R., Al-Nakhli, A. R., 2012. An Overview of Emerging Technologies and Innovations for Tight Gas Reservoir Development. SPE International Production and Operations Conference and Exhibition, May 14–16, 2012, Doha, Qatar. SPE 155442

    Book  Google Scholar 

  • Khanal, A., Khoshghadam, M., Lee, W. J., et al., 2017. New Forecasting Method for Liquid Rich Shale Gas Condensate Reservoirs with Data Driven Approach Using Principal Component Analysis. Journal of Natural Gas Science and Engineering, 38: 621–637. doi:10.1016/j.jngse.2017.01.014

    Article  Google Scholar 

  • Klinkenberg, L. J., 1941. The Permeability of Porous Media to Liquids and Gases, Drilling and Production Practice. Drilling and Production Practice Conference,January, New York

    Google Scholar 

  • Kresse, O., Weng, X. W., Gu, H. R., et al., 2013. Numerical Modeling of Hydraulic Fractures Interaction in Complex Naturally Fractured Formations. Rock Mechanics and Rock Engineering, 46(3): 555–568. doi:10.1007/s00603-012-0359-2

    Article  Google Scholar 

  • Lakirouhani, A., Bunger, A., Detournay, E., 2008. Modeling Initiation of Hydraulic Fractures from a Wellbore. International Society for Rock Mechanics. ISRM International Symposium––5th Asian Rock Mechanics Symposium, November 24–26, 2008, Tehran, Iran. Document ID: ISRM-ARMS5-2008-134

    Google Scholar 

  • Lan, Q., Xu, M. X., Binazadeh, M., et al., 2015. A Comparative Investigation of Shale Wettability: The Significance of Pore Connectivity. Journal of Natural Gas Science and Engineering, 27: 1174–1188. doi:10.13039/501100002790

    Article  Google Scholar 

  • Langmuir, I., 1916. The Constitution and Fundamental Properties of Solids and Liquids. Part I. Solids. Journal of the American Chemical Society, 38(11): 2221–2295. doi:10.1021/ja02268a002

    Article  Google Scholar 

  • Law, B. E., Spencer, C. W., 1998. Abnormal Pressure in Hydrocarbon Environments. In: Law, B. E., ed., Abnormal Pressures in Hydrocarbon Environments. AAPG Memoir, 70: 1–11

    Google Scholar 

  • Lewis, R., Singer, P., Jiang, T., et al., 2013. NMR T2 Distributions in the Eagle Ford Shale: Reflections on Pore Size. SPE Unconventional Resources Conference-USA, April 10–12, 2013, the Woodlands, Texas, USA. SPE 164554

    Google Scholar 

  • Li, G. Q., Meng, Z. P., 2016. A Preliminary Investigation of CH4 Diffusion through Gas Shale in the Paleozoic Longmaxi Formation, Southern Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 36: 1220–1227. doi:10.13039/501100003819

    Article  Google Scholar 

  • Liang, L. X., Luo, D. X., Liu, X. J., et al., 2016a. Experimental Study on the Wettability and Adsorption Characteristics of Longmaxi Formation Shale in the Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 33: 1107–1118. doi:10.13039/501100001809

    Article  Google Scholar 

  • Liang, L. X., **ong, J., Liu, X. J., et al., 2016b. An Investigation into the Thermodynamic Characteristics of Methane Adsorption on Different Clay Minerals. Journal of Natural Gas Science and Engineering, 33: 1046–1055. doi:10.13039/501100001809

    Article  Google Scholar 

  • Lin, T. J., Yu, H., Lian, Z. H., et al., 2016. Numerical Simulation of the Influence of Stimulated Reservoir Volume on In-Situ Stress Field. Journal of Natural Gas Science and Engineering, 36: 1228–1238. doi:10.13039/501100001809

    Article  Google Scholar 

  • Liu, J. S., Pan, Z. J., Wood, D. A., 2016. Special Issue: CSG2015 International Conference: China Shale and Coal Gases 2015. Journal of Natural Gas Science and Engineering, 36: 1107–1108. doi:10.1016/j.jngse.2016.08.022

    Article  Google Scholar 

  • Liu, J., Wang, J. G., Gao, F., et al., 2016. Impact of Micro-and Macro-Scale Consistent Flows on Well Performance in Fractured Shale Gas Reservoirs. Journal of Natural Gas Science and Engineering, 36: 1239–1252. doi:10.13039/501100001809

    Article  Google Scholar 

  • Ma, Y., Pan, Z. J., Zhong, N. N., et al., 2016. Experimental Study of Anisotropic Gas Permeability and Its Relationship with Fracture Structure of Longmaxi Shales, Sichuan Basin, China. Fuel, 180: 106–115. doi:10.1016/j.fuel.2016.04.029

    Article  Google Scholar 

  • Mayerhofer, M. J., Lolon, E. P., Warpinski, N. R., et al., 2010. What is Stimulated Reservoir Volume. SPE Production & Operations, 25(1): 119890

    Article  Google Scholar 

  • Mayerhofer, M. J., Lolon, E. P., Youngblood, J. E., et al., 2006. Integration of Microseismic Fracture Map** Results with Numerical Fracture Network Production Modeling in the Barnett Shale. November 11–13, 2013, Brisbane, Australia. SPE 102103

    Book  Google Scholar 

  • Mazza, R. L., 1997. Liquid CO2 Improves Fracturing. Hart’s Oil and Gas World, 22

    Google Scholar 

  • Megorden, M. P., Jiang, H., Bentley, P. J. D., 2013. Improving Hydraulic Fracture Geometry by Directional Drilling in a Coal Seam Gas Formation. Presented at the SPE Unconventional Resources Conference and Exhibition-Asia Pacific, November 11–13, 2013, Brisbane, Australia. SPE 167053

    Book  Google Scholar 

  • Mehana, M., El-Monier, I., 2016. Shale Characteristics Impact on Nuclear Magnetic Resonance (NMR) Fluid Ty** Methods and Correlations. Petroleum, 2(2): 138–147. doi:10.1016/j.petlm.2016.02.002

    Article  Google Scholar 

  • Meng, F. Z., Zhou, H., Zhang, C. Q., et al., 2014. Evaluation Methodology of Brittleness of Rock Based on Post-Peak Stress-Strain Curves. Rock Mechanics and Rock Engineering, 48(5): 1787–1805. doi:10.1007/s00603-014-0694-6

    Article  Google Scholar 

  • Mokhtari, M., Wood, D. A., Ghanizadeh, A., et al., 2016. Virtual Special Issue: Advances in the Petrophysical and Geomechanical Characterization of Organic-Rich Shales. Journal of Natural Gas Science and Engineering, 38: 638–641. doi:10.1016/j.jngse.2016.12.043

    Article  Google Scholar 

  • Montgomery, S. L., Jarvie, D. M., Bowker, K. A., et al., 2005. Mississippian Barnett Shale, Fort Worth Basin, North-Central Texas: Gas-Shale Play with Multitrillion Cubic Foot Potential. AAPG Bulletin, 89: 155–175

    Article  Google Scholar 

  • Myers, T., 2012. Potential Contaminant Pathways from Hydraulically Fractured Shale to Aquifers. Groundwater, 50(6): 872–882. doi:10.1111/j.1745-6584.2012.00933.x

    Article  Google Scholar 

  • Naik, S., You, Z. J., Bedrikovetsky, P., 2015. Rate Enhancement in Unconventional Gas Reservoirs by Wettability Alteration. Journal of Natural Gas Science and Engineering, 26: 1573–1584. doi:10.13039/501100000923

    Article  Google Scholar 

  • Newsham, K. E., Rushing, J. A., 2002. Laboratory and Field Observations of an Apparent Sub-Capillary-Equilibrium Water Saturation Distribution in a Tight Gas Sand Reservoir. SPE Gas Technology Symposium, April 30–May 2, 2002, Calgary, Alberta. SPE 75710: 1–11

    Book  Google Scholar 

  • Norbeck, J. H., McClure, M. W., Lo, J. W., et al., 2015. An Embedded Fracture Modeling Framework for Simulation of Hydraulic Fracturing and Shear Stimulation. Computational Geosciences, 20(1): 1–18. doi:10.1007/s10596-015-9543-2

    Article  Google Scholar 

  • Passey, Q. R., Bohacs, K. M., Esch, W. L., et al., 2010. From Oil-Prone Source Rock to Gas-Producing Shale Reservoir––Geologic and Petrophysical Characterization of Unconventional Shale-Gas Reservoirs. CPS/SPE Conference, June 8–10, 2010, Bei**g, China. SPE 131350: 1–29

    Book  Google Scholar 

  • Passey, Q. R., Creaney, S., Kulla, J. B., et al., 1990. A Practical Model for Organic Richness from Porosity and Resistivity Logs. AAPG Bulletin, 74: 1777–1794. doi:10.1306/0c9b25c9-1710-11d7-8645000102c1865d

    Google Scholar 

  • Pathi, V. S. M., 2008. Factors Affecting the Permeability of Gas Shales: [Dissertation]. University of British Columbia, Vancouver, Canada. 189

    Google Scholar 

  • Rahmanian, M. R., Solano, N., Aguilera, R., 2010. Storage and Output Flow from Shale and Tight Gas Reservoirs. In: SPE Western Regional Meeting, May 27–29, 2010, Anaheim, California, USA. SPE 133611

    Google Scholar 

  • Rangel-German, E. R., Kovscek, A. R., 2002. Experimental and Analytical Study of Multidimensional Imbibition in Fractured Porous Media. Journal of Petroleum Science and Engineering, 36(1/2): 45–60. doi:10.1016/s0920-4105(02)00250-4

    Article  Google Scholar 

  • Revil, A., Eppehimer, J. D., Skold, M., et al., 2013. Low-Frequency Complex Conductivity of Sandy and Clayey Materials. Journal of Colloid and Interface Science, 398: 193–209. doi:10.1016/j.jcis.2013.01.015

    Article  Google Scholar 

  • Rickman, R., Mullen, M. J., Petre, J. E., et al., 2008. Apractical Use of Shale Petrophysics for Stimulation Design Optimization: All Shale Plays are not Clones of the Barnett Shale. Proceedings of the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers. SPE 115258

    Google Scholar 

  • Ross, D. J. K., Bustin, R. M., 2008. Characterizing the Shale Gas Resource Potential of Devonian-Mississippian Strata in the Western Canada Sedimentary Basin: Application of an Integrated Formation Evaluation. AAPG Bulletin, 92(1): 87–125. doi:10.1306/09040707048

    Article  Google Scholar 

  • Ross, D. J. K., Bustin, R. M., 2009. The Importance of Shale Composition and Pore Structure Upon Gas Storage Potential of Shale Gas Reservoirs. Marine and Petroleum Geology, 26(6): 916–927. doi:10.1016/j.marpetgeo.2008.06.004

    Article  Google Scholar 

  • Roychaudhuri, B., Tsotsis, T. T., Jessen, K., 2013. An Experimental Investigation of Spontaneous Imbibition in Gas Shales. Journal of Petroleum Science and Engineering, 111: 87–97. doi:10.1016/j.petrol.2013.10.002

    Article  Google Scholar 

  • Ruppert, L. F., Sakurovs, R., Blach, T. P., et al., 2013. A USANS/SANS Study of the Accessibility of Pores in the Barnett Shale to Methane and Water. Energy & Fuels, 27(2): 772–779. doi:10.1021/ef301859s

    Article  Google Scholar 

  • Saidian, M., Godinez, L. J., Prasad, M., 2016. Effect of Clay and Organic Matter on Nitrogen Adsorption Specific Surface Area and Cation Exchange Capacity in Shales (Mudrocks). Journal of Natural Gas Science and Engineering, 33: 1095–1106. doi:10.1016/j.jngse.2016.05.064

    Article  Google Scholar 

  • Sander, R., Pan, Z. J., Connell, L. D., 2017. Laboratory Measurement of Low Permeability Unconventional Gas Reservoir Rocks: A Review of Experimental Methods. Journal of Natural Gas Science and Engineering, 37: 248–279. doi:10.1016/j.jngse.2016.11.041

    Article  Google Scholar 

  • Sayers, C. M., Johnson, G. M., Denyer, G., 2002. Predrill Pore––Pressure Prediction Using Seismic Data. Geophysics, 67(4): 1286–1292. doi:10.1190/1.1500391

    Article  Google Scholar 

  • Schlanser, K., Grana, D., Campbell-Stone, E., 2014. Petro-Elastic Facies Classification in the Marcellus Shale by Applying Expectation Maximization to Measured Well Logs. Presented at SEG Annual Meeting, October 26–31, 2014, Denver. doi.10.1190/segam2014-0939.1

    Book  Google Scholar 

  • Selley, R. C., 1985. Elements of Petroleum Geology, 1st Ed. W. H. Freeman and Company, New York

    Google Scholar 

  • Shen, B. T., Siren, T., Rinne, M., 2015. Modelling Fracture Propagation in Anisotropic Rock Mass. Rock Mechanics and Rock Engineering, 48(3): 1067–1081. doi:10.1007/s00603-014-0621-x

    Article  Google Scholar 

  • Singh, H., 2016. A Critical Review of Water Uptake by Shales. Journal of Natural Gas Science and Engineering, 34: 751–766. doi:10.13039/100000015

    Article  Google Scholar 

  • Soliman, M. Y., Daal, J., East, L., 2012. Fracturing Unconventional Formations to Enhance Productivity. Journal of Natural Gas Science and Engineering, 8: 52–67. doi:10.1016/j.jngse.2012.01.007

    Article  Google Scholar 

  • Sondergeld, C. H., Ambrose, R. J., Rai, C. S., et al., 2010. Micro-Structural Studies of Gas Shales. SPE Unconventional Gas Conference. Society of Petroleum Engineers, Pittsburgh, Pennsylvania, USA. SPE 131771: 17

    Book  Google Scholar 

  • Sone, H., Zoback, M. D., 2013. Mechanical Properties of Shale-Gas Reservoir Rocks—Part 1: Static and Dynamic Elastic Properties and Anisotropy. Geophysics, 78(5): D381–D392. doi:10.1190/geo2013-0050.1

    Article  Google Scholar 

  • Spaid, J., Dahl, J., Carrilero, S. G., et al., 2016. A Completion Staging Case Study in the Barnett Shale Using Advanced LWD Quadrapole Sonic and Borehole Imaging. Journal of Natural Gas Science and Engineering, 33: 1190–1200. doi:10.1016/j.jngse.2016.04.001

    Article  Google Scholar 

  • Stalgorova, E., Mattar, L., 2012. Practical Analytical Model to Simulate Production of Horizontal Wells with Branch Fractures. Presented at the SPE Canadian Unconventional Resources Conference, October 30–November 1, 2012, Calgary, Alberta, Canada. SPE 162515

    Book  Google Scholar 

  • Sui, L. L., Ju, Y., Yang, Y. M., et al., 2016. A Quantification Method for Shale Fracability Based on Analytic Hierarchy Process. Energy, 115: 637–645. doi:10.13039/501100001809

    Article  Google Scholar 

  • Sun, H. F., Tao, G., Vega, S., et al., 2017. Simulation of Gas Flow in Organic-Rich Mudrocks Using Digital Rock Physics. Journal of Natural Gas Science and Engineering, 41: 17–29. doi:10.1016/j.jngse.2017.02.018

    Article  Google Scholar 

  • Sun, X., Shi, Y., Jiang, Y., 2000. Method of Evaluation Gas Saturation in the Reservoir with Complicated Pore Structures. Natural Gas Industry, 20(3): 41–44

    Google Scholar 

  • Tahmasebi, P., Javadpour, F., Sahimi, M., 2016. Stochastic Shale Permeability Matching: Three-Dimensional Characterization and Modeling. International Journal of Coal Geology, 165: 231–242. doi:10.1016/j.coal.2016.08.024

    Article  Google Scholar 

  • Takahashi, S., Kovscek, A. R., 2010. Spontaneous Countercurrent Imbibition and Forced Displacement Characteristics of Low-Permeability, Siliceous Shale Rocks. Journal of Petroleum Science and Engineering, 71(1/2): 47–55. doi:10.1016/j.petrol.2010.01.003

    Article  Google Scholar 

  • Tan, M. J., Mao, K. Y., Song, X. D., et al., 2015. NMR Petrophysical Interpretation Method of Gas Shale Based on Core NMR Experiment. Journal of Petroleum Science and Engineering, 136: 100–111. doi:10.13039/501100001809

    Article  Google Scholar 

  • Tian, W., Wu, X. R., Shen, T., et al., 2016. Estimation of Hydraulic Fracture Volume Utilizing Partitioning Chemical Tracer in Shale Gas Formation. Journal of Natural Gas Science and Engineering, 33: 1069–1077. doi:10.13039/100007926

    Article  Google Scholar 

  • Tuo, J. C., Wu, C. J., Zhang, M. F., 2016. Organic Matter Properties and Shale Gas Potential of Paleozoic Shales in Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 28: 434–446. doi:10.1016/j.jngse.2015.12.003

    Article  Google Scholar 

  • Valk, P., Economides, M. J., 1995. Hydraulic Fracture Mechanics. Wiley, New York

    Google Scholar 

  • Vavra, C. L., Kaldi, J. G., Sneider, R. M., 1992. Geological Applications of Capillary Pressure: A Review (1). AAPG Bulletin, 76(6): 840–845. doi:10.1306/bdff88f8-1718-11d7-8645000102c1865d

    Google Scholar 

  • Wang, D. B., Ge, H. K., Wang, X. Q., et al., 2015. A Novel Experimental Approach for Fracability Evaluation in Tight-Gas Reservoirs. Journal of Natural Gas Science and Engineering, 23: 239–249. doi:10.13039/501100001809

    Article  Google Scholar 

  • Wang, G. C., Carr, T. R., Ju, Y. W., et al., 2014. Identifying Organic-Rich Marcellus Shale Lithofacies by Support Vector Machine Classifier in the Appalachian Basin. Computers & Geosciences, 64: 52–60. doi:10.13039/501100001809

    Article  Google Scholar 

  • Wang, H., Liao, X., Ding, H., 2015. Monitoring and Evaluating the Volume Fracturing Effect of Horizontal Well. Journal of Natural Gas Science and Engineering, 22: 498–502. doi:10.13039/501100001809

    Article  Google Scholar 

  • Wang, J., **e, L. Z., **e, H. P., et al., 2016. Effect of Layer Orientation on Acoustic Emission Characteristics of Anisotropic Shale in Brazilian Tests. Journal of Natural Gas Science and Engineering, 36: 1120–1129. doi:10.1016/j.jngse.2016.03.046

    Article  Google Scholar 

  • Wang, L. L., Yang, D. S., Yang, R. W., et al., 2016. Investigating the Mechanical Behavior of Shale: A Micro-Scale Approach. Journal of Natural Gas Science and Engineering, 36: 1295–1302. doi:10.1016/j.jngse.2016.03.051

    Article  Google Scholar 

  • Wang, L., Yao, B. W., Cha, M. S., et al., 2016. Waterless Fracturing Technologies for Unconventional Reservoirs-Opportunities for Liquid Nitrogen. Journal of Natural Gas Science and Engineering, 35: 160–174. doi:10.13039/100000015

    Article  Google Scholar 

  • Wang, X. B., Zhang, B., He, Z. X., et al., 2016. Electrical Properties of Longmaxi Organic-Rich Shale and Its Potential Applications to Shale Gas Exploration and Exploitation. Journal of Natural Gas Science and Engineering, 36: 573–585. doi:10.13039/501100001809

    Article  Google Scholar 

  • Warpinski, N. R., Du, J., Zimmer, U., 2012. Measurements of Hydraulic-Fracture-Induced Seismicity in Gas Shales. SPE Production & Operations, 27(3): 240–252. doi:10.2118/151597-pa

    Article  Google Scholar 

  • Warpinski, N. R., Mayerhofer, M. J., Vincent, M. C., et al., 2008. Stimulating Unconventional Reservoirs: Maximizing Network Growth while Optimizing Fracture Conductivity. Journal of Canadian Petroleum Technology, 48(10): 39–51. doi:10.2118/114173-pa

    Article  Google Scholar 

  • Waxman, M. H., Smits, L. J. M., 1968. Electrical Conductivities in Oil-Bearing Shaly Sands. Society of Petroleum Engineers Journal, 8(2): 107–122. doi:10.2118/1863-a

    Article  Google Scholar 

  • Wei, M. Y., Liu, J. S., Feng, X. T., et al., 2016. Evolution of Shale Apparent Permeability from Stress-Controlled to Displacement-Controlled Conditions. Journal of Natural Gas Science and Engineering, 34: 1453–1460. doi:10.13039/501100001809

    Article  Google Scholar 

  • Wei, Y., Economides, M. J., 2005. Transverse Hydraulic Fractures from a Horizontal Well. SPE Annual Technical Conference and Exhibition, October 9–12, 2005, Dallas, Texas. SPE 94671

    Book  Google Scholar 

  • Weijermars, R., Sorek, N., Sen, D., et al., 2017. Eagle Ford Shale Play Economics: U.S. Versus Mexico. Journal of Natural Gas Science and Engineering, 38: 345–372. doi:10.13039/100007904

    Article  Google Scholar 

  • Williams-Kovacs, J. D., Clarkson, C. R., 2016. A Modified Approach for Modeling Two-Phase Flowback from Multi-Fractured Horizontal Shale Gas Wells. Journal of Natural Gas Science and Engineering, 30: 127–147. doi:10.13039/501100000107

    Article  Google Scholar 

  • Worthington, P. F., 1992. The Uses and Abuses of the Archie Equations, 1: The Formation Factor-Porosity Relationship. Journal of Applied Geophysics, 30(3): 215–228. doi:10.1016/0926-9851(93)90028-w

    Article  Google Scholar 

  • Wu, S., Ge, H. K., Wang, X. Q., et al., 2017. Shale Failure Processes and Spatial Distribution of Fractures Obtained by AE Monitoring. Journal of Natural Gas Science and Engineering, 41: 82–92. doi:10.13039/501100001809

    Article  Google Scholar 

  • **e, L. M., Min, K.-B., Shen, B. T., 2016. Simulation of Hydraulic Fracturing and Its Interactions with a Pre-Existing Fracture Using Displacement Discontinuity Method. Journal of Natural Gas Science and Engineering, 36: 1284–1294. doi:10.13039/501100002994

    Article  Google Scholar 

  • Xu, C. Y., Kang, Y. L., You, Z. J., et al., 2016. Review on Formation Damage Mechanisms and Processes in Shale Gas Reservoir: Known and to be Known. Journal of Natural Gas Science and Engineering, 36: 1208–1219. doi:10.13039/501100006385

    Article  Google Scholar 

  • Yang, F., Ning, Z. F., Wang, Q., et al., 2016. Pore Structure Characteristics of Lower Silurian Shales in the Southern Sichuan Basin, China: Insights to Pore Development and Gas Storage Mechanism. International Journal of Coal Geology, 156: 12–24. doi:10.13039/501100001809

    Article  Google Scholar 

  • Yang, L., Ge, H. K., Shen, Y. H., et al., 2015. Imbibition Inducing Tensile Fractures and Its Influence on In-Situ Stress Analyses: A Case Study of Shale Gas Drilling. Journal of Natural Gas Science and Engineering, 26: 927–939. doi:10.13039/501100001809

    Article  Google Scholar 

  • Yang, L., Ge, H. K., Shi, X., et al., 2016. The Effect of Microstructure and Rock Mineralogy on Water Imbibition Characteristics in Tight Reservoirs. Journal of Natural Gas Science and Engineering, 34: 1461–1471. doi:10.13039/501100001809

    Article  Google Scholar 

  • Yang, R., He, S., Li, T. Y., et al., 2016. Origin of Over-Pressure in Clastic Rocks in Yuanba Area, Northeast Sichuan Basin, China. Journal of Natural Gas Science and Engineering, 30: 90–105. doi:10.13039/501100004613

    Article  Google Scholar 

  • Ye, Z. H., Chen, D., Pan, Z. J., et al., 2016. An Improved Langmuir Model for Evaluating Methane Adsorption Capacity in Shale under Various Pressures and Temperatures. Journal of Natural Gas Science and Engineering, 31: 658–680. doi:10.1016/j.jngse.2016.03.070

    Article  Google Scholar 

  • Yuan, B., Bedrikovetsky, P., Huang, T., et al., 2016. Special Issue: Formation Damage during Enhanced Gas and Liquid Recovery. Journal of Natural Gas Science and Engineering, 36: 1051–1054. doi:10.1016/j.jngse.2016.11.019

    Article  Google Scholar 

  • Zhang, D. C., Ranjith, P. G., Perera, M. S. A., 2016. The Brittleness Indices Used in Rock Mechanics and Their Application in Shale Hydraulic Fracturing: A Review. Journal of Petroleum Science and Engineering, 143: 158–170. doi:10.1016/j.petrol.2016.02.011

    Article  Google Scholar 

  • Zhang, H., Rietz, D., Cagle, A., et al., 2016. Extended Exponential Decline Curve Analysis. Journal of Natural Gas Science and Engineering, 36: 402–413. doi:10.1016/j.jngse.2016.10.010

    Article  Google Scholar 

  • Zhang, L. H., Gao, J., Hu, S. Y., et al., 2016. Five-Region Flow Model for MFHWs in Dual Porous Shale Gas Reservoirs. Journal of Natural Gas Science and Engineering, 33: 1316–1323. doi:10.13039/501100001809

    Article  Google Scholar 

  • Zhang, R. H., Zhang, L. H., Wang, R. H., et al., 2016. Research on Transient Flow Theory of a Multiple Fractured Horizontal Well in a Composite Shale Gas Reservoir Based on the Finite-Element Method. Journal of Natural Gas Science and Engineering, 33: 587–598. doi:10.13039/501100001809

    Article  Google Scholar 

  • Zhang, S., Yang, P., Jiang, P., et al., 2015. Determination of Initial Gas Saturation in Tight Gas Formations with NMR Relaxometry Measurements. Journal of Natural Gas Science and Engineering, 27: 1512–1517. doi:10.1016/j.jngse.2015.10.018

    Article  Google Scholar 

  • Zhao, Z., Rutqvist, J., Leung, C., et al., 2013. Stress Effects on Solute Transport in Fractured Rocks: A Comparison Study. Journal of Rock Mechanics and Geotechnical Engineering, 5: 110–132

    Article  Google Scholar 

  • Zhou, Z., Abass, H., Li, X. P., et al., 2016a. Experimental Investigation of the Effect of Imbibition on Shale Permeability during Hydraulic Fracturing. Journal of Natural Gas Science and Engineering, 29: 413–430. doi:10.1016/j.jngse.2016.01.023

    Article  Google Scholar 

  • Zhou, Z., Abass, H., Li, X., et al., 2016b. Mechanisms of Imbibition during Hydraulic Fracturing in Shale Formations. Journal of Petroleum Science and Engineering, 141: 125–132. doi:10.13039/100008917

    Article  Google Scholar 

Download references

Acknowledgment

Bodhisatwa Hazra would like to thank the Department of Science & Technology (DST; Ministry of Science & Technology, Government of India), for providing funding for his research through the DST-Inspire Assured Opportunity of Research Career (AORC) scheme. The final publication is available at Springer via https://doi.org/10.1007/s12583-017-0734-8.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to David A. Wood or Bodhisatwa Hazra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, D.A., Hazra, B. Characterization of organic-rich shales for petroleum exploration & exploitation: A review-Part 3: Applied geomechanics, petrophysics and reservoir modeling. J. Earth Sci. 28, 779–803 (2017). https://doi.org/10.1007/s12583-017-0734-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-017-0734-8

Key Words

Navigation