Log in

The Ocean redox state evolution and its controls during the Cambrian Series 1–2: Evidence from Lijiatuo Section, South China

  • Published:
Journal of Earth Science Aims and scope Submit manuscript

Abstract

Well-exposed Lijiatuo Section was chosen to explore the temporal evolution and controls of the oceanic redox state, primary productivity and seawater sulfate levels during the Cambrian Series 1–2, South China. This section consists of **aoyanxi Formation (Fm.) mudstones and Liuchapo Fm. cherts that deposited in the slope and basin environment. Five oxic-anoxic cycles were identified based on V/Sc, Th/U and the enrichment factors of Mo, U, V, Ni and Cu. The Middle-Upper Liuchapo Fm. and the Middle **aoyanxi Fm. were deposited under oxic-suboxic conditions, and the rest of the strata were under anoxic conditions. The Re/Mo ratio demonstrated that the oxic-suboxic conditions in the Middle **aoyanxi Fm. were accompanied by transient sulfidic conditions, and the rest of the section was underanoxic and non-sulfidic conditions. All the TOC and the enrichment factors of Ba, Ni, Cu, Zn and Cd demonstrated that both the sinking and burial flux of organic matter (OM) in Liuchapo Fm. were lower than that in the overlying **aoyanxi Fm. The highest sinking and burial flux of OM in the **aoyanxi Fm. appeared at its lower parts; however, the lowest sinking and burial flux of OM in the **aoyanxi Fm. appeared in its middle parts. TOC/TS, TS and the vertical trend of δ34Spy demonstrated that the seawater was dominated by low oceanic sulfate levels, which resulted in the absence of free H2S. The rise of the atmospheric oxygen content may be the principal driver for the associated, transient suboxic-oxic and nearly sulfidic environment in the middle **aoyanxi Fm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algeo, T. J., Lyons, T. W., 2006. Mo-Total Organic Carbon Covariation in Modern Anoxic Marine Environments: Implications for Analysis of Paleoredox and Paleohydrographic Conditions. Paleoceanography, 21: 1–23. doi: 10.1029/2004PA001112

    Article  Google Scholar 

  • Algeo, T. J., Tribovillard, N., 2009. Environmental Analysis of Paleoceanographic Systems Based on Molybdenum-Uranium Covariation. Chemical Geology, 268: 211–225. doi: 10.1016/jchemgeo.2009.09.001

    Article  Google Scholar 

  • Algeo, T. J., Henderson, C. M., Tong, J. N., et al., 2013. Plankton and Productivity during the Permian–Triassic Boundary Crisis: an Analysis of Organic Carbon Fluxes. Global and Planetary Change, 105: 52–67. doi: 10.1016/jgloplacha.2012.02.008

    Article  Google Scholar 

  • Anbar, A. D., Knoll, A. H., 2002. Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge. Science, 297: 1137–1142. doi: 10.1126/science.1069651

    Article  Google Scholar 

  • Berner, R. A., Raiswell, R., 1984. C/S Method for Distinguishing Fresh Water from Marine Sedimentary Rocks. Geology, 12: 365–368. doi: 10.1130/0091-7613(1984)12365: CMFDFF2.0.CO;2

    Article  Google Scholar 

  • Berner, R. A., 2009. Phanerozoic Atmospheric Oxygen: New Results Using the Geocarbsulf Model. American Journal of Science, 309: 603–606. doi: 10.2475/07.2009.03

    Article  Google Scholar 

  • Cai, C. F., **ang, L., Yuan, Y. Y., et al., 2012. Spatial Variability in Ocean Redox Conditions during Early Cambrian. Goldschmidt 2012 Conference Abstracts. Mineralogical Magazine, 76: 1537

    Google Scholar 

  • Cai, C. F., **ang, L., Yuan, Y. Y., et al., 2015. Marine C, S and N Biogeochemical Processes in the Redox-Stratified Early Cambrian Yangtze Ocean. Journal of the Geological Society (London). 172 (3): 390–406. doi: 10.1144/jgs2014-054

    Article  Google Scholar 

  • Canfield, D. E., Raiswell, R., Westrich, J. T., et al., 1986. The Use of Chromium Reduction in the Analysis of Reduced Inorganic Sulfur in Sediments and Shales. Chemical Geology, 54: 149–155. doi: 10.1016/0009- 2541(86)90078-1

    Article  Google Scholar 

  • Canfield, D. E., Teske, A., 1996. Late Proterozoic Rise in Atmospheric Oxygen Concentration Inferred from Phylogenetic and Sulphur Isotope Studies. Nature, 382: 127–132. doi: 10.1038/382127a0

    Article  Google Scholar 

  • Canfield, D. E., Poulton, S. W., Knoll, A. H., et al., 2008. Ferruginous Conditions Dominated Later Neoproterozoic Deep Water Chemistry. Science, 321: 949–952. doi: 10.1126/science.1154499

    Article  Google Scholar 

  • Cao, C. Q., Love, G. D., Hays, L. E., et al., 2009. Biogeochemical Evidence for Euxinic Oceans and Ecological Disturbance Presaging the End-Permian Mass Extinction Event. Earth and Planetary Science Letters, 281: 188–201. doi: 10.1016/jepsl.2009.02.012

    Article  Google Scholar 

  • Chang, H. J., Chu, X. L., Feng, L. J., et al., 2009a. Terminal Ediacaran Anoxia in Deep Ocean: Trace Element Evidence from Cherts of the Liuchapo Formation, South China. Science in China (Series D: Earth Sciences), 52: 807–822. (in Chinese with English Abstract). doi: 10.1007/s11430-009-0070-7

    Article  Google Scholar 

  • Chang, H. J., Chu, X. L., Feng, L. J., et al., 2009b. Framboidal Pyrites in Cherts of the Laobao Formation, South China: Evidence for Anoxic Deep Ocean in the Terminal Ediacaran. Acta Petrologica Sinica, 25: 1001–1007

    Google Scholar 

  • Chang, H. J., Chu, X. L., Feng, L. J., et al., 2010. Iron Speciation in Cherts from the Laobao Formation. Chinese Science Bulletin, 55: 3189–3196. doi: 10.1007/s11434-010-4006-6

    Article  Google Scholar 

  • Chang, H. J., Chu, X. L., Feng, L. J., et al., 2012. Progressive Oxidation of Anoxic and Ferruginous Deep Water during Deposition of the Terminal Ediacaran Laobao Formation in South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 321: 80–87. doi: 10.1016/jpalaeo.2012.01.019

    Article  Google Scholar 

  • Chen, D. Z., Wang, J. G., Qing, H. R., et al., 2009. Hydrothermal Venting Activities in the Early Cambrian, South China: Petrological, Geochronological and Stable Isotopic Constraints. Chemical Geology, 258: 168–181. doi: 10.1016/jchemgeo.2008.10.016

    Article  Google Scholar 

  • Cremonese, L., Shields-Zhou, G. A., Struck, U., et al., 2013. Marine Biogeochemical Cycling during the Early Cambrian Constrained by a Nitrogen and Organic Carbon Isotope Study of the **aotan Section, South China. Precambrian Research, 225: 148–165. doi: 10.1016/jprecamres.2011.12.004

    Article  Google Scholar 

  • Feng, L. J., Li, C., Huang, J., et al., 2010. A Sulfate Control on Marine Mid-Depth Euxinia on the Early Cambrian (ca. 529–521 Ma) Yangtze Block, South China. Precambrian Research, 246: 123–133. doi.10.1016/ jprecamres.2014.03.002

    Article  Google Scholar 

  • Grice, K., Cao, C. Q., Love, G. D., et al., 2005. Photic Zone Euxinia during the Permian-Triassic Superanoxic Event. Science, 307: 706–709. doi: 10.1126/science.1104323

    Article  Google Scholar 

  • Galimov, E. M., 2004. The Pattern of d13Corg versus HI/OI Relation in Recent Sediments as an Indicator of Geochemical Regime in Marine Basins: Comparison of the Black Sea, Kara Sea, and Cariaco Trench. Chemical Geology, 204: 287–301. doi: 10.1016/ jchemgeo.2003.11.014

    Article  Google Scholar 

  • Goldberg, T., Strauss, H., Guo, Q. J., et al., 2007. Reconstructing Marine Redox Conditions for the Early Cambrian Yangtze Platform: Evidence from Biogenic Sulphur and Organic Carbon Isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 175–193. doi: 10.1016/jpalaeo.2007.03.015

    Article  Google Scholar 

  • Gong, C., Hollander, D. J, 1997. Differential Contribution of Bacteria to Sedimentary Organic Matter in Oxic and Anoxic Environments, Santa Monica Basin, California. Organic Geochemistry, 26: 545–563. doi: 10.1016/S0146-6380(97)00018-1

    Article  Google Scholar 

  • Guo, Q. J., Shields, G. A., Liu, C. Q., et al., 2007a. Trace Element Chemostratigraphy of Two Ediacaran-Cambrian Successions in South China: Implications for Organosedimentary Metal Enrichment and Silicification in the Early Cambrian. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 194–216. doi: 10.1016/ jpalaeo.2007.03.016

    Article  Google Scholar 

  • Guo, Q. J., Strauss, H., Liu, C. Q., et al., 2007b. Carbon Isotopic Evolution of the Terminal Neoproterozoic and Early Cambrian: Evidence from the Yangtze Platform, South China. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 140–157. doi: 10.1016/ jpalaeo.2007.03.014

    Article  Google Scholar 

  • Guo, Q. J., Strauss, H., Zhu, M. Y., et al., 2013. High Resolution Organic Carbon Isotope Stratigraphy from a Slope to Basinal Setting on the Yangtze Platform, South China: Implications for the Ediacaran–Cambrian Transition. Precambrian Research, 225: 209–217. doi: 10.1016/jprecamres.2011.10.003

    Article  Google Scholar 

  • Ishikawa, T., Ueno, Y., Komiya, T., et al., 2008. Carbon Isotope Chemostratigraphy of a Precambrian/Cambrian Boundary Section in the Three Gorge Area, South China: Prominent Global Scale Isotope Excursions just before the Cambrian Explosion. Gondwana Research, 14: 193–208. doi: 10.1016/jgr.2007.10.008

    Article  Google Scholar 

  • Jiang, G. Q., Wang, X. Q., Shi, X. Y., et al., 2012. The Origin of Decoupled Carbonate and Organic Carbon Isotope Signatures in the Early Cambrian (ca. 542–520 Ma) Yangtze Platform. Earth and Planetary Science Letters, 317–318: 96–110. doi: 10.1016/jepsl.2011.11.018

    Article  Google Scholar 

  • Jiang, S. Y., Pi, D. H., Heubeck, C., et al., 2009. Early Cambrian Ocean Anoxia in South China. Nature, 459: E5–E6. doi: 10.1038/nature08048

    Article  Google Scholar 

  • Johnston, D. T., Poulton, S. W., Dehler, C., et al., 2010. An Emerging Picture of Neoproterozoic Ocean Chemistry, Insights from the Chuar Group, Grand Canyon, USA. Earth and Planetary Science Letters, 290: 64–73. doi: 10.1016/jepsl.2009.11.059

    Article  Google Scholar 

  • Kouchinsky, A., Bengtson, S., Runnegar, B., et al., 2012. Chronology of Early Cambrian Biomineralization. Geological Magazine, 149: 221–251. doi: 10.1017/S0016756811000720

    Article  Google Scholar 

  • Kimura, H., Watanabe, Y., 2001. Oceanic Anoxia at the Precambrian–Cambrian Boundary. Geology, 29: 995–998. doi: 10.1130/0091–7613(2001)0290995: OAA TPC2.0.CO;2

    Article  Google Scholar 

  • Kump, L. R., Junium, C., Arthur, M. A., et al., 2011. Isotopic Evidence for Massive Oxidation of Organic Matter Following the Great Oxidation Event. Science, 334: 1694–1696. doi: 10.1126/science.1213999

    Article  Google Scholar 

  • Lehmann, M. F., Bernasconi, S. M., Barbieri, A., et al., 2002. Preservation of Organic Matter and Alteration of Its Carbon and Nitrogen Isotope Composition during Simulated and in SituEarly Sedimentary Diagenesis. Geochimica et Cosmochimica Acta, 66: 3573–3584. doi: 10.1016/S0016–7037(02)00968–7

    Article  Google Scholar 

  • Li, C., Love, G. D., Lyons, T. W., et al., 2010. A Stratified Redox Model for the Ediacaran Ocean. Science, 328: 80–83. doi: 10.1126/science.1182369

    Article  Google Scholar 

  • Li, D., Ling, H. F., Jiang, S. Y., et al., 2009. New Carbon Isotope Stratigraphy of the Ediacaran–Cambrian Boundary Interval from SW China: Implications for Global Correlation. Geological Magazine, 146: 465–484. doi: 10.1017/S0016756809006268

    Article  Google Scholar 

  • Li, D., Ling, H. F., Shields–Zhou, G. A., et al., 2013. Carbon and Strontium Isotope Evolution of Seawater across the Ediacaran–Cambrian Transition: Evidence from the **aotan Section, NE Yunnan, South China. Precambrian Research, 225: 128–147. doi: 10.1016/jprecamres.2012.01.002

    Article  Google Scholar 

  • Li, G. X., Steiner, M., Zhu, X., et al., 2007. Early Cambrian Metazoan Fossil Record of South China: Generic Diversity and Radiation Patterns. Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 229–249. doi: 10.1016/jpalaco.2007.03.017

    Article  Google Scholar 

  • Luo, H. L., Jiang, Z. W., Wu. X. C., et al., 1984. Sinian–Cambrian Boundary Stratotype Section at Meishucun, **ning, Yunnan, China. Yunnan People’s Publishing House, Kunming: 1–154

    Google Scholar 

  • März, C., Poulton, S. W., Beckmann, B., et al., 2008. Redox Sensitivity of P Cycling during Marine Black Shale Formation: Dynamics of Sulfidic and Anoxic, non–Sulfidic Bottom Waters. Geochimica et Cosmochimica Acta, 72: 3703–3717. doi: 10.1016/jgca.2008.04.025

    Article  Google Scholar 

  • Marshall, C. R., 2006. Explaining the Cambrian "Explosion" of Animals. Annual Review of Earth and Planetary Sciences, 34: 355–384. doi: 10.1146/annurevearth. 33.031504.103001

    Article  Google Scholar 

  • Morford, J. L., Martin, W. R., Carney, C. M., 2012. Rhenium Geochemical Cycling: Insights from Continental Margins. Chemical Geology, 324: 73–86. doi: 10.1016/jchemgeo.2011.12.014

    Article  Google Scholar 

  • Munoz, P., Dezileau, L., Lange, C., et al., 2012. Evaluation of Sediment Trace Metal Records as Paleoproductivity and Paleoxygenation Proxies in the Upwelling Center off Concepcion, Chile (36° S). Progress in Oceanography, 92–95: 66–80. doi: 10.1016/jpocean.2011.07.010

    Article  Google Scholar 

  • Och, L., Shields–Zhou, G. A., Poulton, S. W., et al., 2013. Redox Changes in Early Cambrian Black Shales at **aotan Section, Yunnan Province, South China. Precambrian Research, 225: 166–189. doi: 10.1016/jprecamres.2011.10.005

    Article  Google Scholar 

  • Pang, W. H., Ding, X. Z., Gao, L. Z., et al. 2011. Characteristics of Sequence Stratigraphy and Plaeoenvironmental Evolution of Lower Cambrian Strata in Hunan Province. Geology in China, 38: 560–576. (in Chinese with English Abstract)

    Google Scholar 

  • Peng, S. C., Babcock, L. E., 2011. Continuing Progress on Chronostratigraphic Subdivision of the Cambrian System. Bulletin Geoscience, 86: 391–396. doi: 10.3140/bullgeosci.1273

    Article  Google Scholar 

  • Pi, D. H., Liu, C. Q., Shields–Zhou, G. A., et al., 2013. Trace and Rare Earth Element Geochemistry of Black Shale and Kerogen in the Early Cambrian Niutitang Formation in Guizhou Province, South China, Constraints for Redox Environments and Origin of Metal Enrichments. Precambrian Research, 225: 218–229. doi: 10.1016/jprecamres.2011.07.004

    Article  Google Scholar 

  • Piper, D. Z., Calvert, S. E., 2009.A Marine Biogeochemical Perspective on Black Shale Deposition. Earth Science Reviews, 95: 63–96. doi: 10.1016/jearscirev.2009.03.001

  • Planavsky, N. J., Rouxel, O. J., Bekker, A. L., et al., 2010. The Evolution of the Marine Phosphate Reservoir. Nature, 467: 1088–1090. doi: 10.1038/nature09485

    Article  Google Scholar 

  • Planavsky, N. J., McGoldrick, P., Scott, C. T., et al., 2011. Widespread Iron–Rich Conditions in the Mid–Proterozoic Ocean. Nature, 477: 448–451. doi: 10.1038/nature10327

    Article  Google Scholar 

  • Qian, Y., Yin, G., 1984. Small Shelly Fossils from the Lowest Cambrian in Guizhou. Professional Papers of Stratigraphy and Palaeontology, 13: 91–124. (in Chinese)

    Google Scholar 

  • Raiswell, R., Berner, R. A., 1985. Pyrite Formation in Euxinic and Semi–Euxinic Sediments. American Journal of Science, 285: 710–724

    Article  Google Scholar 

  • Riquier, L., Tribovillard, N., Averbuch, O., et al., 2006. The Late FrasnianKellwasser Horizons of the Harz Mountains (Germany): Two Oxygen Deficient Periods Resulting from Different Mechanisms. Chemical Geology, 233: 137–155. doi: 10.1016/jchemgeo.2006.02.021

    Article  Google Scholar 

  • Ross, D. J. K., Bustin, R. M., 2009. Investigating the Use of Sedimentary Geochemical Proxies for Paleoenvironment Interpretation of Thermally Mature Organic–rich Strata: Examples from the Devonian–Mississippian Shales, Western Canadian Sedimentary Basin. Chemical Geology, 260: 1–19. doi: 10.1016/jchemgeo.2008.10.027

    Article  Google Scholar 

  • Sepúlveda, J., Wendler, J. E., Summons, R. E., et al., 2009. Rapid Resurgence of Marine Productivity after the Cretaceous–Paleogene Mass Extinction. Science, 326: 129–132. doi: 10.1126/science.1176233

    Article  Google Scholar 

  • Shen, Y’an, Schidlowski, M., 2000. New C Isotope Stratigraphy from Southwest China, Implications for the Placement of the Precambrian–Cambrian Boundary on the Yangtze Platform and Global Correlations. Geology, 28: 623–626. doi: 10.1130/0091–7613(2000)28623: NCISFS2.0.CO;2

    Article  Google Scholar 

  • Shen, S. Z., Crowley, J. L., Wang, Y., et al., 2011. Calibrating the End–Permian Mass Extinction. Science, 334: 1367–1372. doi: 10.1126/science.1213454

    Article  Google Scholar 

  • Shu, D. G., 2009a. Cambrian Explosion: Formation of Tree of Animals. Journal of Earth Sciences and Environment, 31: 111–134. (in Chinese with English abstract)

    Google Scholar 

  • Shu, D. G., Zhang, X. L., Han, J., 2009b. Restudy Of Cambrian Explosion and Formation of Animal Tree. Acta Palaeontologica Sinica, 48: 414–427. (in Chinese with English Abstract)

    Google Scholar 

  • Sperling, E. A., Frieder, C. A., Raman, A. V., 2013. Oxygen, Ecology, and the Cambrian Radiation of Animals. Proceedings of the National Academy of Sciences of the United States of America, 110: 13446–13451. doi: 10.1073/pnas.1312778110

    Article  Google Scholar 

  • Steiner, M., Li, G. X., Qian, Y., et al., 2007. Neoproterozoic to Early Cambrian Small Shelly Fossil Assemblages and a Revised Biostratigraphic Correlation of the Yangtze Platform (China). Palaeogeography, Palaeoclimatology, Palaeoecology, 254: 67–99. doi: 10.1016/jpalaeo.2007.03.046

    Article  Google Scholar 

  • Strauss, H., 1997. The Isotopic Composition of Sedimentary Sulfur through Time. Palaeogeography Palaeoclimatology Palaeoecology, 132: 97–118. doi: 10.1016/S0031–0182(97)00067–9

    Article  Google Scholar 

  • Strauss, H., 1999. Geological Evolution from Isotope Proxy Signals–Sulfur. Chemical Geology, 161: 89–101. doi: 10.1016/S0009–2541(99)00082–0

    Article  Google Scholar 

  • Taylor, S. R., McLennan, S. M., 1985. The Continental Crust: Its Composition and Evolution. Blackwell, Malden, Mass

    Google Scholar 

  • Tribovillard, N., Algeo, T. J., Lyons, T., et al., 2006. Trace Metals as Paleoredox and Paleoproductivity Proxies: An Update. Chemical Geology, 232: 12–32. doi: 10.1016/jchemgeo.2006.02.012

    Article  Google Scholar 

  • Wang, J., Li, Z. X., 2003. History of NeoproterozoicRift basins in South China: Implications for RodiniaBreak–up. Precambrian Research, 122: 141–158. doi: 10.1016/s0301–9268(02)00209–7

    Article  Google Scholar 

  • Wang, J. G., Chen, D. Z., Yan, D. T., et al., 2012a. Evolution from an Anoxic to Oxic Deep Ocean during the Ediacaran–Cambrian Transition and Implications for Bioradiation. Chemical Geology, 306: 129–138. doi: 10.1016/jchemgeo.2012.03.005

    Article  Google Scholar 

  • Wang, X. Q., Shi, X. Y., Jiang, G. Q., et al., 2012b. New U–Pb Age from the Basal Niutitang Formation in South China: Implications for Diachronous Development and Condensation of Stratigraphic Units across the Yangtze Platform at the Ediacaran–Cambrian Transition. Journal of Asian Earth Sciences, 48: 1–8. doi: 10.1016/jjseaes.2011.12.023

    Article  Google Scholar 

  • Wen, H. J., Carignan, J., Zhang, Y., et al., 2011. Molybdenum Isotopic Records across the Precambrian–Cambrian Boundary. Geology, 39: 775–778. doi: 10.1130/G32055.1

    Article  Google Scholar 

  • Wille, M., Nagler, T. F., Lehmann, B., et al., 2008. Hydrogen Sulphide Release to Surface Waters at the Precambrian/Cambrian Boundary. Nature, 453: 767–769. doi: 10.1038/nature07072

    Article  Google Scholar 

  • **ang, L., Cai, C. F., He, X. Y., et al., 2012. The Mechanisms for the Enrichment of Trace Elements in the Lower Cambrian Black Chert Successions from Zhalagou Section, Guizhou Province. Acta Petrologica Sinica, 28(3): 971–980. (in Chinese with English Abstract)

    Google Scholar 

  • **ang, L. W., Zhu, Z. L., 1999. Stratigrphy of China: Cambrian. Geological Publishing House, Bei**g. (in Chinese)

    Google Scholar 

  • **ong, Z. F., Li, T. G., Algeo, T., et al., 2012. Paleoproductivity and Paleoredox Conditions during Late Pleistocene Accumulation of Laminated Diatom Mats in the Tropical West Pacific. Chemical Geology, 334: 77–91. doi: 10.1016/jchemgeo.2012.09.044

    Article  Google Scholar 

  • Yin, G. Z., 1996. Division and Correlation of Cambrian in Guizhou. Guizhou Geology, 13: 115–128. (in Chinese with English Abstract)

    Google Scholar 

  • Yuan, Y. Y., Cai, C. F., Wang, T. K., et al., 2014. Deep–Water Basin Redox Conditions during Ediacaran–Cambrian Transition Period in the Lower Yangtze, South China: Case Study of Iron Speciation and d13Corg In Diben Section, Zhejiang Province. Chinese Science Bulletin, 72: 1–139. doi: 10.1007/s11434–014–0483–3

    Google Scholar 

  • Zachos, J. C., Rohl, U., Schellenberg, S. A., et al., 2005. Rapid Acidification of the Ocean during the Paleocene–Eocene Thermal Maximum. Science, 308: 1611–1615. doi: 10.1126/science.1109004

    Article  Google Scholar 

  • Zhang, T. G., Trela, W., Jiang, S. Y., et al., 2011. Major Oceanic Redox Condition Change Correlated with the Rebound of Marine Animal Diversity during the Late Ordovician. Geology, 39: 675–678. doi: 10.1130/G32020.1

    Article  Google Scholar 

  • Zhang, X. L., Shu, D. G., Han, J., et al., 2014. Triggers for the Cambrian explosion: Hypotheses and Problems. Gondwana Research, 25: 896–909. doi: 10.1016/jgr.2013.06.001

    Article  Google Scholar 

  • Zhou, C. M., Zhang, J. M., Li, G. X., et al., 1997. Carbon and Oxygen Isotopic Record of the Early Cambrian from the **aotan Section, Yunnan, South China. Chinese Journal of Geology, 32: 201–211. (in Chinese with English abstract)

    Google Scholar 

  • Zhu, M. Y., Zhang, J., Steiner, M., et al., 2003. Sinian and Early Cambrian Stratigraphic Frameworks from Shallow to Deep Water Facies of the Yangtze Platform, an Integrated Approach. Progress in Natural Science, 13(12): 951–960.

    Article  Google Scholar 

  • Zhu, M. Y., 2010. The Origin and Cambrian Explosion of Animals: Fossil Evidences from China. Acta Palaeontologica Sinica, 49: 269–287. (in Chinese with English Abstract)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei **ang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

**ang, L., Cai, C., He, X. et al. The Ocean redox state evolution and its controls during the Cambrian Series 1–2: Evidence from Lijiatuo Section, South China. J. Earth Sci. 27, 255–270 (2016). https://doi.org/10.1007/s12583-016-0695-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-016-0695-3

Key Words

Navigation