Log in

The Ganymede laser altimeter (GALA): key objectives, instrument design, and performance

  • Original Paper
  • Published:
CEAS Space Journal Aims and scope Submit manuscript

Abstract

The Ganymede Laser Altimeter (GALA) is one of the ten scientific instruments selected for the Jupiter Icy Moons Explorer (JUICE) mission currently implemented under responsibility of the European Space Agency (ESA). JUICE is scheduled for launch in mid 2022; arrival at Jupiter will be by end of 2029 with the nominal science mission—including close flybys at Ganymede, Europa, and Callisto and a Ganymede orbit phase—ending by mid 2033. GALA’s main objective is to obtain topographic data of the icy satellites of Jupiter: Europa, Ganymede, and Callisto. By measuring the diurnal tidal deformation of Ganymede, which crucially depends on the decoupling of the surface ice layer from the deep interior by a liquid water ocean, GALA will obtain evidence for (or against) a subsurface ocean in a 500 km orbit around the satellite and will provide constraints on Ganymede’s ice shell thickness. In combination with other instruments, it will characterize the morphology of surface units on Ganymede, Europa, and Callisto providing not only topography but also surface roughness and albedo (at 1064 nm) measurements. GALA is a single-beam laser altimeter operating with up to 50 Hz (nominal 30 Hz) shot frequency at a wavelength of 1064 nm and pulse lengths of \(5.5\pm 2.5\) ns using a Nd:YAG laser. The return pulse is detected by an Avalanche Photo Diode (APD) with 100 MHz bandwidth and is digitized at a sampling rate of 200 MHz providing range measurements with a subsample resolution of 0.1 m and surface roughness measurements from pulse-shape analysis on the scale of the footprint size of about 50 m at 500 km altitude. The instrument is developed in collaboration of institutes and industry from Germany, Japan, Switzerland, and Spain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

ADC:

Analog-to-digital converter

AEM:

Analog electronics module

APD:

Avalanche photo diode

BELA:

BepiColombo laser altimeter

BEO:

Back-end optics

CDR:

Critical design review

DC:

Direct current

DPM:

Digital processing module

ELU:

Electronics unit

EM:

Engineering model

EMC:

Electro-magnetic compatibility

EMI:

Electro-magnetic interference

EQM:

Engineering qualification model

ESA:

European space agency

FPA:

Focal-plane assembly

FPGA:

Field programmable gate array

GALA:

Ganymede laser altimeter

JUICE:

Jupiter icy moons explorer

LEU:

Laser electronics unit

LHM:

Laser head module

MLI:

Multilayer insulation

M1:

Main mirror

M2:

Secondary mirror

MOS:

Metal-oxide semiconductor

Nd:YAG:

neodymium-doped yttrium aluminum garnet, \(\hbox {Nd:Y}_3\hbox {Al}_5\hbox {O}_{12}\)

PCM:

Power converter module

PFM:

Proto flight model

RFM:

Range finder module

RX:

Receiver

RXM:

Receiver module

STM:

Structural and thermal model

TEL:

Receiver telescope

TID:

Total ionizing dose

TRU:

Transceiver unit

TX:

Transmitter

References

  1. Althaus, C., Michaelis, H., Hussmann, H., Lingenauber, K., Kallenbach, R., Del Togno, S., Lüdicke, F.: BELA transmitter performance and pointing stability verification campaign at DLR-PF. Acta Astronaut. 154, 103–118 (2019)

    Article  Google Scholar 

  2. Anderson, J.D., Lau, E.L., Sjogren, W.L., Schubert, G., Moore, W.B.: Gravitational constraints on the internal structure of Ganymede. Nature 384, 541–543 (1996)

    Article  Google Scholar 

  3. Araki, H., Tazawa, S., Noda, H., Ishihara, Y., Goossens, S., Sasaki, S., Kawano, N., Kamiya, I., Otake, H., Oberst, J., Shum, C.: Lunar global shape and polar topography derived from Kaguya-LALT Laser altimetry. Science 323, 897–900 (2009)

    Article  Google Scholar 

  4. Bagenal, F., Dowling, T.E., McKinnon, W.B. (Eds.): Jupiter, pp. 748. ISBN 0521818087. Cambridge University Press, Cambridge (2004)

  5. Boutonnet, A., Varga, G.: JUICE—Jupiter icy moons explorer consolidated report on mission analysis (CReMA), Version 3.1, Technical Note, ESA (2016)

  6. Daly, M.G., et al.: The OSIRIS-REx laser altimeter (OLA) investigation and instrument. Space Sci. Rev. 212, 899–924 (2017)

    Article  Google Scholar 

  7. Giese, B., Oberst, J., Roatsch, T., Neukum, G.: DLR, institute of planetary exploration J. W. Head and R. T. Pappalardo: the local topography of Uruk Sulcus and Galileo Regio Obtained from stereo images. Icarus 135, 303–316 (1998)

    Article  Google Scholar 

  8. Grasset, O., et al.: JUpiter ICy moons Explorer (JUICE): an ESA mission to orbit Ganymede and to characterise the Jupiter system. Planet. Space Sci. 78, 1–21 (2013)

    Article  Google Scholar 

  9. Hussmann, H., Shoji, D., Steinbrügge, G., Stark, A., Sohl, F.: Constraints on dissipation in the deep interiors of ganymede and Europa from tidal phase-lags. Cel. Mech. Dyn. Astr. 126, 131–144 (2016)

    Article  Google Scholar 

  10. Khurana, K.K., Kivelson, M.G., Stevenson, D.J., Schubert, G., Russel, C.T., Walker, R.J., Polanskey, C.: Induced magnetic fields as evidence for subsurface oceans in Europa and Callisto. Nature 395, 777–780 (1998)

    Article  Google Scholar 

  11. Kimura, J., Hussmann, H., Kamata, S., Matsumoto, K., Oberst, J., Steinbrügge, G., Stark, A., Gwinner, K., Oshigami, S., Namiki, N., Lingenauber, K., Enya, K., Kuramoto, K., Sasaki, S.: Science objectives of the ganymede laser altimeter (GALA) for the JUICE mission. Trans. JSASS Aerosp. Tech. Japan 17, 234–243 (2019)

    Google Scholar 

  12. Kivelson, M.G., Khurana, K.K., Volwerk, M.: The permanent and inductive magnetic moments on Ganymede. Icarus 157, 507–522 (2002)

    Article  Google Scholar 

  13. Li, C., et al.: Laser altimetry data of Chang’E-1 and the global lunar DEM model. Sci. China Earth Sci. 53, 1582–1593 (2010)

    Article  Google Scholar 

  14. Moore, W.B., Schubert, G.: The tidal response of Ganymede and Callisto with and without liquid water oceans. Icarus 166, 223–226 (2003)

    Article  Google Scholar 

  15. Mukai, T., et al.: An overview of the LIDAR observations of asteroid 25143 Itokawa. Adv. Space Res. 40, 187–192 (2007)

    Article  Google Scholar 

  16. Anderson, J.J.D., Schubert, G., Moore, W.B.: Mass anomalies on ganymede: palguta. Icarus 180, 428–441 (2006)

    Article  Google Scholar 

  17. Pappalardo, R. T., Collins, G.C., Head III, J. W., Helfenstein, P., McCord, T.B., Moore, J.M., Prockter, L.M., Schenk, P.M., Spencer, J.R.: Geology of Ganymede. In: Jupiter: The planet, satellites and magnetosphere, Bagenal, F., Dowling, T. E. and McKinnon, W. B., Eds., Cambridge University Press, pp. 363–396 (2004)

  18. Schubert, G., Anderson, J.D., Spohn, T., McKinnon, W.B.: Interior composition, structure and dynamics of the Galilean satellites. In: Jupiter: The planet, satellites and magnetosphere, Bagenal, F., Dowling, T.E., McKinnon, W.B., Eds., Cambridge University Press, pp. 281–306 (2004)

  19. Singer, K.N., Bland, M.T., Schenk, P.M., McKinnon, W.B.: Relaxed impact craters on Ganymede: Regional variation and high heat flows. Icarus 306, 214–224 (2018)

    Article  Google Scholar 

  20. Smith, D.E., et al.: Mars Orbiter Laser Altimeter: experiment summary after the first year of global map** of Mars. J. Geophys. Res. 106(E10), 23689–23722 (2001)

    Article  Google Scholar 

  21. Smith, D.E., et al.: The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Sci. Rev. 150, 209–241 (2010a)

    Article  Google Scholar 

  22. Smith, D.E., et al.: The equatorial shape and gravity field of Mercury from MESSENGER flybys 1 and 2. Icarus 209, 88–100 (2010b)

    Article  Google Scholar 

  23. Smith, D.E., et al.: Summary of the results from the lunar orbiter laser altimeter after seven years in lunar orbit. Icarus 283, 70–91 (2017)

    Article  Google Scholar 

  24. Spohn, T., Schubert, G.: Oceans in the icy Galilean satellites of Jupiter? Icarus 161, 456–467 (2003)

    Article  Google Scholar 

  25. Sohl, F., Spohn, T., Breuer, D., Nagel, K.: Implications from galileo observations on the interior structure and chemistry of the galilean satellites. Icarus 157, 104–119 (2002)

    Article  Google Scholar 

  26. Steinbrügge, G., Stark, A., Hussmann, H., Sohl, F., Oberst, J.: Measuring tidal deformations by laser altimetry. A performance model for the Ganymede Laser Altimeter. Planet. Space Sci. 117, 184–191 (2015)

    Article  Google Scholar 

  27. Steinbrügge, G., Steinke, T., Thor, R., Stark, A., Hussmann, H.: Measuring ganymede’s librations with laser altimetry. Geosciences 9, 320 (2019)

    Article  Google Scholar 

  28. Susorney, H.C.M., Barnouin, O.S., Ernst, C.M., Byrne, P.K.: The surface roughness of mercury from the mercury laser altimeter: investigating the effects of volcanism, tectonism, and impact cratering. J. Geophys. Res. (Planets) 22, 1372–1390 (2017)

    Article  Google Scholar 

  29. Thomas, N., et al.: The BepiColombo Laser Altimeter (BELA): concept and baseline design. Planet. Space Sci. 55, 1398–1413 (2007)

    Article  Google Scholar 

  30. Turcotte, D.L., Schubert, G.: Geodynamics. Cambridge University Press, Cambridge (2002)

    Book  Google Scholar 

  31. Zuber, M.T., Smith, D.E., Lemoine, F.G., Neumann, G.A.: The shape and internal structure of the moon from the clementine mission. Science 266, 1839–1843 (1994)

    Article  Google Scholar 

  32. Zuber, M.T., et al.: Internal structure and early thermal evolution of mars from mars global surveyor topography and gravity. Science 287, 1788–1793 (2000a)

    Article  Google Scholar 

  33. Zuber, M.T., et al.: The shape of 433 Eros from the NEAR-shoemaker laser rangefinder. Science 289, 2097–2101 (2000b)

    Article  Google Scholar 

  34. Zuber, M.T., et al.: Topography of the Northern hemisphere of Mercury from MESSENGER laser altimetry. Science 336, 217–220 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank two anonymous reviewers for their helpful comments on a first version of the manuscript. Financial support was provided under grant 50 QJ 1401 on behalf of the DLR Space Administration by the German Bundesministerium für Wirtschaft und Energie. This research has been supported by the Spanish Ministerio de Economía y Competitividad under Contract ESP 2016–76076–R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hauke Hussmann.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussmann, H., Lingenauber, K., Kallenbach, R. et al. The Ganymede laser altimeter (GALA): key objectives, instrument design, and performance. CEAS Space J 11, 381–390 (2019). https://doi.org/10.1007/s12567-019-00282-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12567-019-00282-8

Keywords

Navigation