Log in

The Strange and Promising Relationship Between EEG and AI Methods of Analysis

  • Published:
Cognitive Computation Aims and scope Submit manuscript

Abstract

Nowadays, the utility of AI methods for classifying EEG data is widespread in research laboratories. The constant in this field of research is to find out a suite method for differentiating EEG data accurately. The principal methods of AI used in EEG data analysis are machine learning and deep learning. In this article, we explore the scope of AI in light of the results in EEG analysis data. We begin presenting the scope of computing analysis to set up the context for understanding the procedures of algorithms applied by AI to classify EEG data. Next, we review the achievements of AI classification algorithms to some cases of EEG data. With the result of this, we analyze and better understand the contribution of AI to the epistemology of neuroscience, with special regard to EEG brain imaging neuroscience. Finally, we will show some learnings from this analysis, in which we argue, emerge a fundamental lesson from AI analysis of EEG data to theoretical neuroscience, namely when it is about brain imaging, the need for convergent scientific methods rises the question about the unity of (neuro)science. This opens the possibility of multi-approaches to be the major feature of current practice of this science field. Hence, applications of current AI methods for analyzing brain functioning advance the epistemology of neuroscience to a paradigm from localizing to dynamic representation of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Boutros NN, Galderisi S, Pogarell O, Riggio S. Standard electroencephalography in clinical psychiatry: a practical handbook. John Wiley & Sons; 2011.

  2. Borck C, Hentschel AM. Brainwaves: a cultural history of electroencephalography. Routledge; 2018.

  3. Borck C. Recording the brain at work: the visible, the readable, and the invisible in electroencephalography. J Hist Neurosci. 2008;17(3):367–79.

    Article  Google Scholar 

  4. Boutros NN. Standard EEG: a research roadmap for neuropsychiatry. Springer International Publishing; 2013.

  5. Evans GW. Artificial intelligence: where we came from, where we are now, and where we are going [masters thesis]. University of Victoria; 2017.

  6. Ryan M. In AI we trust: ethics, artificial intelligence, and reliability. Sci Eng Ethics. 2020;26(5):2749–67.

    Article  Google Scholar 

  7. Glomb K, Cabral J, Cattani A, Mazzoni A, Raj A, Franceschiello B. Computational models in electroencephalography. Brain Topography. 2021;p. 1–20.

  8. Luo C, Li F, Li P, Yi C, Li C, Tao Q, et al. A survey of brain network analysis by electroencephalographic signals. Cogn Neurodyn. 2022;16(1):17–41.

    Article  Google Scholar 

  9. Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, et al. A review of classification algorithms for EEG-based brain–computer interfaces: a 10 year update. J Neural Eng. 2018;15(3):031005.

  10. Pedersen T, Johansen C. Behavioural artificial intelligence: an agenda for systematic empirical studies of artificial inference. AI Soc. 2020;35(3):519–32.

    Article  Google Scholar 

  11. Muthukrishnan N, Maleki F, Ovens K, Reinhold C, Forghani B, Forghani R. Brief history of artificial intelligence. Neuroimaging Clin N Am. 2020;30(4):393–9.

    Article  Google Scholar 

  12. Cao Z. A review of artificial intelligence for EEG-based brain- computer interfaces and applications. Brain Sci Adv. 2020;6(3):162–70.

    Article  Google Scholar 

  13. Brook A, Mandik P. The philosophy and neuroscience movement. Analyse & Kritik. 2007;29(1):3–23.

    Article  Google Scholar 

  14. Maass W, Parsons J, Purao S, Storey VC, Woo C. Data-driven meets theory-driven research in the era of big data: opportunities and challenges for information systems research. J Assoc Inf Syst. 2018;19(12):1.

    Google Scholar 

  15. Dietsch G. Fourier-analyse von elektrencephalogrammen des menschen. Pflüger’s Archiv für die gesamte Physiologie des Menschen und der Tiere. 1932;230(1):106–12.

    Article  Google Scholar 

  16. Walter WG. An automatic low frequency analyser. Electron Eng. 1943;16:236–40.

    Google Scholar 

  17. Bladin PFW. Grey Walter, pioneer in the electroencephalogram, robotics, cybernetics, artificial intelligence. J Clin Neurosci. 2006;13(2):170–7.

    Article  Google Scholar 

  18. Hayward R. The tortoise and the love-machine: Grey Walter and the politics of electroencephalography. Sci Context. 2001;14(4):615–41.

    Article  Google Scholar 

  19. Grey WW. The living brain. Penguin; 1961.

  20. Dawson GD, Walter WG. The scope and limitations of visual and automatic analysis of the electroencephalogram. J Neurol Neurosurg Psychiatry. 1944;7(3–4):119.

    Article  Google Scholar 

  21. Pfurtscheller G, Da Silva FL. Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol. 1999;110(11):1842–57.

    Article  Google Scholar 

  22. Başar E, Başar-Eroğlu C, Karakaş S, Schürmann M. Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? Neurosci Lett. 1999;259(3):165–8.

    Article  Google Scholar 

  23. Guevara MA, Corsi-Cabrera M. EEG coherence or EEG correlation? Int J Psychophysiol. 1996;23(3):145–53.

    Article  Google Scholar 

  24. Shaw JC. Correlation and coherence analysis of the EEG: a selective tutorial review. Int J Psychophysiol. 1984;1(3):255–66.

    Article  Google Scholar 

  25. Scherg M, Ille N, Bornfleth H, Berg P. Advanced tools for digital EEG review: virtual source montages, whole-head map**, correlation, and phase analysis. J Clin Neurophysiol. 2002;19(2):91–112.

    Article  Google Scholar 

  26. Walter WG. Electro-encephalography. J Ment Sci. 1944;90(378):64–73.

    Article  Google Scholar 

  27. Adey WR, Walter DO, Hendrix C. Computer techniques in correlation and spectral analyses of cerebral slow waves during discriminative behavior. Exp Neurol. 1961;3(6):501–24.

    Article  Google Scholar 

  28. Adey WR. Spectral analysis techniques and pattern recognition methods for electroencephalographic data. Long Beach and Los Angeles: University of California; 1966.

  29. Thatcher RW, Lubar JF. History of the scientific standards of QEEG normative databases. Introduction to Quantitative EEG and Neurofeedback: Advanced Theory and Applications. 2009;2:29–59.

    Article  Google Scholar 

  30. Nuwer M. Assessment of digital EEG, quantitative EEG, and EEG brain map**: report of the American Academy of Neurology and the American Clinical Neurophysiology Society. Neurology. 1997;49(1):277–92.

    Article  Google Scholar 

  31. Robert C, Gaudy JF, Limoge A. Electroencephalogram processing using neural networks. Clin Neurophysiol. 2002;113(5):694–701.

    Article  Google Scholar 

  32. Baillet S, Friston K, Oostenveld R. Academic software applications for electromagnetic brain map** using MEG and EEG. Comput Intell Neurosci. 2011.

  33. Rasheed K, Qayyum A, Qadir J, Sivathamboo S, Kwan P, Kuhlmann L, et al. Machine learning for predicting epileptic seizures using EEG signals: a review. IEEE Rev Biomed Eng. 2020;14:139–55.

    Article  Google Scholar 

  34. Vasta R, Cerasa A, Sarica A, Bartolini E, Martino I, Mari F, et al. The application of artificial intelligence to understand the pathophysiological basis of psychogenic nonepileptic seizures. Epilepsy & Behav. 2018;87:167–72.

    Article  Google Scholar 

  35. Regalia G, Onorati F, Lai M, Caborni C, Picard RW. Multimodal wrist-worn devices for seizure detection and advancing research: focus on the Empatica wristbands. Epilepsy Res. 2019;153:79–82.

    Article  Google Scholar 

  36. Briganti G, Le Moine O. Artificial intelligence in medicine: today and tomorrow. Front Med. 2020;7:27.

    Article  Google Scholar 

  37. Wierzgała P, Zapała D, Wojcik GM, Masiak J. Most popular signal processing methods in motor-imagery BCI: a review and meta-analysis. Front Neuroinform. 2018;12:78.

    Article  Google Scholar 

  38. Gonzalez-Lopez JA, Gomez-Alanis A, Martín-Doñas JM, Pérez-Córdoba JL, Gomez AM. Silent speech interfaces for speech restoration: a review. IEEE Access. 2020;.

  39. Debnath B, O’Brien M, Yamaguchi M, Behera A. A review of computer vision-based approaches for physical rehabilitation and assessment. Multimedia Systems. 2021;1–31.

  40. Arpaia P, Esposito A, Natalizio A, Parvis M. How to successfully classify EEG in motor imagery BCI: a metrological analysis of the state of the art. J Neural Eng. 2022;19(3):031002. https://doi.org/10.1088/1741-2552/ac74e0.

  41. Giannopulu I, Mizutani H. Neural kinesthetic contribution to motor imagery of body parts: tongue, hands, and feet. Frontiers in Human Neuroscience. 2021;p. 342.

  42. Tabar YR, Halici U. Brain computer interfaces for silent speech. Eur Rev. 2017;25(2):208–30.

    Article  Google Scholar 

  43. Hardcastle VG, Stewart CM. What do brain data really show? Philos Sci. 2002;69(S3):S72–82.

    Article  Google Scholar 

  44. Hardcastle VG, Stewart CM. Localization in the brain and other illusions. Cognition and the Brain the Philosophy and Neuroscience Movement. 2005. p. 27–39.

  45. Bennett MR, Hacker PMS. Philosophical foundations of neuroscience. John Wiley & Sons; 2021.

  46. Nunez PL, Srinivasan R, et al. Electric fields of the brain: the neurophysics of EEG. USA: Oxford University Press; 2006.

    Book  Google Scholar 

  47. Hillyard SA, Kutas M. Electrophysiology of cognitive processing. Annu Rev Psychol. 1983;34(1):33–61.

    Article  Google Scholar 

  48. Shagass C, Roemer RA, Straumanis JJ, Josiassen RC. Psychiatric diagnostic discriminations with combinations of quantitative EEG variables. Br J Psychiatry. 1984;144(6):581–92.

    Article  Google Scholar 

  49. Pagel J. Modelling drug actions on electrophysiologic effects produced by EEG modulated potentials. Hum Psychopharmacol Clin Exp. 1993;8(3):211–6.

    Article  Google Scholar 

  50. Jobert M, Wilson FJ, Ruigt GS, Brunovsky M, Prichep LS, Drinkenburg WH, et al. Guidelines for the recording and evaluation of pharmaco-EEG data in man: the International Pharmaco-EEG Society (IPEG). Neuropsychobiology. 2012;66(4):201–20.

    Article  Google Scholar 

  51. Jackson AF, Bolger DJ. The neurophysiological bases of EEG and EEG measurement: a review for the rest of us. Psychophysiology. 2014;51(11):1061–71.

    Article  Google Scholar 

  52. Buzsaki G. Rhythms of the brain. Oxford University Press; 2006.

  53. Başar E. Brain-Body-Mind in the nebulous Cartesian system: a holistic approach by oscillations. Springer; 2011.

  54. Müller VC. New developments in the philosophy of AI. In: Fundamental issues of artificial intelligence. Springer; 2016. p. 1–4.

  55. Dodig-Crnkovic G. Shifting the paradigm of philosophy of science: philosophy of information and a new renaissance. Mind Mach. 2003;13(4):521–36.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio Garcia-Aguilar.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Garcia-Aguilar, G. The Strange and Promising Relationship Between EEG and AI Methods of Analysis. Cogn Comput (2023). https://doi.org/10.1007/s12559-023-10142-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12559-023-10142-7

Keywords

Navigation