Log in

Additive Manufacturing of Functionally Graded Materials: A Comprehensive Review

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Functionally graded materials (FGMs) are a new generation of engineered materials whose composition and structure are spatially varied through non-uniform distribution. This article presents a comprehensive overview of FGMs, including their conventional fabrication techniques in brief and a detailed analysis of their fabrication through additive manufacturing (AM). In contrast, the AM enables the fabrication of complex and intricate geometry. The combination of materials composition, manufacturing techniques, and modelling of FGMs is conferred with appropriate insistence on illuminating the fundamental structure–property-material relationships. Further, the challenges in the fabrication, modelling, and strategy to process of FGMs are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Reproduced with permission from publisher)

Fig. 3

(Reproduced with permission from publisher)

Fig. 4
Fig. 5
Fig. 6
Fig. 7

(Reproduced with permission from publisher)

Fig. 8

(Reproduced with permission from publisher)

Fig. 9

(Reproduced with permission from publisher)

Fig. 10

(Reproduced with permission from publisher)

Fig. 11

(Reproduced with permission from publisher)

Fig. 12

(Reproduced with permission from publisher)

Fig. 13

(Reproduced with permission from publisher)

Fig. 14
Fig. 15

(Reproduced with permission from publisher)

Fig. 16
Fig. 17
Fig. 18

(Reproduced with permission from publisher)

Fig. 19

(Reproduced with permission from publisher)

Fig. 20
Fig. 21

(Reproduced with permission from publisher)

Fig. 22

(Reproduced with permission from publisher)

Fig. 23

(Reproduced with permission from publisher)

Fig. 24

(Reproduced with permission from publisher)

Fig. 25

(Reproduced with permission from publisher)

Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31

Similar content being viewed by others

References

  1. Gupta, A., & Talha, M. (2015). Recent development in modeling and analysis of functionally graded materials and structures. Progress in Aerospace Sciences, 79, 1–14. https://doi.org/10.1016/j.paerosci.2015.07.001

    Article  Google Scholar 

  2. Bandyopadhyay, A., & Heer, B. (2018). Additive manufacturing of multi-material structures. Materials Science and Engineering R: Reports, 129, 1–16. https://doi.org/10.1016/j.mser.2018.04.001

    Article  Google Scholar 

  3. Choy, K. L. (2003). Chemical vapour deposition of coatings. Progress in Materials Science, 48(2), 57–170. https://doi.org/10.1016/S0079-6425(01)00009-3

    Article  Google Scholar 

  4. Scaffaro, R., Lopresti, F., Maio, A., Sutera, F., & Botta, L. (2017). Development of polymeric functionally graded scaffolds: A brief review. Journal of Applied Biomaterials and Functional Materials, 15(2), e107–e121. https://doi.org/10.5301/jabfm.5000332

    Article  Google Scholar 

  5. Li, Y., et al. (2020). A review on functionally graded materials and structures via additive manufacturing: from multi-scale design to versatile functional properties. Advanced Materials Technologies. https://doi.org/10.1002/admt.201900981

    Article  Google Scholar 

  6. Whenish, R., Velu, R., Anand Kumar, S., & Ramprasath, L. S. (2021). Additive manufacturing technologies for biomedical implants using functional biocomposites. High-performance composite structures: Additive manufacturing and processing (pp. 25–44). Springer Singapore: Singapore.

    Google Scholar 

  7. Velu, R., Calais, T., Jayakumar, A., & Raspall, F. (2019). A comprehensive review on bio-nanomaterials for medical implants and feasibility studies on fabrication of such implants by additive manufacturing technique. Materials, 13(1), 92.

    Article  Google Scholar 

  8. El-Galy, I. M., Saleh, B. I., & Ahmed, M. H. (2019). Functionally graded materials classifications and development trends from industrial point of view. SN Applied Sciences, 1, 1–23. https://doi.org/10.1007/s42452-019-1413-4

    Article  Google Scholar 

  9. Krumova, M., Klingshirn, C., Haupert, F., & Friedrich, K. (2001). Microhardness studies on functionally graded polymer composites. Composites Science and Technology, 61(4), 557–563. https://doi.org/10.1016/s0266-3538(00)00228-1

    Article  Google Scholar 

  10. Gibson, R. F. (2016). Principles of composite material mechanics. CRC press.

  11. Noda, N. (1999). Thermal stresses in functionally graded materials. Journal of Thermal Stresses, 22(4–5), 477–512. https://doi.org/10.1080/014957399280841

    Article  Google Scholar 

  12. Chen, P. Y., McKittrick, J., & Meyers, M. A. (2012). Biological materials: Functional adaptations and bioinspired designs. Progress in Materials Science, 57(8), 1492–1704. https://doi.org/10.1016/j.pmatsci.2012.03.001

    Article  Google Scholar 

  13. Studart, A. R. (2013). Biological and bioinspired composites with spatially tunable heterogeneous architectures. Advanced Functional Materials, 23(36), 4423–4436. https://doi.org/10.1002/adfm.201300340

    Article  Google Scholar 

  14. Studart, A. R. (2016). Additive manufacturing of biologically-inspired materials. Chemical Society Reviews, 45(2), 359–376.

    Article  Google Scholar 

  15. Clyne, T. W., Hull, D., & Information, M. (1999). 1 General introduction. Process Systems Engineering, 2, 1–8. https://doi.org/10.1016/S1874-5970(00)80016-8

    Article  Google Scholar 

  16. Yoo, D.-J. (2015). New paradigms in cellular material design and fabrication. International Journal of Precision Engineering and Manufacturing, 16(12), 2577–2589. https://doi.org/10.1007/s12541-015-0330-8

    Article  Google Scholar 

  17. Yoo, D.-J. (2014). Recent trends and challenges in computer-aided design of additive manufacturing-based biomimetic scaffolds and bioartificial organs. International Journal of Precision Engineering and Manufacturing, 15(10), 2205–2217. https://doi.org/10.1007/s12541-014-0583-7

    Article  Google Scholar 

  18. Shiota, I., & Miyamoto, Y. (1997). Functionally graded materials 1996. USA: Elsevier.

    Google Scholar 

  19. Oxman, N., Keating, S., & Tsai, E. (2011). Functionally graded rapid prototy**. Innovative developments in virtual and physical prototy** (pp. 483–489). Chicago.

  20. Naebe, M., & Shirvanimoghaddam, K. (2016). Functionally graded materials: A review of fabrication and properties. Applied Materials Today, 5, 223–245. https://doi.org/10.1016/j.apmt.2016.10.001

    Article  Google Scholar 

  21. Knoppers, G. E., Gunnink, J. W., Van Den Hout, J., & Van Vliet, W. (2005). The reality of functionally graded material products. In Intelligent Production Machines and Systems: First I* PROMS Virtual Conference, Elsevier, Amsterdam (pp. 467-474).

  22. Loh, G. H., Pei, E., Harrison, D., & Monzón, M. D. (2018). An overview of functionally graded additive manufacturing. Additive Manufacturing, 23(July), 34–44. https://doi.org/10.1016/j.addma.2018.06.023

    Article  Google Scholar 

  23. Saleh, B., et al. (2020). “30 years of functionally graded materials: An overview of manufacturing methods, applications and future challenges. Composites Part B: Engineering, 201, 108376. https://doi.org/10.1016/j.compositesb.2020.108376

    Article  Google Scholar 

  24. Mortensen, A., & Suresh, S. (1995). Functionally graded metals and metal-ceramic composites: Part 1 processing. International Materials Reviews, 40(6), 239–265. https://doi.org/10.1179/imr.1995.40.6.239

    Article  Google Scholar 

  25. Hasanov, S., Gupta, A., Alifui-Segbaya, F., & Fidan, I. (2021). Hierarchical homogenization and experimental evaluation of functionally graded materials manufactured by the fused filament fabrication process. Composite Structures, 275, 114488. https://doi.org/10.1016/j.compstruct.2021.114488

    Article  Google Scholar 

  26. Ghanavati, R., & Naffakh-Moosavy, H. (2021). Additive manufacturing of functionally graded metallic materials: A review of experimental and numerical studies. Journal of Materials Research and Technology, 13, 1628–1664. https://doi.org/10.1016/j.jmrt.2021.05.022

    Article  Google Scholar 

  27. García-Collado, A., Blanco, J. M., Gupta, M. K., & Dorado-Vicente, R. (2022). Advances in polymers based multi-material additive-manufacturing techniques: State-of-art review on properties and applications. Additive Manufacturing, 50, 102577. https://doi.org/10.1016/j.addma.2021.102577

    Article  Google Scholar 

  28. Comotti, C., Regazzoni, D., Rizzi, C., & Vitali, A. (2017). Additive manufacturing to advance functional design: An application in the medical field. Journal of Computing and Information Science in Engineering, 17(3), 1–9. https://doi.org/10.1115/1.4033994

    Article  Google Scholar 

  29. Marino, G. P., De Pierre, S., Salvo, M., Lantada, A. D., & Ferraris, M. (2022). Modelling, additive layer manufacturing and testing of interlocking structures for joined components. Science and Reports, 0123456789, 1–11. https://doi.org/10.1038/s41598-022-06521-z

    Article  Google Scholar 

  30. Sugavaneswaran, M., & Arumaikkannu, G. (2014). Modelling for randomly oriented multi material additive manufacturing component and its fabrication. Materials and Design, 54, 779–785. https://doi.org/10.1016/j.matdes.2013.08.102

    Article  Google Scholar 

  31. Parida, S. P., & Jena, P. C. (2019). An overview: Different manufacturing techniques used for fabricating functionally graded material. Materials Today: Proceedings, 18, 2942–2951. https://doi.org/10.1016/j.matpr.2019.07.164

    Article  Google Scholar 

  32. Silva, M., Pinho, I. S., Covas, J. A., Alves, N. M., & Paiva, M. C. (2021). 3D printing of graphene-based polymeric nanocomposites for biomedical applications. Functional Composite Materials, 2(1), 1–21.

    Article  Google Scholar 

  33. Li, B., Fu, J., Feng, J., Shang, C., & Lin, Z. (2020). Review of heterogeneous material objects modeling in additive manufacturing. Visual Computing for Industry, Biomedicine, and Art, 3, 1–18. https://doi.org/10.1186/s42492-020-0041-6

    Article  Google Scholar 

  34. Zadpoor, A. A., & Malda, J. (2017). Additive manufacturing of biomaterials, tissues, and organs. Annals of Biomedical Engineering, 45(1), 1–11. https://doi.org/10.1007/s10439-016-1719-y

    Article  Google Scholar 

  35. Zhang, B., Jaiswal, P., Rai, R., & Nelaturi, S. (2018). Additive manufacturing of functionally graded material objects: A review. Journal of Computing and Information Science in Engineering, 18(4), 041002. https://doi.org/10.1115/1.4039683

    Article  Google Scholar 

  36. Kieback, B., Neubrand, A., & Riedel, H. (2003). Processing techniques for functionally graded materials. Materials Science and Engineering A, 362(1–2), 81–106. https://doi.org/10.1016/S0921-5093(03)00578-1

    Article  Google Scholar 

  37. **ng, H., Zou, B., Liu, X., Wang, X., Huang, C., & Hu, Y. (2020). Fabrication strategy of complicated Al2O3-Si3N4 functionally graded materials by stereolithography 3D printing. Journal of the European Ceramic Society, 40(15), 5797–5809. https://doi.org/10.1016/j.jeurceramsoc.2020.05.022

    Article  Google Scholar 

  38. Loknath, D., Ravindra, V. M., & Kumar,. (2021). A review on processing and characterization of bulk functionally graded polymer materials. Material Today Proceeding. https://doi.org/10.1016/j.matpr.2021.11.152

    Article  Google Scholar 

  39. Reina, A., et al. (2009). Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Letters, 9(1), 30–35. https://doi.org/10.1021/nl801827v

    Article  Google Scholar 

  40. Valizadeh, I., Al Aboud, A., Dörsam, E., & Weeger, O. (2021). Tailoring of functionally graded hyperelastic materials via grayscale mask stereolithography 3D printing. Additive Manufacturing, 47, 102108. https://doi.org/10.1016/j.addma.2021.102108

    Article  Google Scholar 

  41. Shinohara, Y., (2013) “Chapter 11.2.4 - Functionally Graded Materials.” In Handbook of Advanced Ceramics (Second Edition), Second Edi. S. Somiya, Ed. Oxford: Academic Press, 2013, pp. 1179–1187.

  42. Abegunde, O. O., Akinlabi, E. T., Oladijo, O. P., Akinlabi, S., & Ude, A. U. (2019). Overview of thin film deposition techniques. AIMS Mater. Sci., 6(2), 174–199. https://doi.org/10.3934/MATERSCI.2019.2.174

    Article  Google Scholar 

  43. Karen, G., “Schematic diagram of CVD process,” 2015. https://news.mit.edu/2015/explained-chemical-vapor-deposition-0619 (Accessed Sep. 24, 2022).

  44. Suryanaraynan, R., “Plasma spraying: Theory and applications,” 1993. https://books.google.co.in/books?hl=en&lr=&id=Rq296h4AzNgC&oi=fnd&pg=PA11&dq=plasma+spraying+technique&ots=rzer2TOZAd&sig=xrnqPSq_p6iitvByeAyKgGl-MXI#v=onepage&q=plasma spraying technique&f=false (Accessed Oct. 15, 2022).

  45. Mohammadzadeh, A., Naghib Zadeh, S. K., Saidi, M. H., and Sharifzadeh, M. (2020) “Chapter 3 - Mechanical engineering of solid oxide fuel cell systems: geometric design, mechanical configuration, and thermal analysis.” In Design and Operation of Solid Oxide Fuel Cells, M. Sharifzadeh, Ed. Academic Press, pp. 85–130.

  46. Sasaki, M., & Hirai, T. (1994). Thermal fatigue resistance of CVD SiC/C functionally gradient material. Journal of the European Ceramic Society, 14(3), 257–260. https://doi.org/10.1016/0955-2219(94)90094-9

    Article  Google Scholar 

  47. Jung, Y.-G., Park, S.-W., & Choi, S.-C. (1997). Effect of CH4 and H2 on CVD of SiC and TiC for possible fabrication of SiC/TiC/C FGM. Materials Letters, 30(5), 339–345. https://doi.org/10.1016/S0167-577X(96)00221-2

    Article  Google Scholar 

  48. Jain, M., Sadangi, R. K., Cannon, W. R., & Kear, B. H. (2001). Processing of functionally graded WC/Co/diamond nanocomposites. Scripta Materialia, 44(8), 2099–2103. https://doi.org/10.1016/S1359-6462(01)00882-X

    Article  Google Scholar 

  49. Khor, K. A., Dong, Z. L., & Gu, Y. W. (1999). Plasma sprayed functionally graded thermal barrier coatings. Materials Letters, 38(6), 437–444. https://doi.org/10.1016/S0167-577X(98)00203-1

    Article  Google Scholar 

  50. Khor, K. A., & Gu, Y. W. (2000). Thermal properties of plasma-sprayed functionally graded thermal barrier coatings. Thin Solid Films, 372(1), 104–113. https://doi.org/10.1016/S0040-6090(00)01024-5

    Article  Google Scholar 

  51. Kirik, I. (2017). Microstructure examination of functionally graded NiTi/NiAl/Ni3Al intermetallic compound produced by self-propagating high-temperature synthesis. Kovove Mater, 55, 97–106.

    Article  Google Scholar 

  52. Zha, S., Zhang, Y., & Liu, M. (2005). Functionally graded cathodes fabricated by sol-gel/slurry coating for honeycomb SOFCs. Solid State Ionics, 176(1–2), 25–31. https://doi.org/10.1016/j.ssi.2004.07.010

    Article  Google Scholar 

  53. Nemat-Alla, M. M., Ata, M. H., Bayoumi, M. R., & Khair-Eldeen, W. (2011). Powder metallurgical fabrication and microstructural investigations of aluminum/steel functionally graded material. Materials Sciences and Applications, 2(12), 1708. https://doi.org/10.4236/msa.2011.212228

    Article  Google Scholar 

  54. Zhu, J., Lai, Z., Yin, Z., Jeon, J., & Lee, S. (2001). Fabrication of ZrO2–NiCr functionally graded material by powder metallurgy. Materials Chemistry and Physics, 68(1–3), 130–135.

    Article  Google Scholar 

  55. **, G., Takeuchi, M., Honda, S., Nishikawa, T., & Awaji, H. (2005). Properties of multilayered mullite/Mo functionally graded materials fabricated by powder metallurgy processing. Materials Chemistry and Physics, 89(2–3), 238–243. https://doi.org/10.1016/j.matchemphys.2004.03.031

    Article  Google Scholar 

  56. Duque, N. B., Melgarejo, Z. H., & Suarez, O. M. (2005). Functionally graded aluminum matrix composites produced by centrifugal casting. Materials Characterization, 55(2), 167–171. https://doi.org/10.1016/j.matchar.2005.04.005

    Article  Google Scholar 

  57. Lin, X., Liu, C., & **ao, H. (2013). Fabrication of Al–Si–Mg functionally graded materials tube reinforced with in situ Si/Mg2Si particles by centrifugal casting. Composites Part B: Engineering, 45(1), 8–21. https://doi.org/10.1016/j.compositesb.2012.09.001

    Article  Google Scholar 

  58. Chumanov, I. V., Anikeev, A. N., & Chumanov, V. I. (2015). Fabrication of functionally graded materials by introducing wolframium carbide dispersed particles during centrifugal casting and examination of FGM’s structure. Procedia Engineering, 129, 816–820. https://doi.org/10.1016/j.proeng.2015.12.111

    Article  Google Scholar 

  59. Kunimine, T., Shibuya, M., Sato, H., & Watanabe, Y. (2015). Fabrication of copper/diamond functionally graded materials for grinding wheels by centrifugal sintered-casting. Journal of Materials Processing Technology, 217, 294–301. https://doi.org/10.1016/j.jmatprotec.2014.11.020

    Article  Google Scholar 

  60. Kirihara, S. (2021). Stereolithographic additive manufacturing of ceramic components with functionally modulated structures. Open Ceramics, 5, 100068. https://doi.org/10.1016/j.oceram.2021.100068

    Article  Google Scholar 

  61. Zhang, Y., Li, S., Zhao, Y., Duan, W., Liu, B., Wang, T., & Wang, G. (2021). Digital light processing 3D printing of AlSi10Mg powder modified by surface coating. Additive Manufacturing, 39, 101897. https://doi.org/10.1016/j.addma.2021.101897

    Article  Google Scholar 

  62. Scheithauer, U., Schwarzer, E., Moritz, T., & Michaelis, A. (2018). Additive manufacturing of ceramic heat exchanger: Opportunities and limits of the lithography-based ceramic manufacturing (LCM ). Journal of Materials Engineering and Performance, 27(1), 14–20. https://doi.org/10.1007/s11665-017-2843-z

    Article  Google Scholar 

  63. Santoliquido, O., Camerota, F., & Ortona, A. (2021). The influence of topology on DLP 3D printing, debinding and sintering of ceramic periodic architectures designed to replace bulky components. Open Ceramics, 5, 100059. https://doi.org/10.1016/j.oceram.2021.100059

    Article  Google Scholar 

  64. Kuang, X., Wu, J., Chen, K., Zhao, Z., Ding, Z., Hu, F., & Qi, H. J. (2019). Grayscale digital light processing 3D printing for highly functionally graded materials. Science advances, 5(5), 5790.

    Article  Google Scholar 

  65. Kim, T. Y., Park, S. H., & Park, K. (2021). Development of functionally graded metamaterial using selective polymerization via digital light processing additive manufacturing. Additive Manufacturing, 47, 102254. https://doi.org/10.1016/j.addma.2021.102254

    Article  Google Scholar 

  66. Forte, C. T., Montgomery, S. M., Yue, L., Hamel, C. M., & Qi, H. J. (2023). Grayscale digital light processing gradient printing for stress concentration reduction and material toughness enhancement. Journal of Applied Mechanics, 90(7), 071003. https://doi.org/10.1115/1.4056966

    Article  Google Scholar 

  67. Kaweesa, D. V., & Meisel, N. A. (2018). Quantifying fatigue property changes in material jetted parts due to functionally graded material interface design. Additive Manufacturing, 21, 141–149. https://doi.org/10.1016/j.addma.2018.03.011

    Article  Google Scholar 

  68. Kaweesa, D. V., Spillane, D. R. and Meisel, N. A. (2020).“Investigating the impact of functionally graded materials on fatigue life of material jetted specimens.” Solid Free. Fabr. 2017 Proc. 28th Annu. Int. Solid Free. Fabr. Symp. - An Addit. Manuf. Conf. SFF 2017, pp. 578–592.

  69. Ituarte, I. F., Boddeti, N., Hassani, V., Dunn, M. L., & Rosen, D. W. (2019). Design and additive manufacture of functionally graded structures based on digital materials. Additive Manufacturing, 30, 100839. https://doi.org/10.1016/j.addma.2019.100839

    Article  Google Scholar 

  70. Qu, H., et al. (2022). Influence of thermal processing conditions on mechanical and material properties of 3d printed thin - structures using PEEK material. International Journal of Precision Engineering and Manufacturing, 23(6), 689–699. https://doi.org/10.1007/s12541-022-00650-1

    Article  Google Scholar 

  71. Baca, D., & Ahmad, R. (2020). The impact on the mechanical properties of multi-material polymers fabricated with a single mixing nozzle and multi-nozzle systems via fused deposition modeling. International Journal of Advanced Manufacturing Technology, 106(9–10), 4509–4520. https://doi.org/10.1007/s00170-020-04937-3

    Article  Google Scholar 

  72. Tang, D., Hao, L., Li, Y., Li, Z., & Dadbakhsh, S. (2020). Dual gradient direct ink writing for formation of kaolinite ceramic functionally graded materials. Journal of Alloys and Compounds, 814, 152275. https://doi.org/10.1016/j.jallcom.2019.152275

    Article  Google Scholar 

  73. Sharma, R., Singh, R., & Batish, A. (2022). On mechanical and surface properties of electro-active polymer matrix-based 3D printed functionally graded prototypes. Journal of Thermoplastic Composite Materials, 35(5), 615–630. https://doi.org/10.1177/0892705720907677

    Article  Google Scholar 

  74. Velu, R., Fernyhough, A., Smith, D. A., Joo Le Guen, M., & Singamneni, S. (2016). Selective laser sintering of biocomposite materials. Lasers Eng., 35(1–4), 173–186.

    Google Scholar 

  75. Tan, C., Zhou, K., & Kuang, T. (2019). Selective laser melting of tungsten-copper functionally graded material. Materials Letters, 237, 328–331. https://doi.org/10.1016/j.matlet.2018.11.127

    Article  Google Scholar 

  76. Chung, H., & Das, S. (2006). Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Materials Science and Engineering A, 437(2), 226–234. https://doi.org/10.1016/j.msea.2006.07.112

    Article  Google Scholar 

  77. Chung, H., & Das, S. (2008). Functionally graded Nylon-11/silica nanocomposites produced by selective laser sintering. Materials Science and Engineering A, 487(1–2), 251–257. https://doi.org/10.1016/j.msea.2007.10.082

    Article  Google Scholar 

  78. Lisi Leite, J., Salmoria, G. V., Paggi, R. A., Ahrens, C. H., & Pouzada, A. S. (2012). Microstructural characterization and mechanical properties of functionally graded PA12/HDPE parts by selective laser sintering. The International Journal of Advanced Manufacturing Technology, 59, 583–591. https://doi.org/10.1007/s00170-011-3538-5

    Article  Google Scholar 

  79. Krishna, B. V., Xue, W., Bose, S., & Bandyopadhyay, A. (2008). Functionally graded Co–Cr–Mo coating on Ti–6Al–4V alloy structures. Acta Biomaterialia, 4(3), 697–706. https://doi.org/10.1016/j.actbio.2007.10.005

    Article  Google Scholar 

  80. Lima, D. D., et al. (2017). Laser additive processing of a functionally graded internal fracture fixation plate. Materials and Design, 130(May), 8–15. https://doi.org/10.1016/j.matdes.2017.05.034

    Article  Google Scholar 

  81. Thomas, J., Mogonye, J. E., Mantri, S. A., Choudhuri, D., Banerjee, R., & Scharf, T. W. (2020). Additive manufacturing of compositionally graded laser deposited titanium-chromium alloys. Additive Manufacturing, 33, 101132. https://doi.org/10.1016/j.addma.2020.101132

    Article  Google Scholar 

  82. Savitha, U., Reddy, G. J., Venkataramana, A., Rao, A. S., Gokhale, A. A., & Sundararaman, M. (2015). Chemical analysis, structure and mechanical properties of discrete and compositionally graded SS316–IN625 dual materials. Materials Science and Engineering: A, 647, 344–352. https://doi.org/10.1016/j.msea.2015.09.001

    Article  Google Scholar 

  83. Heer, B., & Bandyopadhyay, A. (2018). Compositionally graded magnetic-nonmagnetic bimetallic structure using laser engineered net sha**. Materials Letters, 216, 16–19. https://doi.org/10.1016/j.matlet.2017.12.129

    Article  Google Scholar 

  84. Onuike, B., Heer, B., & Bandyopadhyay, A. (2018). Additive manufacturing of inconel 718—Copper alloy bimetallic structure using laser engineered net sha** (LENS™). Additive Manufacturing, 21, 133–140. https://doi.org/10.1016/j.addma.2018.02.007

    Article  Google Scholar 

  85. Borkar, T., et al. (2017). A combinatorial approach for assessing the magnetic properties of high entropy alloys: Role of Cr in AlCoxCr1–xFeNi. Advanced Engineering Materials, 19(8), 1–13. https://doi.org/10.1002/adem.201700048

    Article  Google Scholar 

  86. Chaudhary, V., Yadav, N. M. S. K. K., Mantri, S. A., Dasari, S., Jagetia, A., Ramanujan, R. V., & Banerjee, R. (2020). Additive manufacturing of functionally graded Co–Fe and Ni–Fe magnetic materials. Journal of Alloys and Compounds, 823, 153817. https://doi.org/10.1016/j.jallcom.2020.153817

    Article  Google Scholar 

  87. Liang, Y. J., Liu, D., & Wang, H. M. (2014). Microstructure and mechanical behavior of commercial purity Ti/Ti-6Al-2Zr-1Mo-1V structurally graded material fabricated by laser additive manufacturing. Scripta Materialia, 74, 80–83. https://doi.org/10.1016/j.scriptamat.2013.11.002

    Article  Google Scholar 

  88. Banait, S. M., Paul, C. P., **oop, A. N., Kumar, H., Pawade, R. S., & Bindra, K. S. (2020). Experimental investigation on laser directed energy deposition of functionally graded layers of Ni–Cr–B–Si and SS316L. Optics & Laser Technology, 121, 105787. https://doi.org/10.1016/j.optlastec.2019.105787

    Article  Google Scholar 

  89. Shi, J. M., Zhang, L. X., Chang, Q., Sun, Z., & Feng, J. C. (2018). Strengthening the ZrC–SiC ceramic and TC4 alloy brazed joint using laser additive manufactured functionally graded material layers. Ceramics International, 44(10), 11060–11069. https://doi.org/10.1016/j.ceramint.2018.03.087

    Article  Google Scholar 

  90. Zhao, K., Zhang, G., Ma, G., Shen, C., & Wu, D. (2020). Microstructure and mechanical properties of titanium alloy/zirconia functionally graded materials prepared by laser additive manufacturing. Journal of Manufacturing Processes, 56, 616–622. https://doi.org/10.1016/j.jmapro.2020.05.044

    Article  Google Scholar 

  91. Schneider-Maunoury, C., Weiss, L., Acquier, P., Boisselier, D., & Laheurte, P. (2017). Functionally graded Ti6Al4V-Mo alloy manufactured with DED-CLAD ® process. Additive Manufacturing, 17, 55–66. https://doi.org/10.1016/j.addma.2017.07.008

    Article  Google Scholar 

  92. Kang, N., et al. (2019). On the effect of the thermal cycle during the directed energy deposition application to the in-situ production of a Ti-Mo alloy functionally graded structure. Additive Manufacturing, 31, 2020. https://doi.org/10.1016/j.addma.2019.100911

    Article  Google Scholar 

  93. Meng, W., et al. (2019). Additive manufacturing of a functionally graded material from Inconel625 to Ti6Al4V by laser synchronous preheating. Journal of Materials Processing Technology, 275, 2020. https://doi.org/10.1016/j.jmatprotec.2019.116368

    Article  Google Scholar 

  94. Schneider-Maunoury, C., Weiss, L., Perroud, O., Joguet, D., Boisselier, D., & Laheurte, P. (2019). An application of differential injection to fabricate functionally graded Ti–Nb alloys using DED-CLAD® process. Journal of Materials Processing Technology, 268, 171–180. https://doi.org/10.1016/j.jmatprotec.2019.01.018

    Article  Google Scholar 

  95. Schneider-Maunoury, C., Albayda, A., Bartier, O., Weiss, L., Mauvoisin, G., Hernot, X., & Laheurte, P. (2020). On the use of instrumented indentation to characterize the mechanical properties of functionally graded binary alloys manufactured by additive manufacturing. Materials Today Communications, 25, 101451. https://doi.org/10.1016/j.mtcomm.2020.101451

    Article  Google Scholar 

  96. Li, W., Yan, L., Chen, X., Zhang, J., Zhang, X., & Liou, F. (2018). Directed energy depositing a new Fe–Cr–Ni alloy with gradually changing composition with elemental powder mixes and particle size’effect in fabrication process. Journal of Materials Processing Technology, 255, 96–104. https://doi.org/10.1016/j.jmatprotec.2017.12.010

    Article  Google Scholar 

  97. Nie, J., Wei, L., Li, D. L., Zhao, L., Jiang, Y., & Li, Q. (2020). High-throughput characterization of microstructure and corrosion behavior of additively manufactured SS316L–SS431 graded material. Additive Manufacturing, 35, 101295. https://doi.org/10.1016/j.addma.2020.101295

    Article  Google Scholar 

  98. Zhang, X., Sun, C., Pan, T., Flood, A., Zhang, Y., Li, L., & Liou, F. (2020). Additive manufacturing of copper–H13 tool steel bi-metallic structures via Ni-based multi-interlayer. Additive Manufacturing, 36, 101474. https://doi.org/10.1016/j.addma.2020.101474

    Article  Google Scholar 

  99. Hyun, S., Jiung, P., Gwanghyo, Y., Kyung, C., & Jhang, Y. (2023). Tensile property evaluation of additively manufactured Ti–6Al–4V/Yttria - stabilized zirconia composite using absolute nonlinear ultrasonic technique. International Journal of Precision Engineering and Manufacturing, 24(4), 555–569. https://doi.org/10.1007/s12541-023-00766-y

    Article  Google Scholar 

  100. Kuo, C., Chang, T., Liu, J., & Chung, C. (2021). Design, analytical and experimental evaluations of additive manufacturing for laser melting of polymer - metal colloids. International Journal of Precision Engineering and Manufacturing, 22(6), 1081–1096. https://doi.org/10.1007/s12541-021-00518-w

    Article  Google Scholar 

  101. Reichardt, A., et al. (2016). Development and characterization of Ti-6Al-4V to 304L stainless steel gradient components fabricated with laser deposition additive manufacturing. Materials and Design, 104, 404–413. https://doi.org/10.1016/j.matdes.2016.05.016

    Article  Google Scholar 

  102. Li, W., et al. (2017). Fabrication and characterization of a functionally graded material from Ti-6Al-4V to SS316 by laser metal deposition. Additive Manufacturing, 14, 95–104. https://doi.org/10.1016/j.addma.2016.12.006

    Article  Google Scholar 

  103. Meng, W., Zhang, W., Zhang, W., Yin, X., Guo, L., & Cui, B. (2019). Additive fabrication of 316L/Inconel625/Ti6Al4V functionally graded materials by laser synchronous preheating. International Journal of Advanced Manufacturing Technology, 104(5–8), 2525–2538. https://doi.org/10.1007/s00170-019-04061-x

    Article  Google Scholar 

  104. Su, Y., Chen, B., Tan, C., Song, X., & Feng, J. (2020). Influence of composition gradient variation on the microstructure and mechanical properties of 316 L/Inconel718 functionally graded material fabricated by laser additive manufacturing. Journal of Materials Processing Technology, 283, 116702. https://doi.org/10.1016/j.jmatprotec.2020.116702

    Article  Google Scholar 

  105. Zhang, C. H., Zhang, H., Wu, C. L., Zhang, S., Sun, Z. L., & Dong, S. Y. (2017). Multi-layer functional graded stainless steel fabricated by laser melting deposition. Vacuum, 141, 181–187. https://doi.org/10.1016/j.vacuum.2017.04.020

    Article  Google Scholar 

  106. Karnati, S., Zhang, Y., Liou, F. F., & Newkirk, J. W. (2019). On the feasibility of tailoring Copper–Nickel functionally graded materials fabricated through laser metal deposition. Metals, 9(3), 287. https://doi.org/10.3390/met9030287

    Article  Google Scholar 

  107. Mahamood, R. M., & Akinlabi, E. T. (2015). Laser metal deposition of functionally graded Ti6Al4V/TiC. Materials and Design, 84, 402–410. https://doi.org/10.1016/j.matdes.2015.06.135

    Article  Google Scholar 

  108. Li, L., Wang, J., Lin, P., & Liu, H. (2017). Microstructure and mechanical properties of functionally graded TiCp/Ti6Al4V composite fabricated by laser melting deposition. Ceramics International, 43(18), 16638–16651. https://doi.org/10.1016/j.ceramint.2017.09.054

    Article  Google Scholar 

  109. Adomako, N. K., Noh, S., Oh, C. S., Yang, S., & Kim, J. H. (2019). Laser deposition additive manufacturing of 17–4PH stainless steel on Ti-6Al-4V using V interlayer. Materials Research Letters, 7(7), 259–266. https://doi.org/10.1080/21663831.2019.1596989

    Article  Google Scholar 

  110. Liu, Z. H., Zhang, D. Q., Sing, S. L., Chua, C. K., & Loh, L. E. (2014). Interfacial characterization of SLM parts in multi-material processing: Metallurgical diffusion between 316L stainless steel and C18400 copper alloy. Materials Characterization, 94, 116–125. https://doi.org/10.1016/j.matchar.2014.05.001

    Article  Google Scholar 

  111. Demir, A. G., & Previtali, B. (2017). Multi-material selective laser melting of Fe/Al–12Si components. Manufacturing Letters, 11, 8–11. https://doi.org/10.1016/j.mfglet.2017.01.002

    Article  Google Scholar 

  112. Sing, S. L., Lam, L. P., Zhang, D. Q., Liu, Z. H., & Chua, C. K. (2015). Interfacial characterization of SLM parts in multi-material processing: Intermetallic phase formation between AlSi10Mg and C18400 copper alloy. Materials Characterization, 107, 220–227. https://doi.org/10.1016/j.matchar.2015.07.007

    Article  Google Scholar 

  113. Rashkovets, M., Mazzarisi, M., Nikulina, A. A., & Casalino, G. (2020). Analysis of laser direct stainless steel powder deposition on Ti6Al4V substrate. Materials Letters, 274, 128064. https://doi.org/10.1016/j.matlet.2020.128064

    Article  Google Scholar 

  114. Shah, K., Ul Haq, I., Khan, A., Shah, S. A., Khan, M., & Pinkerton, A. J. (2014). Parametric study of development of Inconel-steel functionally graded materials by laser direct metal deposition. Materials & Design, 54, 531–538. https://doi.org/10.1016/j.matdes.2013.08.079

    Article  Google Scholar 

  115. Chen, B., Su, Y., **e, Z., Tan, C., & Feng, J. (2019). Development and characterization of 316L/Inconel625 functionally graded material fabricated by laser direct metal deposition. Optics & Laser Technology, 123, 2020. https://doi.org/10.1016/j.optlastec.2019.105916

    Article  Google Scholar 

  116. Hinojos, A., et al. (2016). Joining of inconel 718 and 316 stainless steel using electron beam melting additive manufacturing technology. Materials and Design, 94, 17–27. https://doi.org/10.1016/j.matdes.2016.01.041

    Article  Google Scholar 

  117. Wang, Q., et al. (2017). Microstructure evolution and EBSD analysis of a graded steel fabricated by laser additive manufacturing. Vacuum, 141, 68–81. https://doi.org/10.1016/j.vacuum.2017.03.021

    Article  Google Scholar 

  118. Liu, Y., et al. (2019). Characterization of wear properties of the functionally graded material deposited on cast iron by laser-aided additive manufacturing. International Journal of Advanced Manufacturing Technology, 105(10), 4097–4105. https://doi.org/10.1007/s00170-019-03414-w

    Article  MathSciNet  Google Scholar 

  119. Chandrasekaran, S., Hari, S., & Amirthalingam, M. (2020). Wire arc additive manufacturing of functionally graded material for marine risers. Materials Science and Engineering: A, 792, 139530. https://doi.org/10.1016/j.msea.2020.139530

    Article  Google Scholar 

  120. Kannan, A. R., Kumar, S. M., Kumar, N. P., Shanmugam, N. S., Vishnu, A. S., & Palguna, Y. (2020). Process-microstructural features for tailoring fatigue strength of wire arc additive manufactured functionally graded material of SS904L and Hastelloy C-276. Materials Letters, 274, 127968. https://doi.org/10.1016/j.matlet.2020.127968

    Article  Google Scholar 

  121. Ghoncheh, M. H., Sanjari, M., Cyr, E., Kelly, J., Pirgazi, H., Shakerin, S., & Mohammadi, M. (2020). On the solidification characteristics, deformation, and functionally graded interfaces in additively manufactured hybrid aluminum alloys. International Journal of Plasticity, 133, 102840. https://doi.org/10.1016/j.ijplas.2020.102840

    Article  Google Scholar 

  122. Wang, F., Mei, J., & Wu, X. (2008). Direct laser fabrication of Ti6Al4V/TiB. Journal of Materials Processing Technology, 195(1–3), 321–326. https://doi.org/10.1016/j.jmatprotec.2007.05.024

    Article  Google Scholar 

  123. Wang, F., Mei, J., & Wu, X. (2007). Compositionally graded Ti6Al4V + TiC made by direct laser fabrication using powder and wire. Materials and Design, 28(7), 2040–2046. https://doi.org/10.1016/j.matdes.2006.06.010

    Article  Google Scholar 

  124. Li, S. N., et al. (2017). Mechanical properties and formation mechanism of Ti/SiC system gradient materials fabricated by in-situ reaction laser cladding. Ceramics International, 43(1), 961–967. https://doi.org/10.1016/j.ceramint.2016.10.026

    Article  MathSciNet  Google Scholar 

  125. Li, N., Liu, W., **ong, H., Qin, R., Huang, S., Zhang, G., & Gao, C. (2019). In-situ reaction of Ti-Si-C composite powder and formation mechanism of laser deposited Ti6Al4V/(TiC+ Ti3SiC2) system functionally graded material. Materials & Design, 183, 108155. https://doi.org/10.1016/j.matdes.2019.108155

    Article  Google Scholar 

  126. Wu, N., et al. (2021). The advances of topology optimization techniques in orthopedic implants: A review. Medical & Biological Engineering & Computing, 59(9), 1673–1689. https://doi.org/10.1007/s11517-021-02361-7

    Article  Google Scholar 

  127. Zhou, M. Y., **. Journal of Materials Processing Technology, 146(3), 396–402. https://doi.org/10.1016/j.jmatprotec.2003.11.034

    Article  Google Scholar 

  128. Jaiswal, P., Huang, J., & Rai, R. (2016). Computer-aided design assembly-based conceptual 3D modeling with unlabeled components using probabilistic factor graph ✩. Computer Design, 74, 45–54. https://doi.org/10.1016/j.cad.2015.10.002

    Article  Google Scholar 

  129. Jain, A., Thormählen, T., Ritschel, T., & Seidel, H. P. (2012). Material memex: Automatic material suggestions for 3d objects. ACM Transactions on Graphics (TOG), 31(6), 1–8. https://doi.org/10.1145/2366145.2366162

    Article  Google Scholar 

  130. Nanjundaswamy, V. G., Kulkarni, A., Chen, Z., Jaiswal, P., Verma, A., & Rai, R. (2013). Intuitive 3D computer-aided design (CAD) system with multimodal interfaces. In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 55850, p. V02AT02A037). American Society of Mechanical Engineers.

  131. Kumar, V., Burns, D., Dutta, D., & Hoffmann, C. (1999). A framework for object modeling. Computer-Aided Design, 31(9), 541–556. https://doi.org/10.1016/S0010-4485(99)00051-2

    Article  Google Scholar 

  132. Shin, K. H., & Dutta, D. (2001). Constructive representation of heterogeneous objects. Journal of Computing and Information Science in Engineering, 1(3), 205–217. https://doi.org/10.1115/1.1403448

    Article  Google Scholar 

  133. Jaiswal, P., Bajad, A. B., Nanjundaswamy, V. G., Verma, A., and Rai, R. (2013) “Creative exploration of scaled product family 3D models using gesture based conceptual computer aided design (C-CAD) tool.” https://doi.org/10.1115/DETC2013-12279.

  134. Jackson, T. R. (2002). “Memory analysis of solid model representations for.” vol 2, https://doi.org/10.1115/1.1476380.

  135. Chandru, V., Manohar, S., & Prakash, C. E. (1995). Voxel-based modeling for layered manufacturing. IEEE Computer Graphics and Applications, 15(6), 42–47. https://doi.org/10.1109/38.469516

    Article  Google Scholar 

  136. Doubrovski, E. L., Tsai, E. Y., Dikovsky, D., Geraedts, J. M. P., Herr, H., & Oxman, N. (2015). Computer-aided design voxel-based fabrication through material property map** : A design method for bitmap printing. Computer Design, 60, 3–13. https://doi.org/10.1016/j.cad.2014.05.010

    Article  Google Scholar 

  137. Zhang, X., Cui, W., & Liou, F. (2021). Voxel-based geometry reconstruction for repairing and remanufacturing of metallic components via additive manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(6), 1663–1686. https://doi.org/10.1007/s40684-020-00291-7

    Article  Google Scholar 

  138. Kou, X. Y., & Tan, S. T. (2007). Heterogeneous object modeling: A review. Computer-Aided Design, 39(4), 284–301. https://doi.org/10.1016/j.cad.2006.12.007

    Article  Google Scholar 

  139. Sathish, M., Radhika, N., & Saleh, B. (2021). A critical review on functionally graded coatings: Methods, properties, and challenges. Composites Part B: Engineering, 225, 109278. https://doi.org/10.1016/j.compositesb.2018.03.014

    Article  Google Scholar 

  140. Kim, J.-E., & Park, K. (2021). Multiscale topology optimization combining density-based optimization and lattice enhancement for additive manufacturing. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(4), 1197–1208. https://doi.org/10.1007/s40684-020-00289-1

    Article  Google Scholar 

  141. Park, J. H., & Park, K. (2020). Compressive behavior of soft lattice structures and their application to functional compliance control. Additive Manufacturing, 33, 101148. https://doi.org/10.1016/j.addma.2020.101148

    Article  Google Scholar 

  142. Tran, V. L., Cheon, B., Thanh, K., Do, T., Zhang, S., & Chang, K. (2022). Cooling performance of an additively manufactured lattice structural conformal cooling channel for hot stam**. International Journal of Precision Engineering and Manufacturing, 23(12), 1443–1452. https://doi.org/10.1007/s12541-022-00718-y

    Article  Google Scholar 

  143. Lee, J. H., et al. (2022). Crack guidance utilizing the orientation of additive manufactured lattice structure. International Journal of Precision Engineering and Manufacturing, 23(7), 797–805. https://doi.org/10.1007/s12541-022-00654-x

    Article  MathSciNet  Google Scholar 

  144. Jerin, W. R., Je, S., Seung, P., & Moon, K. (2023). A design optimization framework for 3D printed lattice structures. International journal of Precision Engineering and Manufacturing, 1, 145–156.

  145. Nguyen, C. H. P., Kim, Y., & Choi, Y. (2021). Design for Additive Manufacturing of functionally graded lattice structures: A design method with process induced anisotropy consideration. International Journal of Precision Engineering and Manufacturing-Green Technology, 8(1), 29–45. https://doi.org/10.1007/s40684-019-00173-7

    Article  Google Scholar 

  146. Lee, J.-C., & Ahn, S.-H. (2018). Bulk density measurement of porous functionally graded materials. International Journal of Precision Engineering and Manufacturing, 19(1), 31–37. https://doi.org/10.1007/s12541-018-0004-4

    Article  Google Scholar 

  147. Panesar, A., Abdi, M., Hickman, D., & Ashcroft, I. (2018). Strategies for functionally graded lattice structures derived using topology optimisation for Additive Manufacturing. Additive Manufacturing, 19, 81–94. https://doi.org/10.1016/j.addma.2017.11.008

    Article  Google Scholar 

  148. Yoo, D.-J. (2013). Heterogeneous porous scaffold design using the continuous transformations of triply periodic minimal surface models. International Journal of Precision Engineering and Manufacturing, 14(10), 1743–1753. https://doi.org/10.1007/s12541-013-0234-4

    Article  Google Scholar 

  149. Veloso, F., Gomes-Fonseca, J., Morais, P., Correia-Pinto, J., Pinho, A. C., & Vilaca, J. L. (2022). Overview of methods and software for the design of functionally graded lattice structures. Advanced Engineering Materials, 24(11), 2200483. https://doi.org/10.1002/adem.202200483

    Article  Google Scholar 

  150. Dumitrescu, I. B., Lupuliasa, D., DRĂGOI, C., NICOLAE, A. C., Pop, A., ŢARAMET, G., & DRĂGĂNESCU, D. (2018). The age of pharmaceutical 3D printing. Technological and therapeutical implications of additive manufacturing. Farmacia, 66(3).

  151. Rai, P., Jankiraman, V., Teacher, M., Velu, R., Kumar, S. A., Binedell, T., & Subburaj, K. (2022). Design and optimization of a 3D printed prosthetic socket for transtibial amputees. Materials Today: Proceedings, 70, 454–464. https://doi.org/10.1016/j.matpr.2022.09.365

    Article  Google Scholar 

  152. Zhou, M. Y. (2004). Adaptive slicing of functionally graded material objects for rapid prototy**. The International Journal of Advanced Manufacturing Technology, 24, 345–352. https://doi.org/10.1007/s00170-003-1623-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was conducted under the grant number SRG/2021/002204, funded by the Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India.

Funding

Science and Engineering Research Board (SERB), DST, India, SRG/2021/002204, RAJKUMAR VELU

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajkumar Velu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teacher, M., Velu, R. Additive Manufacturing of Functionally Graded Materials: A Comprehensive Review. Int. J. Precis. Eng. Manuf. 25, 165–197 (2024). https://doi.org/10.1007/s12541-023-00864-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-023-00864-x

Keywords

Navigation