Log in

Data-Driven Methods for Predicting the State of Health, State of Charge, and Remaining Useful Life of Li-Ion Batteries: A Comprehensive Review

  • Review
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

Lithium-ion batteries are widely used in electric vehicles, electronic devices, and energy storage systems owing to their high energy density, long life, and outstanding performance. However, various internal and external factors affect the battery performance, leading to deterioration and ageing. Accurately estimating the state of health (SOH), state of charge (SOC), and remaining useful life (RUL) of batteries is challenging owing to complex operating characteristics and changing internal physical parameters. With the increasing availability of shared battery data and improved computer performance, the use of data-driven methods for battery health estimations and RUL predictions has gained popularity. We provide a comprehensive review of several studies in which data-driven methods were used for SOC and SOH estimation and RUL prediction. Specifically, we focus on the importance of open battery-cycling databases, various prediction methods used, and results obtained using each of these methods. Moreover, we aim to facilitate further research by providing a comprehensive description of the current state-of-the-art methods employed in battery health estimation and RUL prediction using open databases and machine-learning algorithms. Thus, we hope that this review will help researchers to develop accurate and reliable predictive models for battery health assessment in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. IPCC. SESSION OF THE IPCC (2020). Decisions Adopted by the Panel Decision IPCC-LII-1. Adoption of the Provisional Agenda.

  2. Rietmann, N., Hügler, B., & Lieven, T. (2020). Forecasting the trajectory of electric vehicle sales and the consequences for worldwide CO2 emissions. Journal of Cleaner Production, 261, 121038. https://doi.org/10.1016/j.jclepro.2020.121038

    Article  Google Scholar 

  3. Wu, Z., Wang, M., Zheng, J., Sun, X., Zhao, M., & Wang, X. (2018). life cycle greenhouse gas emission reduction potential of battery electric vehicle. Journal of Cleaner Production, 190, 462–470. https://doi.org/10.1016/j.jclepro.2018.04.036

    Article  Google Scholar 

  4. Jenn, A. (2022). Revolutionary changes in transportation, from electric vehicles to ride sharing, Could slow global warming—If They ’ Re Done Right, IPCC Says.

  5. Wang, S., **, S., Bai, D., Fan, Y., Shi, H., & Fernandez, C. (2021). A critical review of improved deep learning methods for the remaining useful life prediction of lithium-ion batteries. Energy Reports, 7, 5562–5574. https://doi.org/10.1016/j.egyr.2021.08.182

    Article  Google Scholar 

  6. Al-Ghussain, L., Ahmad, A. D., Abubaker, A. M., Abujubbeh, M., Almalaq, A., & Mohamed, M. A. (2021). A demand-supply matching-based approach for map** renewable resources towards 100% renewable grids in 2050. IEEE Access, 9, 58634–58651. https://doi.org/10.1109/ACCESS.2021.3072969

    Article  Google Scholar 

  7. dos Reis, G., Strange, C., Yadav, M., & Li, S. (2021). Lithium-ion battery data and where to find it. Energy AI. https://doi.org/10.1016/j.egyai.2021.100081

    Article  Google Scholar 

  8. Lin, C., Tang, A., Mu, H., Wang, W., & Wang, C. (2015). Aging mechanisms of electrode materials in lithium-ion batteries for electric vehicles. Journal of Chemistry. https://doi.org/10.1155/2015/104673

    Article  Google Scholar 

  9. Hu, X., Feng, F., Liu, K., Zhang, L., **e, J., & Liu, B. (2019). state estimation for advanced battery management: Key challenges and future trends. Renewable and Sustainable Energy Reviews, 114, 109334. https://doi.org/10.1016/j.rser.2019.109334

    Article  Google Scholar 

  10. Chen, X., Yu, J., Tang, D., Wang, Y. (2011). Remaining useful life prognostic estimation for aircraft subsystems or components: A review. In Proceedings - IEEE 2011 10th International Conference on Electronic Measurement & Instruments, ICEMI 2011 ,2, pp. 94–98. Doi: https://doi.org/10.1109/ICEMI.2011.6037773.

  11. Kim, D.-H., Kim, T. J. Y., Wang, X., Kim, M., Quan, Y.-J., Oh, J. W., Min, S.-H., Kim, H., Bhandari, B., Yang, I., & Ahn, S.-H. (2018). Smart machining process using machine learning: A review and perspective on machining industry. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(4), 555–568. https://doi.org/10.1007/s40684-018-0057-y

    Article  Google Scholar 

  12. Han, X., Lu, L., Zheng, Y., Feng, X., Li, Z., Li, J., & Ouyang, M. (2019). A Review on the key issues of the lithium ion battery degradation among the whole life cycle. eTransportation, 1, 100005. https://doi.org/10.1016/j.etran.2019.100005

    Article  Google Scholar 

  13. Zhao, K. (2020). Heterogeneous damage in li-ion batteries: experimental analysis and theoretical modeling. In ECS Meeting Abstracts , MA2020-01 (40), 1784. Doi: https://doi.org/10.1149/ma2020-01401784mtgabs.

  14. Lin, X., Park, J., Liu, L., Lee, Y., Sastry, A. M., & Lu, W. (2013). a comprehensive capacity fade model and analysis for Li-ion batteries. Journal of the Electrochemical Society, 160(10), A1701–A1710. https://doi.org/10.1149/2.040310jes

    Article  Google Scholar 

  15. Dubarry, M., Devie, A., & Liaw, B. Y. (2014). The value of battery diagnostics and prognostics. Journal of Energy and Power Sources, 1(5), 242–249.

    Google Scholar 

  16. Safari, M., Morcrette, M., Teyssot, A., & Delacourt, C. (2009). Multimodal physics-based aging model for life prediction of Li-ion batteries. Journal of the Electrochemical Society, 156(3), A145. https://doi.org/10.1149/1.3043429

    Article  Google Scholar 

  17. Lai, X., He, L., Wang, S., Zhou, L., Zhang, Y., Sun, T., & Zheng, Y. (2020). Co-estimation of state of charge and state of power for lithium-ion batteries based on fractional variable-order model. Journal of Cleaner Production, 255, 120203. https://doi.org/10.1016/j.jclepro.2020.120203

    Article  Google Scholar 

  18. Tian, H., Qin, P., Li, K., & Zhao, Z. (2020). A review of the state of health for lithium-ion batteries: research status and suggestions. Journal of Cleaner Production, 261, 120813. https://doi.org/10.1016/j.jclepro.2020.120813

    Article  Google Scholar 

  19. Tian, J., **ong, R., Shen, W., Lu, J., & Yang, X.-G. (2021). Deep neural network battery charging curve prediction using 30 points collected in 10 min. Joule, 5(6), 1521–1534. https://doi.org/10.1016/j.joule.2021.05.012

    Article  Google Scholar 

  20. Kwon, H., & Park, H. (2019). Numerical simulation of prismatic lithium-ion battery life cycles under a wide range of temperature. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(1), 63–73. https://doi.org/10.1007/s40684-019-00034-3

    Article  Google Scholar 

  21. Kim, J. K., & Lee, C. S. (2015). Co-simulation approach for analyzing electric-thermal interaction phenomena in lithium-ion battery. International Journal of Precision Engineering and Manufacturing-Green Technology, 2(3), 255–262. https://doi.org/10.1007/s40684-015-0030-y

    Article  Google Scholar 

  22. Tian, N., Wang, Y., Chen, J., & Fang, H. (2019). One-shot parameter identification of the Thevenin’s model for batteries: Methods and validation. Journal of Energy Storage, 2020(29), 101282. https://doi.org/10.1016/j.est.2020.101282

    Article  Google Scholar 

  23. Chin, C. S., Gao, Z., & Zhang, C. Z. (2020). Comprehensive electro-thermal model of 26650 lithium battery for discharge cycle under parametric and temperature variations. Journal of Energy Storage, 28, 101222. https://doi.org/10.1016/j.est.2020.101222

    Article  Google Scholar 

  24. Lipu, M. S. H., Hannan, M. A., Hussain, A., Hoque, M. M., Ker, P. J., Saad, M. H. M., & Ayob, A. (2018). A review of state of health and remaining useful life estimation methods for lithium-ion battery in electric vehicles: Challenges and recommendations. Journal of Cleaner Production, 205, 115–133. https://doi.org/10.1016/j.jclepro.2018.09.065

    Article  Google Scholar 

  25. Jokar, A., Rajabloo, B., Désilets, M., & Lacroix, M. (2016). Review of simplified pseudo-two-dimensional models of lithium-ion batteries. Journal of Power Sources, 327, 44–55. https://doi.org/10.1016/j.jpowsour.2016.07.036

    Article  Google Scholar 

  26. Li, J., Adewuyi, K., Lotfi, N., Landers, R. G., & Park, J. (2018). A single particle model with chemical/mechanical degradation physics for lithium ion battery state of health (SOH) estimation. Applied Energy, 212, 1178–1190. https://doi.org/10.1016/j.apenergy.2018.01.011

    Article  Google Scholar 

  27. Marquis, S. G., Sulzer, V., Timms, R., Please, C. P., & Chapman, S. J. (2019). An asymptotic derivation of a single particle model with electrolyte. Journal of the Electrochemical Society, 166(15), A3693–A3706. https://doi.org/10.1149/2.0341915jes

    Article  Google Scholar 

  28. Kim, S. W., Kong, J. H., Lee, S. W., & Lee, S. (2022). Recent advances of artificial intelligence in manufacturing industrial sectors: A review. International Journal of Precision Engineering and Manufacturing, 23(1), 111–129. https://doi.org/10.1007/s12541-021-00600-3

    Article  Google Scholar 

  29. Cho, S., Seo, H. R., Lee, G., Choi, S. K., & Choi, H. J. (2023). A rapid learning model based on selected frequency range spectral subtraction for the data-driven fault diagnosis of manufacturing systems. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 49–62. https://doi.org/10.57062/ijpem-st.2022.0031

    Article  Google Scholar 

  30. Park, H. J., Kim, S., Han, S.-Y., Ham, S., Park, K. J., & Choi, J.-H. (2021). Machine health assessment based on an anomaly indicator using a generative adversarial network. International Journal of Precision Engineering and Manufacturing, 22(6), 1113–1124. https://doi.org/10.1007/s12541-021-00513-1

    Article  Google Scholar 

  31. Min, K. (2023). Machine learning interatomic potential to investigate fundamentals of electrolytes for Li-ion solid-state batteries. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 83–91. https://doi.org/10.57062/ijpem-st.2022.0066

    Article  Google Scholar 

  32. Lee, J., Dong, H., Ji, D.-Y., & Kundu, P. (2023). Cyber-physical systems framework for predictive metrology in semiconductor manufacturing process. International Journal of Precision Engineering and Manufacturing-Green Technology, 1(1), 107–113. https://doi.org/10.57062/ijpem-st.2022.0010

    Article  Google Scholar 

  33. Wang, F., Zhao, Z., Ren, J., Zhai, Z., Wang, S., & Chen, X. (2022). A transferable lithium-ion battery remaining useful life prediction method from cycle-consistency of degradation trend. Journal of. Power Sources, 521, 230975. https://doi.org/10.1016/j.jpowsour.2022.230975

    Article  Google Scholar 

  34. Li, X., Yuan, C., Li, X., & Wang, Z. (2020). State of health estimation for Li-ion battery using incremental capacity analysis and gaussian process regression. Energy, 190, 116467. https://doi.org/10.1016/j.energy.2019.116467

    Article  Google Scholar 

  35. Severson, K. A., Attia, P. M., **, N., Perkins, N., Jiang, B., Yang, Z., Chen, M. H., Aykol, M., Herring, P. K., Fraggedakis, D., Bazant, M. Z., Harris, S. J., Chueh, W. C., & Braatz, R. D. (2019). Data-driven prediction of battery cycle life before capacity degradation. Nature Energy, 4(5), 383–391. https://doi.org/10.1038/s41560-019-0356-8

    Article  Google Scholar 

  36. Song, L., Zhang, K., Liang, T., Han, X., & Zhang, Y. (2020). Intelligent state of health estimation for lithium-ion battery pack based on big data analysis. Journal of Energy Storage, 32, 101836. https://doi.org/10.1016/j.est.2020.101836

    Article  Google Scholar 

  37. https://data.mendeley.com/datasets/wykht8y7tg/1

  38. Chemali, E., Kollmeyer, P. J., Preindl, M., Ahmed, R., & Emadi, A. (2018). Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries. IEEE Transactions on Industrial Electronics, 65(8), 6730–6739. https://doi.org/10.1109/TIE.2017.2787586

    Article  Google Scholar 

  39. https://data.matr.io/1/projects/5c48dd2bc625d700019f3204

  40. https://data.matr.io/1/projects/5d80e633f405260001c0b60a

  41. Attia, P. M., Grover, A., **, N., Severson, K. A., Markov, T. M., Liao, Y. H., Chen, M. H., Cheong, B., Perkins, N., Yang, Z., Herring, P. K., Aykol, M., Harris, S. J., Braatz, R. D., Ermon, S., & Chueh, W. C. (2020). Closed-loop optimization of fast-charging protocols for batteries with machine learning. Nature, 578(7795), 397–402. https://doi.org/10.1038/s41586-020-1994-5

    Article  Google Scholar 

  42. https://publikationen.bibliothek.kit.edu/1000094469

  43. Steinbuss, G., Rzepka, B., Bischof, S., Blank, T., Böhm, K. (2019). FOBSS: Monitoring data from a modular battery system. In Proceedings of the Tenth ACM International Conference on Future Energy Systems; e-Energy ’19; Association for Computing Machinery: New York, NY, USA, pp 456–459. https://doi.org/10.1145/3307772.3331020.

  44. https://data.mendeley.com/datasets/c35zbmn7j8/1

  45. Diao, W., Saxena, S., & Pecht, M. (2019). accelerated cycle life testing and capacity degradation modeling of LiCoO2-graphite cells. Journal of Power Sources, 435, 226830. https://doi.org/10.1016/j.jpowsour.2019.226830

    Article  Google Scholar 

  46. https://zenodo.org/record/3633835#.ZExgZnaZOeQ

  47. Zhang, Y., Tang, Q., Zhang, Y., Wang, J., Stimming, U., & Lee, A. A. (2020). Identifying degradation patterns of lithium ion batteries from impedance spectroscopy using machine learning. Nature Communications, 11(1), 1706. https://doi.org/10.1038/s41467-020-15235-7

    Article  Google Scholar 

  48. https://github.com/YunweiZhang/ML-Identify-Battery-Degradation

  49. https://data.mendeley.com/datasets/c5dxwn6w92

  50. Zhang, S., Guo, X., Dou, X., & Zhang, X. (2020). A data-driven coulomb counting method for state of charge calibration and estimation of lithium-ion battery. Sustainable Energy Technologies and Assessments, 40, 100752. https://doi.org/10.1016/j.seta.2020.100752

    Article  Google Scholar 

  51. https://data.mendeley.com/datasets/cp3473x7xv/3

  52. Vidal, C., Kollmeyer, P., Chemali, E., Emadi, A. (2019). Li-ion battery state of charge estimation using long short-term memory recurrent neural network with transfer learning. In 2019 IEEE Transportation Electrification Conference and Expo (ITEC); pp 1–6.

  53. https://rdr.ucl.ac.uk/articles/dataset/Lithium-ion_Battery_INR18650_MJ1_Data_400_Electrochemical_Cycles_EIL-015_/12159462

  54. Heenan, T. M. M., Jnawali, A., Kok, M. D. R., Tranter, T. G., Tan, C., Dimitrijevic, A., Jervis, R., Brett, D. J. L., & Shearing, P. R. (2020). An advanced microstructural and electrochemical datasheet on 18650 Li-ion batteries with nickel-rich NMC811 cathodes and graphite-silicon anodes. Journal of The Electrochemical Society., 167(14), 140530.

    Article  Google Scholar 

  55. https://ora.ox.ac.uk/objects/uuid:03ba4b01-cfed-46d3-9b1a-7d4a7bdf6fac

  56. https://ora.ox.ac.uk/objects/uuid:9aae61af-2949-49f1-8ad5-6aea448979e5

  57. Reniers, J. M., Mulder, G., & Howey, D. A. (2021). Unlocking extra value from grid batteries using advanced models. Journal of Power Sources, 487, 229355. https://doi.org/10.1016/j.jpowsour.2020.229355

    Article  Google Scholar 

  58. https://ora.ox.ac.uk/objects/uuid:de62b5d2-6154-426d-bcbb-30253ddb7d1e

  59. https://ora.ox.ac.uk/objects/uuid:be3d304e-51fd-4b37-a818-b6fa1ac2ba9d

  60. https://ora.ox.ac.uk/objects/uuid:78f66fa8-deb9-468a-86f3-63983a7391a9

  61. Raj, T., Wang, A. A., Monroe, C. W., & Howey, D. A. (2020). Investigation of path-dependent degradation in lithium-ion batteries. Batteries & Supercaps, 3(12), 1377–1385. https://doi.org/10.1002/batt.202000160

    Article  Google Scholar 

  62. https://data.mendeley.com/datasets/k6v83s2xdm/1

  63. Burzyński, D., & Kasprzyk, L. (2021). A novel method for the modeling of the state of health of lithium-ion cells using machine learning for practical applications. Knowledge-Based Systems, 219, 106900. https://doi.org/10.1016/j.knosys.2021.106900

    Article  Google Scholar 

  64. https://data.4tu.nl/articles/dataset/Lifecycle_ageing_tests_on_commercial_18650_Li_ion_cell_10_C_and_0_C/14377295

  65. https://data.4tu.nl/articles/dataset/Lifecycle_ageing_tests_on_commercial_18650_Li_ion_cell_25_C_and_45_C/13739296/1

  66. Vehicle, E., Range, E. (2018). Electric vehicle enhanced range, lifetime and safety through INGenious battery management D8 . 2 – Data Management Plan February 2018. No. 713771, 1–140.

  67. https://www.batteryarchive.org/.

  68. https://data.nasa.gov/browse?q=battery&sortBy=relevance

  69. Weng, C., Cui, Y., Sun, J., & Peng, H. (2013). On-board state of health monitoring of lithium-ion batteries using incremental capacity analysis with support vector regression. Journal of Power Sources, 235, 36–44. https://doi.org/10.1016/j.jpowsour.2013.02.012

    Article  Google Scholar 

  70. You, G., Park, S., & Oh, D. (2017). Diagnosis of electric vehicle batteries using recurrent neural networks. IEEE Transactions on Industrial Electronics, 64(6), 4885–4893. https://doi.org/10.1109/TIE.2017.2674593

    Article  Google Scholar 

  71. Park, K., Choi, Y., Choi, W. J., Ryu, H. Y., & Kim, H. (2020). LSTM-based battery remaining useful life prediction with multi-channel charging profiles. IEEE Access, 8, 20786–20798. https://doi.org/10.1109/ACCESS.2020.2968939

    Article  Google Scholar 

  72. Kim, S., Choi, Y. Y., Kim, K. J., & Choi, J. I. (2021). Forecasting state-of-health of lithium-ion batteries using variational long short-term memory with transfer learning. Journal of Energy Storage, 41, 102893. https://doi.org/10.1016/j.est.2021.102893

    Article  Google Scholar 

  73. Li, S., & Zhao, P. (2020). Big data driven vehicle battery management method: A novel cyber-physical system perspective. Journal of Energy Storage, 2021(33), 1–7. https://doi.org/10.1016/j.est.2020.102064

    Article  Google Scholar 

  74. Li, Y., Li, K., Liu, X., Wang, Y., & Zhang, L. (2021). Lithium-ion battery capacity estimation—A pruned convolutional neural network approach assisted with transfer learning. Applied Energy, 285, 116410. https://doi.org/10.1016/j.apenergy.2020.116410

    Article  Google Scholar 

  75. Ma, L., Hu, C., & Cheng, F. (2021). State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network. Journal of Energy Storage. https://doi.org/10.1016/j.est.2021.102440

    Article  Google Scholar 

  76. Nagulapati, V. M., Lee, H., Jung, D. W., Brigljevic, B., Choi, Y., & Lim, H. (2021). Capacity estimation of batteries: influence of training dataset size and diversity on data driven prognostic models. Reliability Engineering & System Safety, 216, 108048. https://doi.org/10.1016/j.ress.2021.108048

    Article  Google Scholar 

  77. Hosen, M. S., Youssef, R., Kalogiannis, T., Van Mierlo, J., & Berecibar, M. (2021). Battery cycle life study through relaxation and forecasting the lifetime via machine learning. Journal of Energy Storage, 40, 102726. https://doi.org/10.1016/j.est.2021.102726

    Article  Google Scholar 

  78. Álvarez Antón, J. C., García Nieto, P. J., de Cos Juez, F. J., Sánchez Lasheras, F., González Vega, M., & Roqueñí Gutiérrez, M. N. (2013). Battery state-of-charge estimator using the SVM technique. Applied Mathematical Modelling, 37(9), 6244–6253. https://doi.org/10.1016/j.apm.2013.01.024

    Article  Google Scholar 

  79. Klass, V., Behm, M., & Lindbergh, G. (2014). a support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation. Journal of Power Sources, 270, 262–272. https://doi.org/10.1016/j.jpowsour.2014.07.116

    Article  Google Scholar 

  80. https://enerdel.com. 2013.

  81. Xu, Z., Wang, J., Lund, P. D., & Zhang, Y. (2021). Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data. Energy, 225, 120160. https://doi.org/10.1016/j.energy.2021.120160

    Article  Google Scholar 

  82. Gardner, E. S. (2006). Exponential smoothing: The state of the art-part II. International Journal of Forecasting, 22(4), 637–666. https://doi.org/10.1016/j.ijforecast.2006.03.005

    Article  Google Scholar 

  83. Roman, D., Saxena, S., Robu, V., Pecht, M., & Flynn, D. (2021). Machine learning pipeline for battery state-of-health estimation. Nature Machine Intelligence, 3(5), 447–456. https://doi.org/10.1038/s42256-021-00312-3

    Article  Google Scholar 

  84. Che, Y., Deng, Z., Lin, X., Hu, L., & Hu, X. (2021). predictive battery health management with transfer learning and online model correction. IEEE Transactions on Vehicular Technology, 70(2), 1269–1277. https://doi.org/10.1109/TVT.2021.3055811

    Article  Google Scholar 

  85. Shen, S., Sadoughi, M., Li, M., Wang, Z., & Hu, C. (2020). Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries. Applied Energy, 260, 114296. https://doi.org/10.1016/j.apenergy.2019.114296

    Article  Google Scholar 

  86. Wu, J., Zhang, C., & Chen, Z. (2016). An online method for lithium-ion battery remaining useful life estimation using importance sampling and neural networks. Applied Energy, 173, 134–140. https://doi.org/10.1016/j.apenergy.2016.04.057

    Article  Google Scholar 

  87. Tagade, P., Hariharan, K. S., Ramachandran, S., Khandelwal, A., Naha, A., Kolake, S. M., & Han, S. H. (2020). Deep Gaussian process regression for lithium-ion battery health prognosis and degradation mode diagnosis. Journal of Power Sources, 445, 227281. https://doi.org/10.1016/j.jpowsour.2019.227281

    Article  Google Scholar 

  88. Patil, M. A., Tagade, P., Hariharan, K. S., Kolake, S. M., Song, T., Yeo, T., & Doo, S. (2015). A novel multistage support vector machine based approach for Li ion battery remaining useful life estimation. Applied Energy, 159, 285–297. https://doi.org/10.1016/j.apenergy.2015.08.119

    Article  Google Scholar 

  89. Ng, S. S. Y., **ng, Y., & Tsui, K. L. (2014). A naive bayes model for robust remaining useful life prediction of lithium-ion battery. Applied Energy, 118, 114–123. https://doi.org/10.1016/j.apenergy.2013.12.020

    Article  Google Scholar 

  90. Chen, Z., Xue, Q., **ao, R., Liu, Y., & Shen, J. (2019). State of health estimation for lithium-ion batteries based on fusion of autoregressive moving average model and Elman neural network. IEEE Access, 7, 102662–102678. https://doi.org/10.1109/ACCESS.2019.2930680

    Article  Google Scholar 

  91. Gou, B., Xu, Y., & Feng, X. (2020). State-of-health estimation and remaining-useful-life prediction for lithium-ion battery using a hybrid data-driven method. IEEE Transactions on Vehicular Technology, 69(10), 10854–10867. https://doi.org/10.1109/TVT.2020.3014932

    Article  Google Scholar 

  92. Chen, L., Ding, Y., Liu, B., Wu, S., Wang, Y., & Pan, H. (2022). Remaining useful life prediction of lithium-ion battery using a novel particle filter framework with grey neural network. Energy, 244, 122581. https://doi.org/10.1016/j.energy.2021.122581

    Article  Google Scholar 

  93. Tang, T., & Yuan, H. (2022). A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery. Reliability Engineering & System Safety., 217, 108082. https://doi.org/10.1016/j.ress.2021.108082

    Article  Google Scholar 

  94. Zhang, Y., Chen, L., Li, Y., Zheng, X., Chen, J., & **, J. (2021). A hybrid approach for remaining useful life prediction of lithium-ion battery with adaptive levy flight optimized particle filter and long short-term memory network. Journal of Energy Storage. https://doi.org/10.1016/j.est.2021.103245

    Article  Google Scholar 

  95. Glaessgen, E., Stargel, D. (2012). The digital twin paradigm for future NASA and U.S. air force vehicles. In 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Structures, Structural Dynamics, and Materials and Co-located Conferences; American Institute of Aeronautics and Astronautics, 2012. Doi: https://doi.org/10.2514/6.2012-1818.

  96. Wu, B., Widanage, W. D., Yang, S., & Liu, X. (2020). Battery digital twins: perspectives on the fusion of models, data and artificial intelligence for smart battery management systems. Energy AI, 1, 100016. https://doi.org/10.1016/j.egyai.2020.100016

    Article  Google Scholar 

  97. https://dream.ai/

  98. Eddahech, A., Briat, O., Bertrand, N., Delétage, J.-Y., & Vinassa, J.-M. (2012). Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks. International Journal of Electrical Power & Energy Systems, 42(1), 487–494. https://doi.org/10.1016/j.ijepes.2012.04.050

    Article  Google Scholar 

  99. Liu, D., Pang, J., Zhou, J., Peng, Y., & Pecht, M. (2013). Prognostics for state of health estimation of lithium-ion batteries based on combination Gaussian process functional regression. Microelectronics Reliability, 53(6), 832–839. https://doi.org/10.1016/j.microrel.2013.03.010

    Article  Google Scholar 

  100. Zaknich, A. (2003). Estimation of battery state of health using probabilistic neural network. Neural Networks for Intelligent Signal Processing, 9(2), 157–189. https://doi.org/10.1142/9789812796851_0007

    Article  Google Scholar 

  101. Bai, G., Wang, P., Hu, C., & Pecht, M. (2014). A generic model-free approach for lithium-ion battery health management. Applied Energy, 135, 247–260. https://doi.org/10.1016/j.apenergy.2014.08.059

    Article  Google Scholar 

  102. He, Y.-J., Shen, J.-N., Shen, J.-F., & Ma, Z.-F. (2015). State of health estimation of lithium-ion batteries: A multiscale gaussian process regression modeling approach. AIChE Journal, 61(5), 1589–1600. https://doi.org/10.1002/aic.14760

    Article  Google Scholar 

  103. Wu, J., Wang, Y., Zhang, X., & Chen, Z. (2016). A novel state of health estimation method of Li-ion battery using group method of data handling. Journal of Power Sources, 327, 457–464. https://doi.org/10.1016/j.jpowsour.2016.07.065

    Article  Google Scholar 

  104. Hu, X., Li, S. E., & Yang, Y. (2016). Advanced machine learning approach for lithium-ion battery state estimation in electric vehicles. IEEE Transactions on Transportation Electrification, 2(2), 140–149. https://doi.org/10.1109/TTE.2015.2512237

    Article  Google Scholar 

  105. You, G., Park, S., & Oh, D. (2016). Real-time state-of-health estimation for electric vehicle batteries: a data-driven approach. Applied Energy, 176, 92–103. https://doi.org/10.1016/j.apenergy.2016.05.051

    Article  Google Scholar 

  106. Wang, Q. K., He, Y. J., Shen, J. N., Ma, Z. F., & Zhong, G. B. (2017). A unified modeling framework for lithium-ion batteries: An artificial neural network based thermal coupled equivalent circuit model approach. Energy, 138, 118–132. https://doi.org/10.1016/j.energy.2017.07.035

    Article  Google Scholar 

  107. Yang, D., Zhang, X., Pan, R., Wang, Y., & Chen, Z. (2018). A Novel Gaussian process regression model for state-of-health estimation of lithium-ion battery using charging curve. Journal of Power Sources, 384, 387–395. https://doi.org/10.1016/j.jpowsour.2018.03.015

    Article  Google Scholar 

  108. Pan, H., Lü, Z., Wang, H., Wei, H., & Chen, L. (2018). Novel battery state-of-health online estimation method using multiple health indicators and an extreme learning machine. Energy, 160, 466–477. https://doi.org/10.1016/j.energy.2018.06.220

    Article  Google Scholar 

  109. Lin, C.-P., Cabrera, J., Yang, F., Ling, M.-H., Tsui, K.-L., & Bae, S.-J. (2020). Battery state of health modeling and remaining useful life prediction through time series model. Applied Energy, 275, 115338. https://doi.org/10.1016/j.apenergy.2020.115338

    Article  Google Scholar 

  110. Nagulapati, V. M., Lee, H., Jung, D., Paramanantham, S. S., Brigljevic, B., Choi, Y., & Lim, H. (2021). A novel combined multi-battery dataset based approach for enhanced prediction accuracy of data driven prognostic models in capacity estimation of lithium ion batteries. Energy AI, 5, 100089. https://doi.org/10.1016/j.egyai.2021.100089

    Article  Google Scholar 

  111. Li, L., Wang, P., Chao, K.-H., Zhou, Y., & **e, Y. (2016). Remaining useful life prediction for lithium-ion batteries based on gaussian processes mixture. PLoS One, 11(9), e0163004.

    Article  Google Scholar 

  112. Liu, Z., Sun, G., Bu, S., Han, J., Tang, X., & Pecht, M. (2017). particle learning framework for estimating the remaining useful life of lithium-ion batteries. IEEE Transactions on Instrumentation and Measurement, 66(2), 280–293. https://doi.org/10.1109/TIM.2016.2622838

    Article  Google Scholar 

  113. Richardson, R. R., Birkl, C. R., Osborne, M. A., & Howey, D. A. (2019). Gaussian process regression for in situ capacity estimation of lithium-ion batteries. IEEE Transactions on Industrial Informatics, 15(1), 127–138. https://doi.org/10.1109/TII.2018.2794997

    Article  Google Scholar 

  114. Zhang, Y., **ong, R., He, H., & Pecht, M. G. (2018). Long short-term memory recurrent neural network for remaining useful life prediction of lithium-ion batteries. IEEE Transactions on Vehicular Technology, 67(7), 5695–5705. https://doi.org/10.1109/TVT.2018.2805189

    Article  Google Scholar 

  115. Choi, Y., Ryu, S., Park, K., & Kim, H. (2019). machine learning-based lithium-ion battery capacity estimation exploiting multi-channel charging profiles. IEEE Access, 7, 75143–75152. https://doi.org/10.1109/ACCESS.2019.2920932

    Article  Google Scholar 

  116. Kwon, S. J., Han, D., Choi, J. H., Lim, J. H., Lee, S. E., & Kim, J. (2020). Remaining-useful-life prediction via multiple linear regression and recurrent neural network reflecting degradation information of 20Ah LiNixMnyCo1−x−yO2 pouch cell. Journal of Electroanalytical Chemistry, 858, 113729. https://doi.org/10.1016/j.jelechem.2019.113729

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Ministry of Science, ICT (MSIT), Korea, under the “High-Potential Individuals Global Training Program” (2021-0-01539), supervised by the Institute for Information & Communications Technology Planning & Evaluation (IITP). This work was also supported by a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No. 2022R1F1A1074339).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoungmin Min.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This paper is an invited paper (Invited Review).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, E., Kim, M., Kim, J. et al. Data-Driven Methods for Predicting the State of Health, State of Charge, and Remaining Useful Life of Li-Ion Batteries: A Comprehensive Review. Int. J. Precis. Eng. Manuf. 24, 1281–1304 (2023). https://doi.org/10.1007/s12541-023-00832-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-023-00832-5

Keywords

Navigation