Log in

Understanding the Mechanisms of Texture Evolution of a Fe-24Cr-22Ni-7Mo Super Austenitic Stainless Steel During cold Rolling and Annealing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In present study, the texture evolution during cold rolling and subsequent annealing of a Fe-24Cr-22Ni-7Mo super austenitic stainless steel was investigated, and new insights into the mechanisms of texture evolution were obtained. The results show that macrotexture evolution during cold rolling can be categorized into two stages. Below 33.3% cold reduction, the material form strong Goss, Copper, and S texture component due to dislocation plane slip**. Above 33.3% reduction, strong Brass, Goss, and Copper-Twin texture components are formed, accompanied by a decrease in Copper and S component content. Moreover, when the cold reduction reaches 66.6%, the strength of the γ-fibre texture suddenly increases. This increase is attributed to the rotation of the Copper-oriented grains and the Copper-Twin-oriented grains in the lamellar twin region to {111}\(< \overline 1 2\overline 1 >\) and {111}\(< 2\overline 1 \overline 1 >\) along < 011>//TD direction, respectively. It is significant to note that twinning plays a dominant role in the formation of the Brass-type texture in the super austenitic stainless steel at large deformation. Additionally, the annealing of cold deformed materials results in the formation of random and scattered recrystallization texture. This may be due to the small difference in deformation energy storage of grains with different orientations after austenite deformation.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data Availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. T. Koutsoukis, A. Redjaiemia, G. Fourlaris, Mater. Sci. Eng. A 561, 477–485 (2013). https://doi.org/10.1016/j.msea.2012.10.066

    Article  CAS  Google Scholar 

  2. H.B. Li, C.T. Yang, E.Z. Zhou, C.G. Yang, H. Feng, Z.H. Jiang, D.K. Hu, T.Y. Gu, K. Yang, J. Mater. Sci. Tech. 33, 1596–1603 (2017). https://doi.org/10.1016/j.jmst.2017.03.002

    Article  CAS  Google Scholar 

  3. G. Mori, D. Bauernfeind, Mater. Corros. 55, 164–176 (2004). https://doi.org/10.1002/maco.200303746

    Article  CAS  Google Scholar 

  4. H.B. Li, Z.H. Jiang, H. Feng, S.C. Zhang, P. Han, Z. Wei, G. Li, G. Fan, Int. J. Electrochem. Sci. 10, 4832–4848 (2015). https://doi.org/10.1016/S1452-3981(23)06669-5

    Article  CAS  Google Scholar 

  5. B. Wallén, M. Liljas, P. Stenvall, Mater. Corros. 44, 83–88 (1993). https://doi.org/10.1002/maco.19930440305

    Article  Google Scholar 

  6. S. Nagarajan, N. Rajendran, Corros. Sci. 51, 217–224 (2009). https://doi.org/10.1016/j.corsci.2008.11.008

    Article  CAS  Google Scholar 

  7. Y.P. Dou, S.K. Han, L.W. Wang, X. Wang, Z.Y. Cui, Corros. Sci. 165, 108405 (2020). https://doi.org/10.1016/j.corsci.2019.108405

    Article  CAS  Google Scholar 

  8. J. Talonen, H. Hnninen, Acta Mater. 55, 6108–6118 (2007). https://doi.org/10.1016/j.actamat.2007.07.015

    Article  CAS  Google Scholar 

  9. N. Saenarjhan, J.H. Kang, S.J. Kim, Mater. Sci. Eng. A 742, 608–616 (2019). https://doi.org/10.1016/j.msea.2018.11.048

    Article  CAS  Google Scholar 

  10. T.H. Lee, E. Shin, C.S. Oh, H.Y. Ha, S.J. Kim, Acta Mater. 58, 3173–3186 (2010). https://doi.org/10.1016/j.actamat.2010.01.056

    Article  CAS  Google Scholar 

  11. S. Allain, J.P. Chateau, O. Bouaziz, S. Migot, N. Guelton, Mater. Sci. Eng. A 387–389, 158–162 (2004). https://doi.org/10.1016/j.msea.2004.01.059

    Article  CAS  Google Scholar 

  12. X. Wang, M. Guo, Z. Yan, X. Hui, L. Zhuang, J. Alloys Compd. 657, 906–916 (2016). https://doi.org/10.1016/j.jallcom.2015.10.070

    Article  CAS  Google Scholar 

  13. O. Engler, Acta Mater. 48, 4827–4840 (2000). https://doi.org/10.1016/S1359-6454(00)00272-X

    Article  CAS  Google Scholar 

  14. P.P. Bhattacharjee, R.K. Ray, N. Tsuji, Acta Mater. 57, 2166–2179 (2009). https://doi.org/10.1016/j.actamat.2009.01.015

    Article  CAS  Google Scholar 

  15. D. Raabe, Acta Mater. 45, 1137–1151 (1997). https://doi.org/10.1016/S1359-6454(96)00222-4

    Article  CAS  Google Scholar 

  16. K.H. Oh, J.S. Jeong, M.K. Yang, N.L. Dong, Mater. Chem. Phys. 161, 9–18 (2015). https://doi.org/10.1016/j.matchemphys.2015.04.019

    Article  CAS  Google Scholar 

  17. I.R.S. Filho, D. Zilnyk, M.J.R. Sandim, R.E. Bolmaro, H.R.Z. Sandim, Mater. Sci. Eng. A 702, 161–172 (2017). https://doi.org/10.1016/j.msea.2017.07.010

    Article  CAS  Google Scholar 

  18. A. Poulon-Quintin, S. Brochet, J.B. Vogt, J.C. Glez, J.D. Mithieux, ISIJ Int. 49, 293–301 (2009)

    Article  CAS  Google Scholar 

  19. B.R. Kumar, R. Singh, B. Mahato, P.K. De, N.R. Bandyopadhyay, D.K. Bhattacharya, Mater. Charact. 54, 141–147 (2005). https://doi.org/10.1016/j.matchar.2004.11.004

    Article  CAS  Google Scholar 

  20. M. Nezakat, H. Akhiani, M. Hoseini, J. Szpunar, Mater. Charact. 98, 10–17 (2014). https://doi.org/10.1016/j.matchar.2014.10.006

    Article  CAS  Google Scholar 

  21. R.K. Ray, J.J. Jonas, M.P. Butrón-Guillén, J. Savoie, ISIJ Int. 34, 927–942 (2005)

    Article  Google Scholar 

  22. N. Eftekhari, A. Zarei-Hanzaki, A. Shamsolhodaei, H. Anne-Laure, T. Baudin, Adv. Eng. Mater. 20, 1700928 (2018). https://doi.org/10.1002/adem.201700928

    Article  CAS  Google Scholar 

  23. H. Kamali, H.B. **e, F.H. Jia, H.Y. Bi, E. Chang, H.G. Xu, H.F. Yu, Z.Y. Jiang, J. Mater. Sci. 56, 6465–6486 (2021). https://doi.org/10.1007/s10853-020-05611-5

    Article  CAS  Google Scholar 

  24. Y. Park, J.H. Kang, Y.K. Lee, Metall. Mater. Trans. A 42, 692–699 (2011). https://doi.org/10.1007/s11661-010-0467-0

    Article  CAS  Google Scholar 

  25. L. Lemarquis, P.F. Giroux, H. Maskrot, P. Castany, Materialia 30, 101812 (2023). https://doi.org/10.1016/j.mtla.2023.101812

    Article  CAS  Google Scholar 

  26. E. Bertrand, P. Castany, I. Péron, T. Gloriant, Scr. Mater. 64, 1110–1113 (2011). https://doi.org/10.1016/j.scriptamat.2011.02.033

    Article  CAS  Google Scholar 

  27. L. Bracke, K. Verbeken, L. Kestens, J. Penning, Acta Mater. 57, 1515–1524 (2009). https://doi.org/10.1016/j.actamat.2008.11.036

    Article  CAS  Google Scholar 

  28. P. Ren, X.P. Chen, C.Y. Wang, Y.X. Zhou, W.Q. Cao, Q. Liu, Mater. Charact. 174, 111013 (2021). https://doi.org/10.1016/j.matchar.2021.111013

    Article  CAS  Google Scholar 

  29. C. Haase, S.G. Chowdhury, L.A. Barrales-Mora, D.A. Molodov, G. Gottstein, Metall. Mater. Trans. A 44, 911–922 (2013). https://doi.org/10.1007/s11661-012-1543-4

    Article  CAS  Google Scholar 

  30. K. Jeong, J.E. **, Y.S. Jung, S. Kang, Y.K. Lee, Acta Mater. 61, 3399–3410 (2013). https://doi.org/10.1016/j.actamat.2013.02.031

    Article  CAS  Google Scholar 

  31. Y. Zong, D. Wen, Z. Liu, D. Shan, Mater. Des. 91, 321–330 (2016). https://doi.org/10.1016/j.matdes.2015.11.120

    Article  CAS  Google Scholar 

  32. Y. Cao, H.S. Di, J.Q. Zhang, J.C. Zhang, T.J. Ma, R.D.K. Misra, Mater. Sci. Eng. A 585, 71–85 (2013). https://doi.org/10.1016/j.actamat.2013.02.031

    Article  CAS  Google Scholar 

  33. S.G. Chowdhury, S. Datta, B.R. Kumar, P.K. De, R.N. Ghosh, Mater. Sci. Eng. A 443, 114–119 (2007). https://doi.org/10.1016/j.msea.2006.09.059

    Article  CAS  Google Scholar 

  34. C. Haase, M. Kühbach, L.A. Barrales-Mora, S.L. Wong, F. Roters, D.A. Molodov, G. Gottstein, Acta Mater. 100, 155–168 (2015). https://doi.org/10.1016/j.actamat.2015.08.057

    Article  CAS  Google Scholar 

  35. H.Y. Song, G.D. Wang, H.T. Liu, J. Alloys Compd. 888, 161519 (2021). https://doi.org/10.1016/j.jallcom.2021.161519

    Article  CAS  Google Scholar 

  36. S. Vercammen, B. Blanpain, B. Cooman, Acta Mater. 52, 2005–2012 (2004). https://doi.org/10.1016/j.actamat.2003.12.040

    Article  CAS  Google Scholar 

  37. S.G. Chowdhury, S. Das, P.K. De, Acta Mater. 53, 3951–3959 (2005). https://doi.org/10.1016/j.actamat.2005.05.006

    Article  CAS  Google Scholar 

  38. H. Paul, A. Morawiec, E. Bouzy, J.J. Fundenberger, A. Piatkowski, Mater. Sci. Forum. 495–497, 1067–1072 (2005). https://doi.org/10.4028/www.scientific.net/MSF.495-497.1067

    Article  Google Scholar 

  39. K.K. Anand, B. Mahato, C. Haase, A. Kumar, S.G. Chowdhury, Mater. Sci. Eng. A 711, 69–77 (2018). https://doi.org/10.1016/j.msea.2017.11.009

    Article  CAS  Google Scholar 

  40. T. Shan, S. Li, W. Zhang, Z. Xu, Mater. Des. 29, 1810–1816 (2008). https://doi.org/10.1016/j.matdes.2008.03.023

    Article  CAS  Google Scholar 

  41. G. Sun, L. Du, J. Hu, B. Zhang, R.D.K. Misra, Mater. Sci. Eng. A 746, 341–355 (2019). https://doi.org/10.1016/j.msea.2019.01.020

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge support from Key Laboratory of Automotive Power Train and Electronics (Hubei University of Automotive Technology) (ZDK12023B06), Research Project of Hubei Provincial Department of Education (D20221801) and Hubei Provincial Natural Science Foundation of China (2022CFB922).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luhai Liao.

Ethics declarations

Conflict of Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, L., Dai, S., Guo, R. et al. Understanding the Mechanisms of Texture Evolution of a Fe-24Cr-22Ni-7Mo Super Austenitic Stainless Steel During cold Rolling and Annealing. Met. Mater. Int. (2024). https://doi.org/10.1007/s12540-024-01672-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12540-024-01672-2

Keywords

Navigation