Log in

Utilization of ANN for the Prediction of Mechanical Properties in AlP0507-MWCNT-RHA Composites

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Achieving optimal results for enhanced performance of aluminum metal matrix necessitated a substantial amount of effort, as it entailed investing additional resources in terms of time, finances, and rigorous testing. The objective of the proposed work is to examine and analyze the impact of various stir-casting parameters, including the proportion of reinforcement, stirring time, stirring speed, and processing temperature, on the composite AlP0507-RHA-MWCNT. The Taguchi technique is used to identify the optimized parameters for the optimization of toughness, tensile strength, and hardness of stir-casted composite specimens. The analysis of the signal-to-noise ratio (S/N ratio) reveals that the samples containing 6% RHA and 2% MWCNT, subjected to a stirring speed of 100 rpm, a stirring time of 10 min, and a processing temperature of 800 °C, exhibit the highest tensile strength. The study on the S/N ratio reveals that the samples containing 6% RHA and 2% MWCNT, subjected to a stirring speed of 100 rpm, a stirring time of 10 min, and a processing temperature of 850 °C, exhibit favorable hardness values. The S/N ratio indicates that the hybrid composite having 4% RHA and 2% MWCNT stirred for 5 min with 300 rpm and 800 °C processing temperature exhibits the highest toughness. Using ANN, the mean regression coefficient was found to be 0.99477, which was very close to 1, which shows a strong association between expected and observed experimental output.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Abbreviations

AlP0507:

Aluminium P0507 alloy

RHA:

Rice husk ash

MWCNT:

Multiwall carbon nanotube

S/N ratio:

Signal-to-noise ratio

ANN:

Artificial neural network

HAMMC:

Hybrid aluminium metal matrix composites

UTS:

Ultimate tensile strength

ANOVA:

Analysis of variance

MLP:

Multi-layer perceptron

ASTM:

American Society for Testing and Materials

References

  1. V. Bharath, M. Nagaral, V. Auradi, S.A. Kori, Proc. Mat. Sc. 6, 1658 (2014). https://doi.org/10.1016/j.mspro.2014.07.151

  2. Z. Majed, F. Qods, E. Emadoddin, Met. Mater. Int. 29, 108 (2022). https://doi.org/10.1007/s12540-022-01213-9

    Article  CAS  Google Scholar 

  3. I.B. Deshmanya, G.K. Purohit, J. Compos. Mater. 46, 3247 (2012). https://doi.org/10.1177/0021998312437232

    Article  Google Scholar 

  4. D. Kumar, L. Thakur, Met. Mater. Int. 29, 2767 (2023). https://doi.org/10.1007/s12540-023-01395-w

    Article  CAS  Google Scholar 

  5. K.S. Prakash, R.S. Moorthy, P.M. Gopal, V. Kavimani, Int. J. Refractory Metals Hard Mater. 54, 223 (2016). https://doi.org/10.1016/j.ijrmhm.2015.07.037

    Article  CAS  Google Scholar 

  6. J.J. Moses, I. Dinaharan, S.J. Sekhar, Trans. Nonferrous Metals Soci. China (2016). https://doi.org/10.1016/S1003-6326(16)64256-5

    Article  Google Scholar 

  7. J.A.K. Gladstone, N.M. Sheriff, I. Dinaharan, J.D.R. Selvam, Trans. Nonferrous Metals Soc. China 25, 683 (2015). https://doi.org/10.1016/S1003-6326(15)63653-6

  8. G. Dirisenapu, L. Dumpala, P.R. Seelam, Mater. Res. Express 6, 105068 (2019). https://doi.org/10.1088/2053-1591/ab3bf8

    Article  CAS  Google Scholar 

  9. B. Kuldeep, K.P. Ravikumar, S. Pradeep, K.R. Gopi, Mater. Res. Express 6, 036509 (2018). https://doi.org/10.1088/2053-1591/aaf36b

    Article  CAS  Google Scholar 

  10. B. Subramaniam, B. Natarajan, B. Kaliyaperumal, S.J.S. Chelladurai, China Foundry 15, 449 (2018). https://doi.org/10.1007/s41230-018-8105-3

  11. H. Hanizam, M.S. Salleh, M.Z. Omar, A.B. Sulong, J. Market. Res. (2019). https://doi.org/10.1016/j.jmrt.2019.02.008

    Article  Google Scholar 

  12. M. Arulraj, P.K. Palani, L. Venkatesh, J. Adv. Chem. 13, 6038 (2017). https://doi.org/10.24297/jac.v13i11.5774

  13. L. Kumaresan, G. Shanmugavelayutham, S. Surendran, U. Sim, J. Korean Ceram. Soc. 59, 338 (2022). https://doi.org/10.1007/s43207-021-00177-7

  14. D.K. Lee, J. Lim, J. Park, D. Kim, S. Surendran, G. Janani, J.Y. Kim, U. Sim, Mater. Trans. 63, 1345 (2022). https://doi.org/10.2320/matertrans.MT-MB2022011

    Article  CAS  Google Scholar 

  15. D. Merayo, A. Rodríguez-Prieto, A.M. Camacho, Procedia Manufact. 41, 42 (2023). https://doi.org/10.1016/j.promfg.2019.07.027

  16. A. Yamanaka, R. Kamijyo, K. Koenuma, I. Watanabe, T. Kuwabara, Mater. Des. 195, 108970 (2020). https://doi.org/10.1016/j.matdes.2020.108970

    Article  CAS  Google Scholar 

  17. D.A. Otchere, T.O.A. Ganat, R. Gholami, S. Ridha, J. Petrol. Sci. Eng. 200, 108182 (2021). https://doi.org/10.1016/j.petrol.2020.108182

    Article  CAS  Google Scholar 

  18. J. Schmidhuber, Neural Netw. 61, 85 (2015). https://doi.org/10.1016/j.neunet.2014.09.003

    Article  PubMed  Google Scholar 

  19. S. Helal, Computer 51, 14 (2018). https://doi.org/10.1109/MC.2018.3620976

  20. H. Anysz, L. Brzozowski, W. Kretowicz, P. Narloch, Materials 13, 2317 (2020). https://doi.org/10.3390/ma13102317

  21. D. Merayo, A. Rodríguez-Prieto, A.M. Camacho, Materials 13, 5227 (2020). https://doi.org/10.3390/ma13225227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. M. Mohsin, M.A. Qazi, M. Suhaib, M.B.N. Shaikh, M. Misbah, Eng. Res. Express 3, 015002 (2021). https://doi.org/10.1088/2631-8695/abd4f1

  23. I.I. Argatov, Y.S. Chai, Proc. Inst. Mech. Eng. Part J: J. Eng. Tribol. 235, 748 (2021). https://doi.org/10.1177/1350650120925582

  24. M.T. Alam, S. Arif, A.H. Ansari, M.N. Alam, Mater. Res. Express 6, 065002 (2019). https://doi.org/10.1088/2053-1591/ab0871

  25. E. Emagbetere, O.P. Aruoture, F.I. Ashiedu, J. Eng. Studies Res. 25, 16 (2019). https://doi.org/10.29081/jesr.v25i1.37

  26. B. Zahran, Eng. Technol Appl. Sci. Res. 5, 757 (2015). https://doi.org/10.48084/etasr.529

    Article  Google Scholar 

  27. R. Pramod, G.B.V. Kumar, P.S.S. Gouda, A.T. Mathew, Mater. Today Proc. 5, 11376 (2018). https://doi.org/10.1016/j.matpr.2018.02.105

    Article  CAS  Google Scholar 

  28. L. Natrayan, M.S. Kumar, Mater. Today Commun. 25, 101586 (2020). https://doi.org/10.1016/j.mtcomm.2020.101586

    Article  CAS  Google Scholar 

  29. R.U. Baig, S. Javed, A. Kazi, M. Quyam, Mater. Res. Express 7, 076503 (2020). https://doi.org/10.1088/2053-1591/aba0ec

  30. M.A. Alam, H.H. Ya, M. Azeem, P.B. Hussain, M.S. bin Salit, R. Khan, S. Arif, A.H. Ansari, J. Market. Res. 9, 14036 (2020). https://doi.org/10.1016/j.jmrt.2020.09.087

  31. T.K. Kotteda, M. Kumar, P. Kumar, R.B.R. Chekuri, Int. J. Adv. Manufact. Technol. (2022). https://doi.org/10.1007/s00170-022-09847-0

    Article  Google Scholar 

  32. C.E. Okafor, I. Sunday, O.I. Ani, S. Ahmad, S. Mehfuz, Hybrid Adv. (2023). https://doi.org/10.1016/j.hybadv.2023.100026

    Article  Google Scholar 

  33. R. Soundararajan, A. Ramesh, S. Sivasankaran, Mater. Today Proc. 4, 2008 (2017). https://doi.org/10.1016/j.matpr.2017.02.047

  34. S.F. Bartolucci, J. Paras, M.A. Rafiee, J. Rafiee, S. Lee, D. Kapoor, N. Koratkar, Mater. Sci. Eng. A 528, 7933 (2011). https://doi.org/10.1016/j.msea.2011.07.043

Download references

Acknowledgements

The work is not funded by any agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lavish Kumar Singh.

Ethics declarations

Conflict of interests

The authors declare that they do not have any competing interests that can affect or influence the results and publication of the proposed article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srivastava, N., Singh, L.K. & Yadav, M.K. Utilization of ANN for the Prediction of Mechanical Properties in AlP0507-MWCNT-RHA Composites. Met. Mater. Int. 30, 1106–1122 (2024). https://doi.org/10.1007/s12540-023-01552-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-023-01552-1

Keywords

Navigation