Log in

Novel Process for the Formation of Goss Grains by Concentrated Shear Strain on Surface in Inhibitor-Free Silicon Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Recent interest in sustainable development increased demand for efficient transformer to reduce energy consumption. In order to meet the high demand for efficient transformer, inefficient batch annealing manufacture for grain-oriented silicon steel, which is core material of transformer, should be improved. Therefore, novel process for achieving about 90% columnar Goss grains without an inhibitor in continuous line, which differs from the conventional batch process, is herein described. Fe-2.0%Si–C alloys were cold rolled and subsequently partially decarburized in a wet hydrogen gas and these steps are repeated several times. In this process, the sheet is divided into surface layer (α ferrite) and interior (pearlite-like structure + α ferrite). When two-layer sheet is cold rolled, {111} < 112 > is formed by concentrated shear strain and it is developed into Goss seed. During decarburization, Goss grains within surface layer grow inward as columnar grain, retaining the Goss texture of about 90%. Concentrated shear strain on surface layer was formed by large difference of strength between the surface and interior. By this difference, large stored energy difference between Goss and {111} < 112 > , {411} < 148 > is acquired, and this lead to the growth of Goss grains. Driving force for forming the Goss grains is concentrated shear strain on the surface layer. It has been verified that this novel process has a vast potential for making grain-oriented silicon steel by continuous process.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P.A. Østergaard, N. Duic, Y. Noorollahi, H. Mikulcic, S. Kalogirou, Renew. Energy 146, 2430–2437 (2020). https://doi.org/10.1016/j.renene.2019.08.094

    Article  Google Scholar 

  2. B. Akbas, A.S. Kocaman, D. Nock, P.A. Trotter, Renew. Sust. Energ. Rev. 156, 111935 (2022). https://doi.org/10.1016/j.rser.2021.111935

    Article  Google Scholar 

  3. B.G. Kim, S.D. Part, S.S. Kim, Met. Mater. Int. 10, 559–565 (2004). https://doi.org/10.1007/BF03027419

    Article  CAS  Google Scholar 

  4. P. Machura, Q. Li, Renew. Sust. Energ. Rev. 104, 209–234 (2019). https://doi.org/10.1016/j.rser.2019.01.027

    Article  Google Scholar 

  5. H. Ichou, D. Roger, M. Rossi, T. Belgrand, R. Lemaitre, J. Magn. Magn. Mater. 504, 166658 (2020). https://doi.org/10.1016/j.jmmm.2020.166658

    Article  CAS  Google Scholar 

  6. H.-K. Park, M.-S. Han, C.-H. Chang, J.-T. Park, C.-S. Park, H.-D. Joo, Met. Mater. Int. 26, 321–325 (2020). https://doi.org/10.1007/s12540-019-00331-1

    Article  CAS  Google Scholar 

  7. X. Li, M. Wang, Y. Bao, J. Gong, X. Wang, P. Weiguang, Met. Mater. Int. 25, 1586–1592 (2019). https://doi.org/10.1007/s12540-019-00280-9

    Article  CAS  Google Scholar 

  8. K. Price, B. Goode, D. Power, Ironmak. Steelmak. 43, 636–641 (2016). https://doi.org/10.1080/03019233.2016.1211122

    Article  CAS  Google Scholar 

  9. J. Wang, J. Li, X. Mi, S. Zhang, A.A. Volinsky, Met. Mater. Int. 18, 531–537 (2012). https://doi.org/10.1007/s12540-012-3024-0

    Article  CAS  Google Scholar 

  10. Y. Wu, F. Li, T. Wang, D. Zhao, H. Huang, H. Li, S. Zheng, Met. Mater. Int. 23, 618–624 (2017). https://doi.org/10.1007/s12540-017-6519-x

    Article  CAS  Google Scholar 

  11. H.-Y. Song, H.-T. Liu, J.J. Jonas, G.-D. Wang, Mater. Des. 131, 167–176 (2017). https://doi.org/10.1016/j.matdes.2017.06.016

    Article  CAS  Google Scholar 

  12. Y. Hayakawa, Sci. Technol. Adv. Mater. 18, 480–497 (2017). https://doi.org/10.1080/14686996.2017.1341277

    Article  CAS  Google Scholar 

  13. Y. Jiao, P. Yang, N. Zhang, W. Mao, Steel. Res. Int. 87, 1417–1425 (2016). https://doi.org/10.1002/srin.201500423

    Article  CAS  Google Scholar 

  14. H. Mun, N.H. Heo, Y. Koo, ISIJ Int. 58, 765–768 (2018). https://doi.org/10.2355/isi**ternational.ISIJINT-2017-662

    Article  CAS  Google Scholar 

  15. T. Tomida, N. Sano, K. Ueda, K. Fujiwara, N. Takahashi, J. Magn. Magn. Mater. 254–255, 315–317 (2003). https://doi.org/10.1016/S0304-8853(02)00810-7

    Article  Google Scholar 

  16. T. Tomida, T. Tanaka, ISIJ Int. 35, 548–556 (1995). https://doi.org/10.2355/isi**ternational.35.548

    Article  CAS  Google Scholar 

  17. S.M. Park, Y.M. Koo, B.Y. Shim, D.N. Lee, Met. Mater. Int. 23, 220–232 (2017). https://doi.org/10.1007/s12540-017-6042-0

    Article  CAS  Google Scholar 

  18. T. Tomida, J. Appl. Phys. 79, 5443–5445 (1996). https://doi.org/10.1063/1.362332

    Article  CAS  Google Scholar 

  19. L. Zhang, P. Yang, J. Wang, W. Mao, J. Mater. Sci. 51, 8087–8097 (2016). https://doi.org/10.1007/s10853-016-0078-2

    Article  CAS  Google Scholar 

  20. T.-W. Na, H.-K. Park, C.-S. Park, H.-D. Joo, J.-T. Park, H.N. Han, N.-M. Hwang, Met. Mater. Int. 24, 1369–1375 (2018). https://doi.org/10.1007/s12540-018-0145-0

    Article  CAS  Google Scholar 

  21. J. Harase, R. Shimizu, J.-K. Kim, J. SooWoo, Met. Mater. 5, 429–435 (1999). https://doi.org/10.1007/BF03026155

    Article  CAS  Google Scholar 

  22. S. Lee, K.J. Ko, S.-J. Kim, J.T. Park, Mater. Charact. 167, 110450 (2020). https://doi.org/10.1016/j.matchar.2020.110450

    Article  CAS  Google Scholar 

  23. H. Xu, Y. Xu, Y. He, H. Jiao, S. Yue, J. Li, J. Magn. Magn. Mater. 494, 165755 (2020). https://doi.org/10.1016/j.jmmm.2019.165755

    Article  CAS  Google Scholar 

  24. Y. Gao, G. Xu, X. Guo, G. Li, Y. Wang, J. Magn. Magn. Mater. 507, 166849 (2020). https://doi.org/10.1016/j.jmmm.2020.166849

    Article  CAS  Google Scholar 

  25. K. Ushioda, W.B. Hutchinson, ISIJ Int. 29, 862–867 (1989). https://doi.org/10.2355/isi**ternational.29.862

    Article  CAS  Google Scholar 

  26. M. Mehdi, Y. He, E.J. Hilinski, L.A.I. Kestens, A. Edrisy, Steel. Res. Int. 90, 1800582 (2019). https://doi.org/10.1002/srin.201800582

    Article  CAS  Google Scholar 

  27. T. Ros, D. Ruiz, Y. Houbaert, R.E. Vandenberghe, J. Magn. Magn. Mater. 242–245, 208–211 (2002). https://doi.org/10.1016/S0304-8853(01)01165-9

    Article  Google Scholar 

  28. T. Kumano, T. Haratani, Y. Ushigami, ISIJ Int. 43, 736–745 (2003). https://doi.org/10.2355/isi**ternational.43.736

    Article  CAS  Google Scholar 

  29. Y. Ushigami, T. Kubota, N. Takahashi, ISIJ Int. 38, 553–558 (1998). https://doi.org/10.2355/isi**ternational.38.553

    Article  CAS  Google Scholar 

  30. S. Takajo, C.C. Merriman, S.C. Vogel, D.P. Field, Acta Mater. 166, 100–112 (2019). https://doi.org/10.1016/j.actamat.2018.11.054

    Article  CAS  Google Scholar 

  31. H. Jiao, Y. Xu, L. Zhao, R.D.K. Misra, Y. Tang, D. Liu, Y. Hu, M. Zhao, M. Shen, Acta Mater. 199, 311–325 (2020). https://doi.org/10.1016/j.actamat.2020.08.048

    Article  CAS  Google Scholar 

  32. Y. Zhang, J. Yang, J. Qin, H. Zhao, Mater. Res. Express 8, 016303 (2021). https://doi.org/10.1088/2053-1591/abdb4f

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Jungkyun Na and Semin Park contributed equally to this work. Equipment from POSCO was used to carry out this study. The authors acknowledge the facilities and financial support provided by POSCO for the experimental works.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangmo Koo.

Ethics declarations

Conflict of interest

The authors report there are no competing interests to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Na, J., Park, S., Ko, Hs. et al. Novel Process for the Formation of Goss Grains by Concentrated Shear Strain on Surface in Inhibitor-Free Silicon Steel. Met. Mater. Int. 29, 821–832 (2023). https://doi.org/10.1007/s12540-022-01266-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-022-01266-w

Keywords

Navigation