Log in

Deformation Behavior and Cavitation of AA2017 at Elevated Temperatures

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

In this work, deformation behavior of AA2017-T4 at elevated temperatures was studied employing uni-axial tensile and creep experiments. Tensile tests were carried out at temperatures varying 150–500 °C under different strain rates then, a combination of neural network and dynamic material modeling was utilized to construct the processing maps. Furthermore, creep experiments were conducted to assess inelastic deformation behavior of the alloy at temperatures between 150 and 225 °C and stresses in the range of 150 to 230 MPa. Microstructural evaluations were carried out for determination of microstructural changes and formation of voids and cavities within the samples. The results showed that dynamic precipitation could occur during deformation at temperatures 175–225 °C leading to negative strain-rate sensitivity at true strains larger than 0.1. The main softening process was detected as dynamic recovery at temperatures higher than 250 °C however, dynamic recrystallization could also occur at low strain rates and temperatures higher than 400 °C. The activation energies for hot deformation were computed as 380.6 kJ mole−1 at 250–350 °C and it was reduced to 224.7 kJ mole−1 for the range of 350–500 °C. This showed the hard particle could significantly change rate of flow softening. The creep activation energy was determined as 169.5 kJ while the stress-exponent varied between 5.5 and 10.1 at temperatures between 150 and 225 °C indicating that dynamic recovery controlled by dislocation climb could be the governing creep mechanism.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. R. Carmona, Q. Zhu, C.M. Sellars, J.H. Beynon, Controlling mechanisms of deformation of AA5052 aluminium alloy at small strains under hot working conditions. Mater. Sci. Eng. A 393, 157–163 (2005)

    Article  Google Scholar 

  2. C.M. Cepeda-Jiménez, O.A. Ruano, M. Carsí, F. Carreño, Study of hot deformation of an Al–Cu–Mg alloy using processing maps and microstructural characterization. Mater. Sci. Eng. A 552, 530–539 (2012)

    Article  Google Scholar 

  3. N. Nayan, N.P. Gurao, S.V.S. Narayana Murty, A.K. Jha, B. Pant, S.C. Sharma, K.M. George, Microstructure and micro-texture evolution during large strain deformation of an aluminium–copper–lithium alloy AA 2195. Mater. Des. 65, 862–868 (2015)

    Article  CAS  Google Scholar 

  4. X.H. Fan, M. Li, D.Y. Li, Y.C. Shao, S.R. Zhang, Y.H. Peng, Dynamic recrystallisation and dynamic precipitation in AA6061 aluminium alloy during hot deformation. Mater. Sci. Technol. 30, 1263–1272 (2014)

    Article  CAS  Google Scholar 

  5. P. Cavaliere, Hot and warm forming of 2618 aluminium alloy. Light Metals 2, 247–252 (2002)

    Article  Google Scholar 

  6. S. Serajzadeh, S.R. Motlagh, S.M.H. Mirbagheri, J.M. Akhgar, Deformation behavior of AA2017-SiCp in warm and hot deformation regions. Mater. Des. 67, 318–323 (2015)

    Article  CAS  Google Scholar 

  7. S. Spigarelli, M. Cabibbo, E. Evangelist, A study of the hot formability of an Al–Cu–Mg–Zr alloy. J. Mater. Sci. 38, 81–88 (2003)

    Article  CAS  Google Scholar 

  8. X. Huang, H. Zhang, Y. Han, W. Wu, J. Chen, Hot deformation behavior of 2026 aluminum alloy during compression at elevated temperature. Mater. Sci. Eng. A 527, 485–490 (2010)

    Article  Google Scholar 

  9. H.Z. Li, H.J. Wang, X.P. Liang, H.T. Liu, Y. Liu, X.M. Zhang, Hot deformation and processing map of 2519A aluminum alloy. Mater. Sci. Eng. A 528, 1548–1552 (2011)

    Article  Google Scholar 

  10. J.S. **, X. Wang, H.E. Hu, J. **a, High-temperature deformation behavior and processing map of 7050 aluminum alloy. Met. Mater. Int. 18, 69–75 (2012)

    Article  CAS  Google Scholar 

  11. X.L. Xu, L.H. Zhan, Y.G. Li, M.H. Huang, Constitutive modelling and springback prediction for creep age forming of 2124 aluminium alloy. Mater. Sci. Technol. 29, 1139–1143 (2013)

    Article  CAS  Google Scholar 

  12. Y.L. Yang, L.H. Zhan, X.L. Xu, Constitutive modeling for Al–Cu–Mg alloy in creep aging process. Strength Mater. 48, 23–31 (2016)

    Article  CAS  Google Scholar 

  13. Z.W. Du, G.J. Wang, X.L. Han, Z.H. Li, B.H. Zhu, X. Fu, Y.A. Zhang, B.Q. **ong, Microstructural evolution after creep in aluminum alloy 2618. J. Mater. Sci. 47, 2541–2547 (2012)

    Article  CAS  Google Scholar 

  14. Y.C. Lin, Y.-C. **a, Y.-Q. Jiang, H.-M. Zhou, L.-T. Li, Precipitation hardening of 2024-T3 aluminum alloy during creep aging. Mater. Sci. Eng. A 565, 420–429 (2013)

    Article  CAS  Google Scholar 

  15. J. Majimel, G. Molenat, M.J. Casanove, D. Schuster, A. Denquin, G. Lapasset, Investigation of the evolution of hardening precipitates during thermal exposure or creep of a 2650 aluminium alloy. Scripta Mater. 46, 113–119 (2002)

    Article  CAS  Google Scholar 

  16. Y. Sun, W.D. Zeng, Y.Q. Zhao, Y.L. Qi, X. Ma, Y.F. Han, Development of constitutive relationship model of Ti600 alloy using artificial neural network. Comput. Mater. Sci. 48, 686–691 (2010)

    Article  CAS  Google Scholar 

  17. R.M. Golden, Mathematical Methods for Neural Network Analysis and Design (MIT Press, Cambridge, 1996)

    Google Scholar 

  18. Y. Prasad, S. Sasidhara, Hot Working Guide: A Compendium of Processing Maps (ASM International, Cleveland, 1997)

    Google Scholar 

  19. M.W. Zandbergen, Q. Xu, A. Cerezo, G.D.W. Smith, Study of precipitation in Al–Mg–Si alloys by atom probe tomography I Microstructural changes as a function of ageing temperature. Acta Materialia 101, 136–148 (2015)

    Article  CAS  Google Scholar 

  20. L. Djapic Oosterkamp, A. Ivankovic, G. Venizelos, High strain rate properties of selected aluminium alloys. Mater. Sci. Eng. A. 278, 225–235 (2000)

    Article  Google Scholar 

  21. N. **, H. Zhang, Y. Han, W. Wu, J. Chen, Hot deformation behavior of 7150 aluminum alloy during compression at elevated temperature. Mater. Charact. 60, 530–536 (2009)

    Article  CAS  Google Scholar 

  22. J.G. Morris, B.J. Roopchand, The warm and hot working of dynamically strain ageable aluminum alloys. Mater. Sci. Eng. 17, 77–80 (1975)

    Article  CAS  Google Scholar 

  23. Y. Jiang, Y.C. Lin, C. Phaniraj, Y. **a, H. Zhou, Creep and creep-rupture behavior of 2124-T851 aluminum alloy. High Temp. Mater. Processes (London) 32, 533–540 (2013)

    Article  CAS  Google Scholar 

  24. J.P. Poirier, Creep of Crystals (Cambridge University Press, Cambridge, 1985)

    Book  Google Scholar 

  25. M.E. Kassner, T.A. Hayes, Creep cavitation in metals. Int. J. Plast. 19, 1715–1748 (2003)

    Article  Google Scholar 

  26. L. Li, Y.C. Lin, H. Zhou, Y. Jiang, Modeling the high-temperature creep behaviors of 7075 and 2124 aluminum alloys by continuum damage mechanics model. Comput. Mater. Sci. 73, 72–78 (2013)

    Article  Google Scholar 

  27. C.K.L. Davies, P. Nash, R.N. Stevens, The effect of volume fraction of precipitate on Ostwald ripening. Acta Metall. 28, 179–189 (1980)

    Article  CAS  Google Scholar 

  28. S. Li, S.S. **, Z. Huang, Cavity behavior of fine-grained 5A70 aluminum alloy during superplastic formation. Metals (2018). https://doi.org/10.3390/met8121065

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Serajzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaghefi, E., Serajzadeh, S. Deformation Behavior and Cavitation of AA2017 at Elevated Temperatures. Met. Mater. Int. 27, 4368–4382 (2021). https://doi.org/10.1007/s12540-020-00755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00755-0

Keywords

Navigation