Log in

Study on Corrosion Resistance and Bio-Tribological Behavior of Porous Structure Based on the SLM Manufactured Medical Ti6Al4V

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Titanium and its alloy, especially Ti6Al4V is one of the most widely used metal due to its excellent properties. Selective laser melting, which is known as additive manufacturing is considered as a suitable method to manufacture Ti6Al4V parts. To print a more analogous Ti6Al4V artificial bone, laser power was changed by taking volume porosity, corrosion resistance and wear resistance into consideration. The testing results showed that sample printed using 200 W showed a relative optimal corrosion resistance and volume porosity in all these five samples (the value of corrosion voltage is − 0.352 V), while it showed the best bio-tribological behavior, and its wear volume is as low as 5.90 μm3. Summarize the 5 sets of experimental samples, the Ti6Al4V part printed using 180–200 W were the most prominent in the test, its overall performance was, indeed, best fit to print artificial Ti6Al4V bone, because it is similar to bone, there are a large number of microporous structures.

Graphic Abstract

Corrosion mechanism At the oxide film/metal interface, the metal undergoes an ionization reaction to form M2+, the O2 molecule forms an atomic state of oxygen by physical adsorption on the metal surface, and then chemically adsorbs to form O, and is bonded to the oxide crystal lattice in an O2− state to form a new oxide which hinders further oxidation. The presence of voids also reduces the corrosion resistance of the substrate material due to the increased corrosion area, and corrosive ions are more likely to penetrate into corrosive materials. Wear mechanism Ploughing wear and oxidation erode can be seen on the surface while ploughing wear was the most significant mechanism. From the EDS results, it can be found that the abrasive dust was mainly composed of TiO2. This phenomenon was due to the fact that Ti is a kind of active metal and it is easily oxidized. That is the reason why oxidation erode can also be found on the surface and it further explained the equivalent circuit given in corrosion behavior section.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. L. Olmos, D. Bouvard, J.L. Cabezas-Villa, J. Lemus-Ruiz, O. Jimenez, D. Arteaga, Met. Mater. Int. 25, 669–682 (2019)

    Article  CAS  Google Scholar 

  2. G. He, J. Eckert, Q.L. Dai, M.L. Sui, W. Loser, M. Hagiwara, E. Ma, Biometal 24, 5115–5120 (2003)

    CAS  Google Scholar 

  3. W.D. Brewer, R.K. Bird, T.A. Wallace, Mater. Sci. Eng. A 243, 299–304 (1998)

    Article  Google Scholar 

  4. G.B. Cho, K.W. Kim, H.J. Ahn, K.K. Cho, T.H. Nam, J. Alloys Compd. 449, 317–321 (2008)

    Article  CAS  Google Scholar 

  5. S.E. Haghighi, H.B. Lu, G.Y. Jian, G.H. Cao, D. Habibi, L.C. Zhang, Mater. Des. 76, 47–54 (2015)

    Article  CAS  Google Scholar 

  6. Z.Y. Li, X.L. Liu, G.Q. Wu, Z. Huang, Met. Mater. Int. 25, 64–70 (2019)

    Article  CAS  Google Scholar 

  7. I.M. Pohrelyuk, V.M. Fedirko, O.V. Tkachuk, R.V. Proskurnyak, Corros. Sci. 66, 392–398 (2013)

    Article  CAS  Google Scholar 

  8. V.M.R. Amaya, A.J.M. Sanches, Z. Boukha, F.J. Botana, Corros. Sci. 56, 36–48 (2012)

    Article  Google Scholar 

  9. S. Piazza, G.L. Biundo, M.C. Romano, C. Sunseri, F.D. Quarto, Corros. Sci. 40, 1087–1108 (1998)

    Article  CAS  Google Scholar 

  10. J.R. Chen, W.T. Tsai, Electrochim. Acta 56, 1746–1751 (2011)

    Article  CAS  Google Scholar 

  11. V.A. Alves, R.Q. Reis, I.C.B. Santos, D.G. Souza, T.F. Goncalves, M.A. Pereira-da-Silva, A. Rossi, L.A. Silva, Corros. Sci. 51, 2473–2482 (2009)

    Article  CAS  Google Scholar 

  12. J.E.G. Gonzalez, R.J.C. Mirza, J. Electroanal. Chem. 471, 109–115 (1999)

    Article  CAS  Google Scholar 

  13. C.E.B. Marino, L.H. Macaro, J. Electroanal. Chem. 568, 115–120 (2004)

    Article  CAS  Google Scholar 

  14. N. Ibris, J.C. Mirza-Rosca, J. Electroanal. Chem. 526, 53–62 (2002)

    Article  CAS  Google Scholar 

  15. R.S. Razavi, M. Salehi, M. Ramazani, H.C. Man, Corros. Sci. 51, 2324–2329 (2009)

    Article  CAS  Google Scholar 

  16. E. Galvanetto, F.P. Galliano, A. Fossati, F. Borgioli, Corros. Sci. 44, 1593–1606 (2002)

    Article  CAS  Google Scholar 

  17. F.E.T. Heakal, A.A. Ghoneim, A.S. Mogoda, K. Award, Corros. Sci. 53, 2728–2737 (2011)

    Article  Google Scholar 

  18. M. Geetha, U.K. Mudali, A.K. Gogia, R. Asokamani, B. Raj, Corros. Sci. 46, 877–892 (2004)

    Article  CAS  Google Scholar 

  19. H. Attar, L. Löber, A. Funk, M. Calin, L.C. Zhang, K.G. Prashanth, S. Scudino, Y.S. Zhang, J. Eckert, Mater. Sci. Eng. A 625, 350–356 (2015)

    Article  CAS  Google Scholar 

  20. Y.J. Liu, X.P. Li, L.C. Zhang, T.B. Sercombe, Mater. Sci. Eng. A 642, 268–278 (2015)

    Article  CAS  Google Scholar 

  21. L.C. Zhang, D. Klemm, J. Eckert, Y.L. Hao, T.B. Sercombe, Scr. Mater. 65, 21–24 (2011)

    Article  CAS  Google Scholar 

  22. H. Attar, K.G. Prashanth, A.K. Chaubey, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Mater. Lett. 142, 38–41 (2015)

    Article  CAS  Google Scholar 

  23. H. Attar, M. Bönisch, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Acta Mater. 76, 13–22 (2014)

    Article  CAS  Google Scholar 

  24. H. Attar, M. Calin, L.C. Zhang, S. Scudino, J. Eckert, Mater. Sci. Eng. A 593, 170–177 (2014)

    Article  CAS  Google Scholar 

  25. N.W. Dai, L.C. Zhang, J.X. Zhang, Q.M. Chen, M.L. Wu, Corros. Sci. 102, 484–489 (2016)

    Article  CAS  Google Scholar 

  26. Y. Chen, J. Zhang, N. Dai, P. Qin, H. Attar, L.C. Zhang, Electrochim. Acta 232, 89–97 (2017)

    Article  CAS  Google Scholar 

  27. Y. Zhang, J. Li, W. Zhang, Characterization of Minerals, Metals, and Materials. (Springer Cham, 2018) pp. 61–72

  28. B.J. Zhao, H. Wang, N. Qiao, C. Wang, M. Hu, Mater. Sci. Eng. C 70, 832–841 (2017)

    Article  CAS  Google Scholar 

  29. K. Geenen, A. Röttger, W. Theisen, Mater. Corros. 68, 764–775 (2017)

    Article  CAS  Google Scholar 

  30. J. Han, M. Wu, Y. Ge, J. Wu, Int. J. Adv. Manuf. Technol. 95, 9–12 (2018)

    Google Scholar 

  31. R. Zdero, Z.S. Bagheri, M. Rezaey, E.H. Schemitsch, H. Bougherara, Open Biomed. Eng. J. 8, 28–34 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study is supported by the Ministry of Education’s Joint Fund for Pre-research Project (No. 6141A0221).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peipei Lu or Mei** Wu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, P., Wu, M., Liu, X. et al. Study on Corrosion Resistance and Bio-Tribological Behavior of Porous Structure Based on the SLM Manufactured Medical Ti6Al4V. Met. Mater. Int. 26, 1182–1191 (2020). https://doi.org/10.1007/s12540-019-00506-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00506-w

Keywords

Navigation