Log in

Low Ionosphere Density Above the Earthquake Epicentre Region of Mw 7.2, El Mayor–Cucapah Earthquake Evident from Dense CORS Data

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

In this study, a potential precursor related to the Mw 7.2 Mexico earthquake on April 4, 2010, was investigated by analysing ionosphere total electron content (TEC) fluctuations derived from Global Positioning System data collected from 200 Continuously Operating Reference Stations (CORS) in Mexico and the western United States. Abnormal TEC variations were statistically identified within a 30-day time frame prior to the earthquake event. The two nearest stations at distances of 45 km and 53 km from the epicentre (IID2 and P500) were employed as benchmarks for the detection of anomalous days and time in TEC variations. Notably, a distinctive anomaly was observed on April 2, 2010, a couple of days before the earthquake, featuring a TEC unit deviation of 3–4 (TECU) from the baseline (15-day average value). Maximum TEC deviations (the time of anomaly) were recorded at 14.75 UTC on April 2, 2010. The analysis indicated a decrease in TEC concentration at a rate of 0.0017 TECU per kilometre towards the epicentre, supported by data collected from 200 CORS stations in the region. Spatial interpolation of TEC data from these stations further highlighted a distinct zone of low TEC density in the ionosphere above the epicentre at 14.75 UTC. This low TEC density zone was concentrated in areas with higher density points of geological structures (faults). The study suggests that the low TEC zone may be detected before the earthquake within proximity of the earthquake preparation zone above the epicentre.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Source: European Space Agency (ESA) (Color figure online)

Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or used during the study including GPS raw and GPS processed data are available from the corresponding author upon reasonable request.

References

  • Abba, I., Abidin, W. A. W. Z., Masri, T., **, K. H., Muhammad, M. S., & Pai, B. V. (2015). Ionospheric effects on GPS signal in Low-Latitude region: A case study review of south east Asia and Africa. Nigerian Journal of Technology, 34(3), 523–529. https://doi.org/10.4314/njt.v34i3.14

    Article  Google Scholar 

  • Adewale, A. O., Oyeyemi, E. O., Adeniyi, J. O., Adeloye, A. B., & Oladipo, O. A. (2011). Comparison of total electron content predicted using the IRI-2007 model with GPS observation along Lagos. Niger. Indian J. Radio Space Phys., 40, 21–25. http://nopr.niscpr.res.in/handle/123456789/11194

  • Ammirati, J. B., Mackaman-Lofland, C., Zeckra, M., & Gobron, K. (2022). Stress transmission along mid-crustal faults highlighted by the 2021 Mw 6.5 San Juan (Argentina) earthquake. Science and Reports, 12, 17939. https://doi.org/10.1038/s41598-022-22752-6

    Article  CAS  Google Scholar 

  • Becker, T. W., Hardebeck, J. L., & Anderson, G. (2005). Constraints on fault slip rates of the southern California plate boundary from GPS velocity and stress inversions. Geophysical Journal International, 160(2), 634–650. https://doi.org/10.1111/j.1365-246X.2004.02528.x

    Article  Google Scholar 

  • Bennett, R. A., Rodi, W., & Reilinger, R. E. (1996). Global positioning system constraints on fault slip rates in southern California and northern Baja, Mexico. J. Geophys. Res. Solid Earth, 101(B10), 21943–21960. https://doi.org/10.1029/96JB02488

    Article  Google Scholar 

  • Bhadran, A., Sreejith, K. M., Girishbai, D., Duarah, B. P., Agrawal, R., & Gopinath, G. (2022). An appraisal of ground failure and hydrogeological changes associated with the April 28 2021 Mw 6 Sonitpur earthquake, Assam, India, using field evidences and InSAR measurements. Seismological Research Letters, 93(3), 1440–1451. https://doi.org/10.1785/0220210257

    Article  Google Scholar 

  • Blewitt, G. (1990). An automatic editing algorithm for GPS data. Geophysical Research Letters, 17(3), 199–202. https://doi.org/10.1029/GL017i003p00199

    Article  Google Scholar 

  • Boyarchuk, K. A., Dokukin, V. S., Oraevsky, V. N., Salikhov, R. S., Vladimirov, A. V., Sennik, N. A., & Sleta, A. V. (2003, November). Small satellites constellation for monitoring of natural and man-made disasters. In International Conference on Recent Advances in Space Technologies, 2003. RAST’03. Proceedings of (pp. 504–508). IEEE. https://doi.org/10.1109/RAST.2003.1303967

  • Calais, E., & Minster, J. B. (1998). GPS, earthquakes, the ionosphere, and the space Shuttle. Physics of the Earth and Planetary Interiors, 105(3–4), 167–181. https://doi.org/10.1016/S0031-9201(97)00089-7

    Article  Google Scholar 

  • Chakraborty, M., Singh, A. K., & Rao, S. S. (2021). Solar flares and geomagnetic storms of September 2017: Their impacts on the TEC over 75 E longitude sector. Advances in Space Research, 68(4), 1825–1835. https://doi.org/10.1016/j.asr.2021.04.012

    Article  Google Scholar 

  • Davies, K., & Baker, D. M. (1965). Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. Journal of Geophysical Research, 70(9), 2251–2253. https://doi.org/10.1029/JZ070i009p02251

    Article  Google Scholar 

  • Davies, K., & Hartmann, G. K. (1997). Studying the ionosphere with the global positioning system. Radio Science, 32(4), 1695–1703. https://doi.org/10.1029/97RS00451

    Article  Google Scholar 

  • DeMets, C., Márquez-Azúa, B., & Cabral-Cano, E. (2014). A new GPS velocity field for the Pacific plate-Part 1: Constraints on plate motion, intraplate deformation, and the viscosity of Pacific basin asthenosphere. Geophysical Journal International, 199(3), 1878–1899. https://doi.org/10.1093/gji/ggu341

    Article  Google Scholar 

  • Dimitar, O., Sergey, P., Alexey, R., Alexander, R., Konstantin, T., Dmitri, D., & Patrick, T. (2011). Atmosphere-ionosphere response to the M9 Tohoku earthquake revealed by multi-instrument space-borne and ground observations: Preliminary results. Earthquake Science, 24, 1–7.

    Google Scholar 

  • Dobrovolsky, I. P., Zubkov, S. I., & Miachkin, V. I. (1979). Estimation of the size of earthquake preparation zones. Pure and Applied Geophysics, 117, 1025–1044. https://doi.org/10.1007/BF00876083

    Article  Google Scholar 

  • Dogan, U., Ergintav, S., Skone, S., Arslan, N. İY. A. Z. İ, & Oz, D. (2011). Monitoring of the ionosphere TEC variations during the August 17 1999 Izmit earthquake using GPS data. Earth, Planets and Space, 63, 1183–1192. https://doi.org/10.5047/eps.2011.07.020

    Article  Google Scholar 

  • Elders, W. A., Rex, R. W., Robinson, P. T., Biehler, S., & Meidav, T. (1972). Crustal spreading in southern California: The Imperial Valley and the Gulf of California formed by the rifting apart of a continental plate. Science, 178(4056), 15–24. https://doi.org/10.1126/science.178.4056.15

    Article  CAS  Google Scholar 

  • Freund, F. (2011). Pre-earthquake signals: Underlying physical processes. Journal of Asian Earth Sciences, 41(4–5), 383–400. https://doi.org/10.1016/j.jseaes.2010.03.009

    Article  Google Scholar 

  • Freund, F. T., Kulahci, I. G., Cyr, G., Ling, J., Winnick, M., Tregloan-Reed, J., & Freund, M. M. (2009). Air ionisation at rock surfaces and pre-earthquake signals. J. Atmos. Solar-Terr. Phys., 71(17–18), 1824–1834. https://doi.org/10.1016/j.jastp.2009.07.013

    Article  CAS  Google Scholar 

  • Freund, F. T., Takeuchi, A., & Lau, B. W. (2006). Electric currents streaming out of stressed igneous rocks–A step towards understanding pre-earthquake low frequency EM emissions. Phys. Chem. Earth Parts a/b/c, 31(4–9), 389–396. https://doi.org/10.1016/j.pce.2006.02.027

    Article  Google Scholar 

  • Gaivoronskaya, T. V. (1991). The seismic activity effects on the ionosphere. Rev. Prep. Izm. Mos, 25(36), 983–991.

    Google Scholar 

  • Garner, T. W., GaussiranIi, T. L., Tolman, B. W., Harris, R. B., Calfas, R. S., & Gallagher, H. (2008). Total electron content measurements in ionospheric physics. Advances in Space Research, 42(4), 720–726. https://doi.org/10.1016/j.asr.2008.02.025

    Article  Google Scholar 

  • Gastil, R. G., Phillips, R. P., & Allison, E. C. (1975). Reconnaissance geology of the state of Baja California. Geolo. Soc. Am. https://doi.org/10.1130/MEM140-p1

    Article  Google Scholar 

  • Ghimire, B. D., & Chapagain, N. P. (2022). Ionospheric anomalies due to Nepal earthquake-2015 as observed from GPS-TEC data. Geomagnetizm i Aeronomiya, 62(4), 460–473. https://doi.org/10.1134/S0016793222040041

    Article  Google Scholar 

  • Gold, P. O., Behr, W. M., Fletcher, J. M., Rockwell, T. K., & Figueiredo, P. M. (2020). Time-invariant late Quaternary slip rates along the Agua Blanca Fault, northern Baja California. Mexico. Tecton., 39(9), e2019TC005788. https://doi.org/10.1029/2019TC005788

    Article  Google Scholar 

  • Gonzalez-Ortega, A., Fialko, Y., Sandwell, D., Alejandro Nava-Pichardo, F., Fletcher, J., Gonzalez-Garcia, J., Lipovsky, B., Floyd, M., & Funning, G. (2014). El Mayor–Cucapah (Mw7.2) earthquake: Early near-field post-seismic deformation from InSAR and GPS observations. J. Geophys. Res. Solid Earth, 119, 1482–1497. https://doi.org/10.1002/2013JB010193

    Article  Google Scholar 

  • Gwal, A. K., Jain, S. K., Panda, G., & Gujar, Y. S. (2011). Study of ionospheric perturbations during strong seismic activity by correlation analysis method. Asian J. Earth Sci., 4(4), 214

    Article  Google Scholar 

  • Han, P., Hattori, K., Xu, G., Ashida, R., Chen, C. H., Febriani, F., & Yamaguchi, H. (2015). Further investigations of geomagnetic diurnal variations associated with the 2011 off the Pacific coast of Tohoku earthquake (Mw 9.0). Journal of Asian Earth Sciences, 114, 321–326. https://doi.org/10.1016/j.jseaes.2015.02.022

    Article  Google Scholar 

  • Hao, Y. Q., **ao, Z., & Zhang, D. H. (2013). Teleseismic magnetic effects (TMDs) of 2011 Tohoku earthquake. J. Geophys. Res. Space Phys., 118(6), 3914–3923. https://doi.org/10.1002/jgra.50326

    Article  Google Scholar 

  • Hauksson, E., Stock, J., Hutton, K., Yang, W., Vidal-Villegas, J. A., & Kanamori, H. (2011). The 2010 M w 7.2 El Mayor–Cucapah earthquake sequence, Baja California, Mexico and southernmost California, USA: Active seismotectonics along the Mexican pacific margin. Pure and Applied Geophysics, 168, 1255–1277. https://doi.org/10.1007/s00024-010-0209-7

    Article  Google Scholar 

  • Heki, K., & Enomoto, Y. (2013). Preseismic ionospheric electron enhancements revisited. J. Geophys. Res. Space Phys., 118(10), 6618–6626. https://doi.org/10.1002/jgra.50578

    Article  Google Scholar 

  • Heki, K., & Enomoto, Y. (2015). Mw dependence of the preseismic ionospheric electron enhancements. J. Geophys. Res. Space Phys., 120(8), 7006–7020. https://doi.org/10.1002/2015JA021353

    Article  Google Scholar 

  • Heki, K., Otsuka, Y., Choosakul, N., Hemmakorn, N., Komolmis, T., & Maruyama, T. (2006). Detection of ruptures of Andaman fault segments in the 2004 great Sumatra earthquake with coseismic ionospheric disturbances. Journal of Geophysical Research, 111, (B9). B09313. https://doi.org/10.1029/2005JB004202

    Article  Google Scholar 

  • Hirabayashi, C. K., Rockwell, T. K., Wesnousky, S. G., Stirling, M. W., & Suarez-Vidal, F. (1996). A Neotectonic study of the San Miguel-Vallecitos Fault, Baja California, Mexico. Bulletin of the Seismological Society of America, 86(6), 1770–1783. https://doi.org/10.1785/BSSA0860061770

    Article  Google Scholar 

  • Hirose, F., Miyaoka, K., Hayashimoto, N., et al. (2011). Outline of the 2011 off the Pacific coast of Tohoku Earthquake (Mw 90)—Seismicity: Foreshocks, mainshock, aftershocks, and induced activity. Earth Planet Sp, 63(1), 513–518. https://doi.org/10.5047/eps.2011.05.019

    Article  Google Scholar 

  • Hong, T. K., Lee, J., Park, S., & Kim, W. (2018). Time-advanced occurrence of moderate-size earthquakes in a stable intraplate region after a megathrust earthquake and their seismic properties. Science and Reports, 8(1), 13331. https://doi.org/10.1038/s41598-018-31600-5

    Article  CAS  Google Scholar 

  • Hough, S. E., & Elliot, A. (2004). Revisiting the February 23 1892 Laguna Salada earthquake. Bulletin of the Seismological Society of America, 94(4), 1571–1578. https://doi.org/10.1785/012003244

    Article  Google Scholar 

  • Huang, Y., & Jiang, X. (2010). Field-observed phenomena of seismic liquefaction and subsidence during the 2008 Wenchuan earthquake in China. Natural Hazards, 54, 839–850. https://doi.org/10.1007/s11069-010-9509-6

    Article  Google Scholar 

  • Irwin, W. P., & Wallace, R. E. (1990). Geology and plate-tectonic development. San Andreas Fault Syst. Calif., 1515, 61–80.

    Google Scholar 

  • Kannaujiya, S., Yadav, R. K., Sarkar, T., Sharma, G., Chauhan, P., Pal, S. K., Roy, P. N., Gautam, P. K., Taloor, A. K., & Yadav, A. (2022). Unraveling seismic hazard by estimating prolonged crustal strain buildup in Kumaun-Garhwal, Northwest Himalaya using GPS measurements. Journal of Asian Earth Sciences, 223, 104993. https://doi.org/10.1016/j.jseaes.2021.104993

    Article  Google Scholar 

  • Kersley, L., Malan, D., Pryse, S. E., Cander, L. R., Bamford, R. A., Belehaki, A. N. N. A., & Spencer, P. S. (2004). Total electron content-A key parameter in propagation: measurement and use in ionospheric imaging. Annals of Geophysics, 47(2/3):1067–1091. https://doi.org/10.4401/ag-3286

    Article  Google Scholar 

  • Khilyuk, L. F., Robertson, J. O., Jr., Endres, B., & Chilingarian, G. V. (2000). Gas migration: Events preceding earthquakes. Elsevier.

    Google Scholar 

  • Kikuchi, M., Nakamura, M., & Yoshikawa, K. (2003). Source rupture processes of the 1944 Tonankai earthquake and the 1945 Mikawa earthquake derived from low-gain seismograms. Earth, Planets and Space, 55(4), 159–172. https://doi.org/10.1186/BF03351745

    Article  Google Scholar 

  • King, N. E., & Thatcher, W. (1998). The coseismic slip distributions of the 1940 and 1979 Imperial Valley, California, earthquakes and their implications. J. Geophys. Res. Solid Earth, 103(B8), 18069–18086. https://doi.org/10.1029/98JB00575

    Article  Google Scholar 

  • Koizumi, N., Kitagawa, Y., Matsumoto, N., Takahashi, M., Sato, T., Kamigaichi, O., & Nakamura, K. (2004). Preseismic groundwater level changes induced by crustal deformations related to earthquake swarms off the east coast of Izu Peninsula, Japan. Geophysical Research Letters, 31, L10606https://doi.org/10.1029/2004GL019557

    Article  Google Scholar 

  • Koldashov, S. V., Aleksandrin, S. Y., Bakaldin, A. V., Batischev, A. G., Bzheumikhova, M. A., Galper, A. M., & Ulitin, A. A. (2013, February). Radiation belt local disturbances of lightning and seismic origin. In Journal of Physics: Conference Series, Vol. 409, No. 1, p. 012228. https://doi.org/10.1088/1742-6596/409/1/012228

  • Kumar, S., & Singh, A. K. (2010). The effect of a geomagnetic storm on GPS-derived total electron content (TEC) at Varanasi, India. In Journal of Physics: Conference Series, Vol. 208, No. 1, p. 012062. https://doi.org/10.1088/1742-6596/208/1/012062

  • Kumar, S., & Singh, A. K. (2017). Ionospheric precursors observed in TEC due to earthquake of Tamenglong on January 3 2016. Current Science, 113(4), 795–801. https://www.jstor.org/stable/26293926

  • Liperovski, V.A., Pokhotelov, O.A. and Shalimov, S.A. (1992) Ionospheric Precursors of Earthquakes. Nauka, M., 304.

  • Liperovsky, V. A., Alimov, O. A., Shalimov, S. A., Gokhberg, M. B., Liperovskaya, R. H., & Saidshoev, A. (1990). Ionosphere F-region studies before earthquakes. Izvestiya Ussr Acad. Sci. Phys. Solid Earth, 12, 77–86.

    Google Scholar 

  • Liu, C. Y., Liu, J. Y., Chen, Y. I., Qin, F., Chen, W. S., **a, Y. Q., & Bai, Z. Q. (2018). Statistical analyses on the ionospheric total electron content related to M≥ 6.0 earthquakes in China during 1998–2015. Terr. Atmos. Ocean. Sci., 29(5), 485. https://doi.org/10.3319/TAO.2018.03.11.01

    Article  CAS  Google Scholar 

  • Liu, J. Y., Chen, C. H., Lin, C. H., Tsai, H. F., Chen, C. H., & Kamogawa, M. (2011). Ionospheric disturbances triggered by the March 11 2011 M9.0 Tohoku earthquake. J. Geophys. Res. Space Phys. https://doi.org/10.1029/2011JA016761

    Article  Google Scholar 

  • Liu, X., & Zhao, D. (2018). Upper and lower plate controls on the great 2011 Tohoku-oki earthquake. Science Advances, 4(6), eaat4396. https://doi.org/10.1126/sciadv.aat4396

    Article  Google Scholar 

  • Ma, G., & Maruyama, T. (2003). Derivation of TEC and estimation of instrumental biases from GEONET in Japan. In Annales Geophysicae, Göttingen, Germany: Copernicus Publications, Vol. 21, No. 10, pp. 2083–2093. https://doi.org/10.5194/angeo-21-2083-2003

  • Matzka, J., Stolle, C., Yamazaki, Y., Bronkalla, O., & Morschhauser, A. (2021). The geomagnetic Kp index and derived indices of geomagnetic activity. Space Weather, 19(5), e2020SW002641. https://doi.org/10.1029/2020SW002641

    Article  Google Scholar 

  • Mignan, A. (2008). Non-critical precursory accelerating seismicity theory (NC PAST) and limits of the power-law fit methodology. Tectonophysics, 452(1–4), 42–50. https://doi.org/10.1016/j.tecto.2008.02.010

    Article  Google Scholar 

  • Molchanov, O. A., & Hayakawa, M. (1998). Subionospheric VLF signal perturbations possibly related to earthquakes. Journal of Geophysical Research, 103(A8), 17489–17504. https://doi.org/10.1029/98JA00999

    Article  Google Scholar 

  • Nayak, K., López-Urías, C., Romero-Andrade, R., Sharma, G., Guzmán-Acevedo, G. M., & Trejo-Soto, M. E. (2023a). Ionospheric total electron content (TEC) anomalies as earthquake precursors: Unveiling the geophysical connection leading to the 2023 moroccan 68 Mw earthquake. Geosciences, 13(11), 319. https://doi.org/10.3390/geosciences13110319

    Article  Google Scholar 

  • Nayak, K., Romero-Andrade, R., Sharma, G., Zavala, J. L. C., Urias, C. L., Trejo Soto, M. E., & Aggarwal, S. P. (2023b). A combined approach using b-value and ionospheric GPS-TEC for large earthquake precursor detection: A case study for the Colima earthquake of 7.7 Mw Mexico. Acta Geod. Geophys. 58(4), 515–538. https://doi.org/10.1007/s40328-023-00430-x

    Article  Google Scholar 

  • Ndeda, J. O., & Odera, P. O. (2014). Analysis of longitudinal advancement of the peak total electron content in the African equatorial anomaly region using data from GPS receivers and GIS stations in Kenya. Applied Physics Research, 6(1), 19. https://doi.org/10.5539/apr.v6n1p19

    Article  Google Scholar 

  • Nicholson, C., Seeber, L., Williams, P., & Sykes, L. R. (1986). Seismic evidence for conjugate slip and block rotation within the San Andreas fault system, southern California. Tectonics, 5(4), 629–648. https://doi.org/10.1029/TC005i004p00629

    Article  Google Scholar 

  • Norsuzila, Y., Abdullah, M., & Ismail, M. (2008). Determination of GPS total electron content using single layer model (SLM) ionospheric map** function. Int. J. Comp. Sci. Net. Sec., 8(9), 154–169.

    Google Scholar 

  • Olwendo, O. J., Yamazaki, Y., Cilliers, P. J., Baki, P., & Doherty, P. (2016). A study on the variability of ionospheric total electron content over the East African low-latitude region and storm time ionospheric variations. Radio Science, 51(9), 1503–1518. https://doi.org/10.1002/2015RS005785

    Article  Google Scholar 

  • Parrot, M. (1994). Statistical study of ELF/VLF emissions recorded by a low-altitude satellite during seismic events. J. Geophys. Res. Space Phys., 99(A12), 23339–23347. https://doi.org/10.1029/94JA02072

    Article  Google Scholar 

  • Pulinets, S. A. (2004). Ionospheric precursors of earthquakes: recent advances in theory and practical applications. Terr. Atmos. Ocean. Sci., 15(3), 413–435.

    Article  Google Scholar 

  • Pulinets, S. A., & Legen’ka, A. D. (2002). Spatial-temporal characteristics of the large-scale disturbances of the electron concentration observed in the F-region of the ionosphere before strong earthquakes. Cosmic Research, 41(3), 221–230.

    Article  Google Scholar 

  • Pulinets, S. A., Legenka, A. D., & Alekseev, V. A. (1994). Pre-earthquake ionospheric effects and their possible mechanisms. In H. Kikuchi (Ed.), Dusty and dirty plasmas, noise, and chaos in space and in the laboratory. Springer. 545–557. https://doi.org/10.1007/978-1-4615-1829-7_46

    Chapter  Google Scholar 

  • Pulinets, S. A., Legen’Ka, A. D., Gaivoronskaya, T. V., & Depuev, V. K. (2003). Main phenomenological features of ionospheric precursors of strong earthquakes. J. Atmos. Solar-Terr. Phys., 65(16–18), 1337–1347.

    Article  CAS  Google Scholar 

  • Pulinets, S. A., Leyva, A., Contreras, G., Bisiacchi, G., & Ciraolo, L. (2005). Total electron content variations in the ionosphere before the Colima, Mexico, earthquake of January 21 2003. Geofís. Int., 44(4), 369–377.

    Google Scholar 

  • Qian, L., Wang, W., Burns, A. G., Chamberlin, P. C., Coster, A., Zhang, S. R., & Solomon, S. C. (2019). Solar flare and geomagnetic storm effects on the thermosphere and ionosphere during 6–11 September 2017. J. Geophys. Res. Space Phys., 124(3), 2298–2311. https://doi.org/10.1029/2018JA026175

    Article  Google Scholar 

  • Riggio, A., & Santulin, M. (2015). Earthquake forecasting: A review of radon as seismic precursor. Boll. Geofis. Teor. Appl., 56(2), 95–114.

    Google Scholar 

  • Shah, M., Shahzad, R., Ehsan, M., Ghaffar, B., Ullah, I., Jamjareegulgarn, P., & Hassan, A. M. (2023). Seismo Ionospheric anomalies around and over the epicenters of Pakistan earthquakes. Atmosphere, 14(3), 601. https://doi.org/10.3390/atmos14030601

    Article  CAS  Google Scholar 

  • Sharma, G., Champatiray, P. K., Mohanty, S., Gautam, P. K. R., & Kannaujiya, S. (2017a). Global navigation satellite system detection of preseismic ionospheric total electron content anomalies for strong magnitude (Mw>6) Himalayan earthquakes. Journal of Applied Remote Sensing, 11(4), 046018–046018. https://doi.org/10.1117/1.JRS.11.046018

    Article  Google Scholar 

  • Sharma, G., Champatiray, P. K., Mohanty, S., & Kannaujiya, S. (2017b). Ionospheric TEC modelling for earthquakes precursors from GNSS data. Quaternary International, 462, 65–74. https://doi.org/10.1016/j.quaint.2017.05.007

    Article  Google Scholar 

  • Sharma, G., Mohanty, S., Champati Ray, P. K., Singh, M. S., Sarma, K. K., & Raju, P. L. N. (2018). Ionospheric total electron content and epicentral distance of 2015 Nepal earthquake revealed by GNSS observations. Current Science, 115(1), 27–29. https://www.jstor.org/stable/26978142

    Article  Google Scholar 

  • Sharma, G., Champati Ray, P. K., & Kannaujiya, S. (2019). Ionospheric total electron content for earthquake precursor detection. In R. Navalgund, A. Kumar, & S. Nandy (Eds.), Remote sensing of northwest Himalayan ecosystems. Springer.

    Google Scholar 

  • Sharma, G., Kannaujiya, S., Gautam, P. K. R., Taloor, A. K., Champatiray, P. K., & Mohanty, S. (2020a). Crustal deformation analysis across Garhwal Himalaya: Part of western Himalaya using GPS observations. Quaternary International, 575–576, 153–159.

    Google Scholar 

  • Sharma, G., Saikia, P., Walia, D., Banerjee, P., & Raju, P. L. N. (2020b). TEC anomalies assessment for earthquakes precursors in North-Eastern India and adjoining region using GPS data acquired during 2012–2018. Quaternary International, 575–57, 120–129. https://doi.org/10.1016/j.quaint.2020.07.009

    Article  Google Scholar 

  • Sharma, G., Singh, M. S., Aggarwal, S. P., & Romero-Andrade, R. (2023). Integrated observations on crustal strain-ionosphere total electron content anomalies before the earthquake. Acta Geophysica, 71(3), 1173–1185. https://doi.org/10.1007/s11600-023-01030-7

    Article  Google Scholar 

  • Shi, K., Guo, J., Liu, X., Liu, L., You, X., & Wang, F. (2020). Seismo-ionospheric anomalies associated with Mw 7.8 Nepal earthquake on 2015 April 25 from CMONOC GPS data. Geosciences Journal, 24, 391–406. https://doi.org/10.1007/s12303-019-0038-3

    Article  Google Scholar 

  • Singh, A. K., Das, R. M., & Saini, S. (2019). Variations of total electron content over high latitude region during the ascending phase of 24th solar cycle. Advances in Space Research, 63(11), 3558–3567. https://doi.org/10.1016/j.asr.2019.02.017

    Article  Google Scholar 

  • Sompotan, A. F., Puspito, N. T., Joelianto, E., & Hattori, K. (2015). Analysis of ionospheric precursor of earthquake using GIM-TEC, kriging and neural network. Asian J. Earth Sci., 8(2), 32–44. https://doi.org/10.3923/ajes.2015.32.44

    Article  Google Scholar 

  • Styron, R., & Pagani, M. (2020). The GEM Global Active Faults Database. Earthq. Spectr., 36(1), 160–180. https://doi.org/10.1177/8755293020944182

    Article  Google Scholar 

  • Sunardi, B., Muslim, B., Sakya, A. E., Rohadi, S., &Murjaya, J. (2018, March). Ionospheric earthquake effects detection based on Total Electron Content (TEC) GPS Correlation. In IOP Conference Series: Earth and Environmental Science, IOP Publishing, Vol. 132, No. 1, p. 012014. https://doi.org/10.1088/1755-1315/132/1/012014

  • Thomas, D., Bagiya, M. S., Hazarika, N. K., & Ramesh, D. S. (2022). On the Rayleigh wave induced ionospheric perturbations during the Mw 9.0 March 11 2011 Tohoku-Oki earthquake. J. Geophys. Res. Space Phys., 127, e2021JA029250. https://doi.org/10.1029/2021JA029250

    Article  Google Scholar 

  • Tramutoli, V., Cuomo, V., Filizzola, C., Pergola, N., & Pietrapertosa, C. (2005). Assessing the potential of thermal infrared satellite surveys for monitoring seismically active areas: The case of Kocaeli (Izmit) earthquake, August 17, 1999. Remote Sensing of Environment, 96(3–4), 409–426. https://doi.org/10.1016/j.rse.2005.04.006

    Article  Google Scholar 

  • Uyeda, S., Nagao, T., & Kamogawa, M. (2009). Short-term earthquake prediction: Current status of seismo-electromagnetics. Tectonophysics, 470(3–4), 205–213. https://doi.org/10.1016/j.tecto.2008.07.019

    Article  Google Scholar 

  • van der Werf, T., Chatzaras, V., Kriegsman, L. M., Kronenberg, A., Tikoff, B., & Drury, M. R. (2017). Constraints on the rheology of the lower crust in a strike-slip plate boundary: Evidence from the San Quintín xenoliths, Baja California. Mexico. Solid Earth, 8(6), 1211–1239. https://doi.org/10.5194/se-8-1211-2017

    Article  Google Scholar 

  • Varotsos, P., & Alexopoulos, K. (1984). Physical properties of the variations of the electric field of the earth preceding earthquakes I. Tectonophysics, 110(1–2), 73–98. https://doi.org/10.1016/0040-1951(84)90059-3

    Article  Google Scholar 

  • Villegas, C. G., Mendoza, C., & Ferrari, L. (2017). MexicoQuaternaryFaultDatabase/Base de datos de fallas cuaternarias de México. Terra Digit., 1(1), 1–9. https://doi.org/10.22201/igg.terradigitalis.2017.1.3.68

    Article  Google Scholar 

  • Voitov, G. I., & Dobrovolsky, I. P. (1994). Chemical and isotopic-carbon instabilities of then active gas flows in seismically active regions. Izv. Earth Sci., 3, 20–31.

    Google Scholar 

  • Wei, S., Fielding, E., Leprince, S., Sladen, A., Avouac, J. P., Helmberger, D., Hauksson, E., Chu, R., Simons, M., Hudnut, K., & Herring, T. (2011). Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico. Nature Geosci., 4(9), 615–618. https://doi.org/10.1038/ngeo1213

    Article  CAS  Google Scholar 

  • Wetmore, P., Malservisi, R., Fletcher, J., Alsleben, H., Wilson, J., Callihan, S., Springer, A., González-Yajimovich, O., & Gold, P. (2018). Slip history and the role of the Agua Blanca fault in the tectonics of the North American-Pacific plate boundary of southern California. USA Baja Calif. Mexico. Geosph, 15(1), 119–145. https://doi.org/10.1130/GES01670.1

    Article  Google Scholar 

  • Woith, H., Petersen, G., Hainzl, S., & Dahm, T. (2018). Review: Can animals predict earthquakes? Bulletin of the Seismological Society of America, 108(3A), 1031–1045. https://doi.org/10.1785/0120170313

    Article  Google Scholar 

  • Ya’acob, N. Abdullah, M., & Ismail, M. (2010). Determination of GPS total electron content using single layer model (SLM) ionospheric map** function. International Journal of Computer Science and Network Security, 8(9), 154–160

  • Zaslavski, Y., Parrot, M., & Blanc, E. (1998). Analysis of TEC measurements above active seismic regions. Physics of the Earth and Planetary Interiors, 105(3–4), 219–228. https://doi.org/10.1016/S0031-9201(97)00093-9

    Article  Google Scholar 

  • Zhou, Y., Yang, J., Zhu, F., Su, F., Hu, L., & Zhai, W. (2017). Ionospheric disturbances associated with the 2015 M7. 8 Nepal earthquake. Geod. Geodyn., 8(4), 221–228. https://doi.org/10.1016/j.geog.2017.04.004

    Article  Google Scholar 

Download references

Acknowledgements

Authors like to thank Former Director of NESAC, Shri P L N Raju for support and encouragement in carrying out this collaborative research. Authors thank the Indian Institute of Geomagnetism for providing software/program for the computation of TEC in present analysis. Authors also thank International GNSS services (IGS), UNAVCO, NOAA and World data centre for Geomagnetism and Space Magnetism (WDC) for providing high quality GPS and atmospheric data utilised in present analysis. Authors would also like to thank the anonymous reviewers and editor for the suggestions and comments.

Funding

The study was conducted using open source data. No external funding received for the study.

Author information

Authors and Affiliations

Authors

Contributions

GS conceptualized the research. GS, KN and RRA contributed in data collection, input generation, interpretation and analysis. The first draft of the manuscript was written by GS and KN and all authors commented and provided suggestions on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gopal Sharma.

Ethics declarations

Conflict of interest

The authors declared that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, G., Nayak, K., Romero-Andrade, R. et al. Low Ionosphere Density Above the Earthquake Epicentre Region of Mw 7.2, El Mayor–Cucapah Earthquake Evident from Dense CORS Data. J Indian Soc Remote Sens 52, 543–555 (2024). https://doi.org/10.1007/s12524-024-01837-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-024-01837-x

Keywords

Navigation