Log in

Estimation of flood inundation in river basins of Uttar Pradesh using Sentinel 1A-SAR data on Sentinel Application Platform (SNAP)

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Severe flood events during the last decades have proved to be a devastating disaster for the densely populated and economy of Uttar Pradesh. Due to its ability to provide a concise view of spatial extent of the flood, remote sensing techniques and synthetic aperture radar (SAR) systems in particular have been applied to flood map**. The present study has identified flood-prone areas in Uttar Pradesh using the C-band (SAR) sensor of Sentinel-1. In this study, changes in flood inundation area during the monsoon season of 2021 have been estimated. Sentinel Application Platform (SNAP) has been used to perform SAR pre-processing which includes orbit file application, thermal noise removal, calibration, speckle filtering, and terrain correction. Subsequently, polarization, band math expression, thresholding, and image are processed. In addition, image map** has been done in Arc-GIS tool for detailed investigation of flood inundation area. Detailed investigation of the flood inundated area found that overall, 7710 km2 is affected by the flood area. This study will be the potential use of microwave SAR remote sensing as a comprehensive and effective way of providing accurate surface water information for water resources management, flood warning, flood monitoring, and rapid and accurate flood damage assessment in the years to come.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data is available on request.

References

  • Abazaj Hasko G (2020) Use of Sentinel-1 data in flood map** in the Buna River area. Int J Environ Climate Change 10(10):147–156

    Article  Google Scholar 

  • Adelekan I (2011) Vulnerability assessment of an urban flood in Nigeria, Abeokuta Flood 2007, 56th edition. Nat Hazards 56:215–231

    Article  Google Scholar 

  • Aldhshan SR, Mohammed OZ, Shafri HM (2019) Flash flood area map** using sentinel-1 SAR data: a case study of eight upazilas in Sunamganj district, Bangladesh. IOP Conf Ser Earth Environ Sci 357:012034. https://doi.org/10.1088/1755-1315/357/1/012034

  • Amitrano MD, Iodice A, Riccio D, Ruello G (2018) Unsupervised rapid flood map** using Sentinel- 1 GRD SAR images. IEEE Trans Geosci Remote Sens 56(6):3290–3299

    Article  ADS  Google Scholar 

  • Atwood K, David S, Gens R (2012) Improving PolSAR land cover classification with radiometric correction of the coherency matrix. IEEE J Select Appl Earth Observ Remote Sens 5(3):848–857

    Article  ADS  Google Scholar 

  • Baghdadi JA, Chaaya MZ (2011) Semiempirical calibration of the integral equation model for SAR data in C-band and cross polarization using radar images and field measurements. IEEE Geosci Remote Sens Lett 8:14–18

    Article  ADS  Google Scholar 

  • Baghdadi N, Bernier M, Gauthier R, Neeson I (2001) Evaluation of C-Band SAR-Data for wetlands map**. Int J Remote Sens 22(1):71– 88. https://doi.org/10.1080/014311601750038857

  • Bhatt CM, Rao GS, Begum A, Manjusree P, Sharma SV, Prasanna L, Bhanumurthy V (2013) Satellite images for extraction of flood disaster footprints and assessing the disaster impact: Brahmaputra floods of June–July 2012, Assam, India. Curr Sci 104(12):1692–1700

    Google Scholar 

  • Bolanos SD, Brisco B, Pietroniro A (2016) Operational surface water detection and monitoring using Radarsat. Remote Sens 8(4):285

    Article  ADS  Google Scholar 

  • Brivio CR, Maggi M, Tomasoni R (2002) Integration of remote sensing data and GIS for accurate map** of flooded areas. Int J Remote Sens 23:429–441

    Article  Google Scholar 

  • Chutiya D, Hazarika N, Das P (2009) Adjusting to floods on the Brahmaputra Plains. Assam, India. International Centre for Integrated Mountain Development (ICIMOD), Kathmandu, Nepal

    Book  Google Scholar 

  • Demir V, Kisi O (2016) Flood hazard map** by using geographic information system and hydraulic model: Mert River, Samsun, Turkey. Adv Meteorol 2016:489–1015

  • ESA Sentinel Online (2019) User guides and technical guides of Sentinel-1 SAR

  • European Space Agency (2016) Sentinel-1 product definition. European Space Agency

    Google Scholar 

  • European Space Agency (2017) Sentinel-1 Toolbox (S1TBX), version 6.0.0–20170802

  • Ezzine DF, Rajhi H, Ghatassi A (2018) Evaluation of Sentinel-1 data for flood map** upstream Sidi Salem dam (Northern Tunisia). Arab J Geosci 11:170

    Article  Google Scholar 

  • Fan JL, Lei B (2012) A modified valley-emphasis method for automatic Thresholding. Pattern Recogn Lett 33(6):703–708

    Article  ADS  Google Scholar 

  • Gautam PK (2023a) The significance of morphometric analysis of Shimsha River, Karnataka, India to understand the hydrological and morphological characteristics. River 2(4):490–505. https://doi.org/10.1002/rvr2.66

    Article  Google Scholar 

  • Gautam PK (2023b) Sedimentology of the lower part of Ghaghara River basin from Faizabad to Deoria in Ph.D. Thesis. Geology Department, Lucknow University, Lucknow, India, pp 55–57 

  • Gautam PK, Singh DS (2022) Flood hazard and risk assessment of Deoha River Basin. Central Ganga Plain-India, GIS approach. Disaster Adv 15(10):42–51

    Article  Google Scholar 

  • Gautam PK, Singh AK (2023) Evaluation of active tectonic features of nandakini river basin lesser himalaya india by using morphometric indices: a GIS approach. Adv Environ Eng Res 04(01):1–24. https://doi.org/10.21926/aeer.2301014

  • Ganji K, Gharachelou S, Ahmadi A (2019) Urban’s river flood analysing using sentinel-1 data case study: (gorganrood, aq’qala), Int Arch Photogramm Remote Sens Spatial Inf Sci XLII-4/W18 415–419. https://doi.org/10.5194/isprs-archives-XLII-4-W18-415-2019

  • Gautam PK, Singh DS, Kumar D, Singh AK (2020) A GIS based approach in drainage morphometric analysis of Sai River Basin, Uttar Pradesh, India. J Geol Soc India 95:366–376

    Article  Google Scholar 

  • Gautam PK, Singh DS, Kumar D, Singh AK, Vishawakarma B (2022a) Assessment of morphometric characteristics and decadal fluctuation of groundwater level of Kali River basin and its link with climate change, West Indo-Gangetic plain of India Using Geographical Information System. Disaster Adv 15(5):26–38

    Article  Google Scholar 

  • Gautam PK, Singh DS, Singh AK, Kumar D (2022b) Geomorphic analysis of Baghain River, Yamuna Basin, and its implication for drainage characteristic and tectonics using remote sensing and GIS techniques. J Geol Soc India 98:1573–1584

    Article  Google Scholar 

  • Gautam PK, Kumar D, Singh AK, Singh DS (2023) Drainage network analysis and tectonics interference of the Reth River, Central Ganga Plain (India) using geospatial technology. Geotectonics 57(3):330–345

    Article  ADS  Google Scholar 

  • Greifeneder WW, Sabel D, Naeimi V (2014) Suitability of SAR imagery for automatic flood map** in the Lower Mekong Basin. Int J Remote Sens 35(8):2857–2874

    Article  Google Scholar 

  • Henry JB (2004) Systèmes d’information spatiaux pour la gestion du risque d’inondation de plaine Thèse De Doctorat, Géographie Physique, Université De Strasbourg I 192

  • Henry CP, Fellah K, Desnos YL (2006) ENVISAT multi-polarised ASAR data for flood map**. Int J Remote Sens 27:1921–1929

    Article  Google Scholar 

  • Jain V, Sinha R (2003) River systems in the Gangetic plains and their comparison with the Siwaliks. A review. Curr Sci 84(8):1025–1033

    Google Scholar 

  • Jaybhay Shastri R (2015) A study of speckle noise reduction Filters Signal & Image Processing. An Int J (SIPIJ) 6(3):71–80

    Google Scholar 

  • Jensen JR (2007) Remote sensing environment: an Earth resource perspective, 2nd edn. Pearson Education Inc., United States of America

    Google Scholar 

  • Joyce Belliss SE, Samsonov SV, Mcneill SJ, Glassey PJ (2009) A review of the status of satellite remote sensing and image processing techniques for map** natural hazards and disasters. Prog Phys Geogr Earth Environ 33(2):183–207

    Article  Google Scholar 

  • Karamvasis KV (2021) FLOMPY: an open-source toolbox for floodwater map** using Sentinel-1 intensity time series. Water 13(21):2943

    Article  Google Scholar 

  • Khan S, Sinha R, Whitehead P, Sarkar S, ** L, Futte MN (2018) Flows and sediment dynamics in the Ganga River under present and future climate scenarios. Hydrol Sci J 63:763–782

    Article  CAS  Google Scholar 

  • Kumar S, Singh IB (1978) Sedimentological study of Gomati River sediments, Uttar Pradesh, India. Example of a river in alluvial plain 145–211

  • Kumar D, Singh DS, Prajapati SK, Khan I, Gautam PK, Vishawakarma B (2018) Morphometric analysis of Kalyani River Basin, Ganga Plain, a remote sensing and GIS approach. J Geol Soc India 91:679–686

    Article  Google Scholar 

  • Kumar D, Singh AK, Gautam PK, Vishawakarma B, Dubey CA, Singh DS (2024) Response of global warming on glaciers of Garhwal Himalaya, India a remote sensing and GIS approach. In: Khare N (ed) Polar ice and global warming in cryosphere regions. Taylor and Francis (CRC Plus), (5):91–107

  • Lee JS (1981) Speckle analysis and smoothing of synthetic aperture radar images. Comput Graphics Image Process 17(1):24–32

    Article  ADS  Google Scholar 

  • Lee JS, Pottier E (2009) Polarimetric radar imaging: from basics to applications. In Optical Science and Engineering. CRC Press, Boca Raton, FL, USA, p 142

    Google Scholar 

  • Lee JS, Jurkevich I, Dewaele P, Wambacq P, Oosterlinck A (1994) Speckle filtering of synthetic aperture radar images. A review. Remote Sens Rev 8:313–340

    Article  Google Scholar 

  • Lei Y, Siqueira P, Treuhaft R (2016) A dense medium electromagnetic scattering model for the InSAR correlation of snow. Radio Sci 51:461–480. https://doi.org/10.1002/2015RS005926

  • Li Y, Martinis S, Wieland M, Schlaffer S, Natsuaki R (2019) Urban flood map** using SAR intensity and interferometric coherence via Bayesian network fusion. Remote Sens 11(19):2231

    Article  ADS  Google Scholar 

  • Lillesand M, Kiefer RW, Chipman JW (2015) Remote sensing and image interpretation, Seventh. John Wiley & Sons Inc., United States of America

    Google Scholar 

  • Long S, Fatoyinbo TE, Policelli F (2014) Flood extent map** for Namibia using change detection and thresholding with SAR. Environ Res Lett 9(3):035002

    Article  ADS  Google Scholar 

  • Luo T, Maddocks A, Iceland C, Ward P, Winsemius H (2015) World’s 15 countries with the most people exposed to river floods. World Resources Institute: Washington, DC, USA 5

  • Manavalan (2017) SAR image analysis techniques for flood area map** literature survey. Earth Sci Inf 10(1):1–14

    Article  Google Scholar 

  • Manjusree P et al (2012) Optimization of threshold ranges for rapid flood inundation map** by evaluating backscatter profiles of high incidence angle SAR images. Int J Disaster Risk Sci 3:113–122

    Article  Google Scholar 

  • Martinis S (2010) Automatic near real-time flood detection in high resolution X-band synthetic aperture radar satellite data using context-based classification on irregular graphs. PhD thesis. University of Munchen

    Google Scholar 

  • Martinis S, Twele A, Voigt S (2010) Towards operational near real-time flood detection using a split-based automatic thresholding procedure on high resolution Terra SAR-X data. Nat Hazard 9:303–314

    Article  Google Scholar 

  • Martinis S, Jens K, André T (2015) A fully automated TerraSAR-X based flood service. ISPRS J Photogramm Remote Sens 104:203–212

    Article  ADS  Google Scholar 

  • Mason DC, Davenport IJ, Neal JC, Schumann GJP, Bates PD (2012) Near real-time flood detection in urban and rural areas using high-resolution synthetic aperture radar images. IEEE Trans Geosci Remote Sens 50:3041–3052

  • Meyer WZ, Kragh SJ, Andreasen M, Jensen KH, Fensholt R, Looms MC (2022) Exploring the combined use of SMAP and Sentinel-1 data for downscaling soil moisture beyond the 1 km scale. Hydrol Earth Syst Sci 26(13):33–37

  • Milliman JD, Farnsworth KL (2011) River discharge to the coastal ocean. Cambridge University Press, New York, NY, USA

    Book  Google Scholar 

  • Nandargi SS, Shelar A (2018) Rainfall and flood studies of the Ganga River Basin in India. Annals of Geographical Studies 1(1):34–50

  • Nasirzadehdizaji R, Sanli FB, Abdikan S, Cakir Z, Sekertekin A, Ustuner M (2019) Sensitivity analysis of multi-temporal sentinel-1 SAR parameters to crop height and canopy coverage. Appl Sci 9:655

    Article  Google Scholar 

  • Ogah AT, Abiola KA, Magaji JI, Ijeogu EO, Opaluwa OD (2013) Flood risk assessment of river Mada: a case study of Akwanga local government area of Nasarawa state. Nigeria Adv Appl Sci Res 4(1):407–416

    Google Scholar 

  • Park JM, Song WJ, Pearlman WA (2007) Speckle filtering SAR images based on adaptive windowing. IEEE Proc Vis Image Signal Process 146:191–197

    Article  Google Scholar 

  • Patel P, Srivastava HS, Navalgund RR (2009) Use of synthetic aperture radar polarimetry to characterize wetland targets of Keoladeo National Park, Bharatpur India. Curr Sci 97(4):529–537

    Google Scholar 

  • Perucca LP, Angilieri YE (2010) Morphometric characterization of delMolle Basin applied to the evolution of flash floods hazards Iglesia Department, San Jaun, Argentina. Quarternary Internat 233(1):81–86

    Article  ADS  Google Scholar 

  • Pham-Duc B, Aires Prigent C, F, (2017) Surface water monitoring within cambodia and the Vietnamese Mekong Delta over a year, with Sentinel-1 SAR observations. Water 9(6):1–21

    Article  Google Scholar 

  • Pradhan B, Tehrany MS, Jebur MN (2016) A new semiautomated detection map** of flood extent from terrasar-x satellite image using rule-based classification and taguchi optimization techniques. IEEE Trans Geosci Remote Sens 54:4331–4342

  • Rahman R, Thakur PK (2017) Detecting, map** and analyzing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: a case study from the Kendrapara district of Orissa state of India. Egypt J Remote Sens Space Sci 21

  • Rahman R, Thakur PK (2018) Detecting, map** and analyzing of flood water propagation using synthetic aperture radar (SAR) satellite data and GIS: a case study from the Kendrapara District of Orissa State of India. Egypt J Remote Sens Space Sciences 21:37–41

    Google Scholar 

  • Rudra K (2014) Changing river courses in the western part of the Ganga-Brahmaputra delta. Geomorphology 227:87–100

    Article  ADS  Google Scholar 

  • Sahoo SN, Sreeja P (2017) Development of flood inundation maps and quantification of flood risk in an urban catchment of Brahmaputra River. ASCE-ASME J Risk Uncertain Eng Syst Part A Civ Eng 3(1):A4015001

  • Sezgin M, Sankur B (2004) Survey over thresholding techniques and quantitative performance evaluation. J Electron Imaging 13(1):146–165

    Article  ADS  Google Scholar 

  • Shimada M (2010) Ortho-rectification and slope correction of SAR data using DEM and its accuracy evaluation. IEEE J Select Topics Appl Earth Observ Remote Sens 3(4):657–672

    Article  ADS  Google Scholar 

  • Singh RL (1988) India: a regional Geography. National Geographical Society, India, Varanasi, India, p 992

    Google Scholar 

  • Singh DS (2007) Flood mitigation in the Ganga Plain. In: Rai N, Singh AK (eds) Disaster management in India. New Royal Book Company, pp 167–179

    Google Scholar 

  • Singh DS (2015) Climate change, past present and future. J Geol Soc India 85:634–635

    Google Scholar 

  • Singh DS, Awasthi A (2011) Natural hazards in the Ghaghara River Area, Ganga Plain, India. Nat Hazards 57:213–225

  • Singh P, Shree R (2016) Analysis and effects of speckle noise in SAR images. In Advances in Computing, Communication, & Automation (Fall). ICACCA, pp 2–6

    Google Scholar 

  • Singh DS, Awasthi A, Nishat R (2010) Impact of climate change on the rivers of Ganga Plain. Inter Jour Rur Devel Manag Stud 4(1):1–8

    CAS  Google Scholar 

  • Singh DS, Prajapati SK, Kumar D, Awasthi A, Bhardawaj V (2013) Sedimentology and channel pattern of the Chhoti Gandak River, Ganga Plain, India. Gondwana Geol Magazine 2:171–180

    Google Scholar 

  • Singh DS, Prashant SK, Singh P, Singh K, Kumar D (2015) Climatically induced levee break and flood risk management of the Gorakhpur region Rapti River basin Ganga Plain India. J Geol Soc India 85(1):79–86. https://doi.org/10.1007/s12594-015-0195-6

  • Singh S, Tiwari AB, Gautam PK (2018) Burhi Gandak River: the place of first republic of the world. The Indian Rivers: Scientific and Socio-Economic Aspects. 1st edt. Springer Hydrogeol 2:209–219

    Article  Google Scholar 

  • Singh DS, Dubey CA, Kumar D, Vishawakarma B, Singh AK, Tripathi A, Gautam PK, Bali R, Agarwal KK, Sharma R (2019) Monsoon variability and major climatic events between 25 and 0.05 ka BP using sedimentary parameters in the Gangotri Glacier region, Garhwal Himalaya, India. Quat Int 507:148–155. https://doi.org/10.1016/j.quaint.2019.02.018

  • Singh AK, Kumar D, Dubey CA, Gautam PK, Vishawakarma B, Singh DS (2022) Glacial morpho-sedimentology and processes of landscape evolution in gangotri glacier area, Garhwal Himalaya, India. In: Khare N, 1st ed. Taylor and Francis (CRC Press), 1:223–238. https://doi.org/10.1201/9781003284413

  • Sinha R, Tandon SK, Gibling MR, Bhattacharjee PS, Dasgupta AS (2005) Late quaternary geology and alluvial stratigraphy of the Ganga basin. Himalayan Geol 26(1):223–240

    Google Scholar 

  • Sivasankar T, Das R, Borah SB, Raju P (2019) Insight to the potentials of Sentinel-1 SAR data for embankment breach assessment https://doi.org/10.1007/978-3-319-77276-9_4

  • Small D (2011) Flattening gamma: radiometric terrain correction for SAR imagery. IEEE Trans Geosci Remote Sens 49(8):3081–3093

    Article  ADS  Google Scholar 

  • Srivastava S, Patel P, Navalgund RR (2006) How far SAR has fulfilled its expectation for soil moisture retrieval. Proceeding: SPIE, pp 1–12

    Google Scholar 

  • Tavus RC, Kocaman S (2022) A CNN-based flood map** approach using SENTINEL-1 data. ISPRS Ann Photogramm Remote Sens Spat Inf Sci 3:549–556

  • Tavus E, Kocaman SU, Gokceoglu C, Nefeslioglu HA (2018) Considerations on the use of sentinel-1 data in flood map** in urban areas: Ankara (Turkey) 2018 floods. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences

  • Torres R et al (2012) GMES Sentinel-1 mission. Remote Sens Environ 120:9–24

  • Uddin MA, Matin MFJ (2019) Operational flood map** using multi-temporal Sentinel-1 SAR images: a case study from Bangladesh. Remote Sens 11(13):1581

    Article  ADS  Google Scholar 

  • Uddin K, Matin MA, Meyer FJ (2019) Operational flood map** using multi-temporal Sentinel-1 SAR images: A Case Study from Bangladesh. Remote Sens 11:1581

    Article  ADS  Google Scholar 

  • Valdiya KS (2004) Lessening the ravages of floods. book: Geology, environment and society. Universities Press, India, pp 112–115

    Google Scholar 

  • Vanama SK, Musthafa M, Khati U, Gowtham R, Singh S, Rao YS (2021) Inundation map** of Kerala flood event in 2018 using ALOS-2 and temporal Sentinel-1 SAR images. Curr Sci 120(5):915–925

    Article  Google Scholar 

  • Varnes DJ (1984) Landslide hazard zonation: a review of principles and practice. Unesco, Paris

    Google Scholar 

  • Voormansik K, Praks J, Antropov O, Jagomagi J, Zalite K (2014) Flood map** with terrasar-X in forested regions in Estonia. IEEE J Sel Top Appl Earth Obs Remote Sens 7(2):562–577

    Article  ADS  Google Scholar 

  • Wallemacq P, Guha-Sapir D, McClean D (2015) The human cost of weather-related disasters. Centre for Research On the Epidemiology of Disasters (CRED) United Nations Office for Disaster Risk Reduction 30

  • Zwenzner, Stefan V (2009) Improved estimation of flood parameters by combining space based SAR data with very high resolution digital elevation data. Hydrol Earth Syst Sci 13. 10.5194/hess-13-567

Download references

Acknowledgements

We want to thank the European Space Agency (ESA) for develo** the Sentinel Application Platform (SNAP) to operate Sentinel-1 data and the Alaska Satellite Facility for providing the data free of charge. We are also thankful to NASA ARSET, RUS webinar, and ESA Echoes in Space for giving a detailed understanding of the science and the steps to develop the methodology for flood maps in Uttar Pradesh. The execution of the project attributed to specifically CIP&DM Division of RSAC, UP, central Geo-processing facility; i.e., data center (NAS, servers, Network) and work center (Workstations, Network).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawan Kumar Gautam.

Ethics declarations

 Competing interests 

The authors declare no competing interests.

Additional information

Responsible Editor: Biswajeet Pradhan

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gautam, P.K., Chandra, S. & Henry, P.K. Estimation of flood inundation in river basins of Uttar Pradesh using Sentinel 1A-SAR data on Sentinel Application Platform (SNAP). Arab J Geosci 17, 107 (2024). https://doi.org/10.1007/s12517-024-11910-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-024-11910-x

Keywords

Navigation