Log in

Wall rock deformation, chilled margin, textural analysis, and displacement structures of Salem dolerites emplaced within the Southern Granulite Terrane, Tamilnadu, India

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

A Correction to this article was published on 12 January 2023

This article has been updated

Abstract

Wall rock alteration products of sheared minerals, micro faults, and quenched glassy matrix in micro faults are the effects of magma ascent under tremendous pressure in both discordant and concordant intrusions. The studied dykes show more shearing effects in wall rock and this magma flow rheology aligned the early-formed plagioclase in dolerite along the contact margins of dyke. The present study covers Salem dolerites, predominantly formed in Attur, Mettur, and Yercaud regions. Salem dolerites imprint the microlevel alteration and changes due to magma flow causing mineral alignment in dolerite, sheared minerals, microfractures, micro faults in wall rock filled by quenched glassy matrix, and recrystallized mineral zones on the contact of the host rock wall. The emphasis of this work is to denote the structural interaction of dolerite dyke with rigid host rock and textural variations from the chilled margin to the centre of the dolerite that changes during the emplacement and cooling process. Petrographically, intersertal and subophitic textures are recognized from the chilled margin and centre of the dolerite dyke, respectively. The present work scrutinizes the nature of the dyke contact with the host rock and whether magma flow alters the host rock wall or not at the micro level in the contact margin. Subsequently, after the emplacement, the study area underwent multiple stages of deformation that changed the pre-existing trend of the dykes. Major faults within the dykes of Attur and Mettur show a different style of deformation. The NNW–SSE dyke in the Attur region deformed dramatically in a sinistral strike-slip brittle manner by a brittle strike-slip fault documented for the time in this region and it is located near the Salem Attur Shear Zone. The ambiguous deformation mechanism of dolerite within the area's high shear sense shows a contradiction to the crustal-scale shear zones of Salem block. This strives the detailed physical and structural work in this region helps to demarcate the deformational process. Mettur dykes deformed as a normal slip toward the foothill of this area. These structural imprints help categorize this region’s mode of deformation and displacement event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Change history

References

  • Ananth C, Bhadra S, Goswami A (2020) Contrasting kinematics of brittle-shears within the Salem-Attur and Bhavani shear zone, south India: tectonic implications. J Earth Syst Sci 129(1):1–18

    Article  Google Scholar 

  • Anderson KM, Lisowski SP (2010) Cyclic ground tilt associated with the 2004–2008 eruption of Mount St. Helens. J Geophys Res 115:B11201. https://doi.org/10.1029/2009JB007102

    Article  Google Scholar 

  • Baer G, Beyth M, Reches Z (1994) Dikes emplaced into fractured basement, Timna Igneous Complex, Israel. J Geophys Res 99:24

    Google Scholar 

  • Barker DS (1970) Compositions of granophyre, myrmekite, and graphic granite. Geol Soc Am Bull 81:3339–3350

    Article  Google Scholar 

  • Beauducel F, Cornet FH, Suhanto E, Duquesnoy T, Kasser M (2000) Constraints on magma flux from displacements data at Merapi volcano, Java, Indonesia. J Geophys Res: Solid Earth 105(B4):8193–8203

    Article  Google Scholar 

  • Behera BM, Waele BD, Thirukumaran V, Sundaralingam K, Narayanan S, Sivalingam B, Biswal TK (2019) Kinematics, strain pattern and geochronology of the Salem-Attur shear zone: tectonic implications for the multiple sheared Salem-Namakkal blocks of the Southern Granulite terrane, India. Precambr Res 324:32–61

    Article  Google Scholar 

  • Benn K, Allard B (1989) Preferred mineral orientations related to magmatic flow in ophiolite layered gabbros. J Petrol 30(4):925–946

    Article  Google Scholar 

  • Bhadra BK (2000) Ductile shearing in Attur shear zone and its relation with Moyar shear zone, South India. Gondwana Res 3:361–369

    Article  Google Scholar 

  • Biswal TK, Thirukumaran V, Ratre K, Bandyapadhaya K, Sundaralingam K, Mondal AK (2010) A study of mylonites from parts of the Salem-Attur shear zone (Tamil Nadu) and its tectonic implications. J Geol Soc India 75(1):128–136

    Article  Google Scholar 

  • Bouchez JL (1997) Granite is never isotropic: an introduction to AMS studies of granitic rocks. In: Bouchez JL, Hutton DHW, Stephens WE (eds) Granite: from segregation of melt to emplacement fabrics. Petrology and Structural Geology, vol 8. Springer, Dordrecht. https://doi.org/10.1007/978-94-017-1717-5_6

    Chapter  Google Scholar 

  • Cañón Tapia E (2004) Anisotropy of magnetic susceptibility of lava flows and dykes: a historical account. Geol Soc London, Spec Publ 238(1):205–225

    Article  Google Scholar 

  • Cañón Tapia E, Chávez-Álvarez J (2004) Theoretical aspects of particle movement in flowing magma: implications for the anisotropy of magnetic susceptibility of dykes. Geol Soc London, Spec Publ 238(1):227–249

    Article  Google Scholar 

  • Chadwick WW Jr, Archuleta RJ, Swanson DA (1988) The mechanics of ground deformation precursory to dome-building extrusions at Mount St. Helens 1981–1982. J Geophys Res: Solid Earth 93(B5):4351–4366

    Article  Google Scholar 

  • Chetty TRK, Bhaskar Rao YJ (1998) Behavior of stretching lineation in the Salem-Attur shear belt, Southern Granulite terrane, south India. J Geol Soc India 52:443–448

    Google Scholar 

  • Chetty TRK, Santosh M (2013) Proterozoic orogens in southern Peninsular India: contiguities and complexities. J Asian Earth Sci 78:39–53

    Article  Google Scholar 

  • Clark C, Collins AS, Kinny PD, Timms NE, Chetty TRK (2009) SHRIMP U-Pb age constraints on the age of charnockite magmatism and metamorphism in the Salem Block, southern India. Gondwana Res 16:27–36

    Article  Google Scholar 

  • Clemens JD (2003) S-type granitic magmas-petrogenetic issues, models and evidence. Earth-Sci Rev 61(1):1–18

    Article  Google Scholar 

  • Collins AS, Clark C, Plavsa D (2014) Peninsular India in Gondwana: the tectonothermal evolution of the Southern Granulite Terrain and its Gondwanan counterparts. Gondwana Res 25:190–203

    Article  Google Scholar 

  • Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks. Allen and Unwine, London, p 450

    Book  Google Scholar 

  • Dash JK, Pradhan SK, Bhutani R, Balakrishnan S, Chandrasekaran G, Basavaiah N (2013) Paleomagnetism of ca. 2.3 Ga mafic dyke swarms in the northeastern Southern Granulite Terrain, India: constraints on the position and extent of Dharwar craton in the Paleoproterozoic. Precambrian Res 228:164–176

    Article  Google Scholar 

  • Delaney P, Gartner A (1997) Physical processes of shallow mafic dike emplacement near the San Rafael Swell, Utah. Geol Soc Am Bull 109(9):16

    Article  Google Scholar 

  • Delaney PT, Pollard DD, Ziony JI, McKee EH (1986) Field relations between dikes and joints: emplacement processes and paleostress analysis. J Geophys Res 91:4920–4938

    Article  Google Scholar 

  • Devaraju TC, Huhma H, Sudhakara TL, Kaukonen RJ, Alapieti TT (2007) Petrology, geochemistry, model Sm-Nd ages and petrogenesis of the granitoids of the northern block of Western Dharwar Craton. J Geol Soc India 70:889–911

    Google Scholar 

  • D’Mello NG, Zellmer GF, Negrini M, Kereszturi G, Procter J, Stewart R, Prior D, Usuki M, Iizuka Y (2021) Deciphering magma storage and ascent processes of Taranaki, New Zealand, from the complexity of amphibole breakdown textures. Lithos 398:106264. https://doi.org/10.1016/j.lithos.2021.106264

    Article  Google Scholar 

  • Drury SA (1984) A Proterozoic intracratonic basin, dyke swarms and thermal evolution in south India. J Geol Soc India 25:437–444

    Google Scholar 

  • Drury SA, Holt RW (1980) The tectonic framework of the south Indian Craton, a reconnaissance involving Land sat imagery. Tectonophysics 65:T1–T15

    Article  Google Scholar 

  • Eriksson PI, Riishuus MS, Sigmundsson F, Elming SA (2011) Magma flow directions inferred from field evidence and magnetic fabric studies of the Streitishvarf composite dike in east Iceland. J Volcanol Geoth Res 206(1–2):30–45

    Article  Google Scholar 

  • Ernst R, Baragar W (1992) Evidence from magnetic fabric for the flow pattern of magma in the Mackenzie giant radiating dyke swarm. Nature 356:511–513

    Article  Google Scholar 

  • Ernst RE, Srivastava RK (2008) India’s place in the Proterozoic world: constraints from the Large Igneous Province (LIP) record. In: Srivastava RK, Sivaji CH, Chalapathi Rao NV (eds) Indian dykes. Narosa Publishing House, New Delhi, pp 41–56

    Google Scholar 

  • Ernst RE, Head JW, Parfitt E, Grosfils E, Wilson L (1995) Giant radiating dyke swarms on Earth and Venus. Earth Sci Rev 39:1–58

    Article  Google Scholar 

  • Fenn PM (1986) On the origin of graphic granite. Am Miner 71(3–4):325–330

    Google Scholar 

  • Fermor LL (1936) An attempt at the correlation of the ancient schistose formations of peninsular India. Mem Geol Sur India 70:1–52

    Google Scholar 

  • Frost BR, Frost CD (2008) On charnockites. Gondwana Res 13(1):30–44

    Article  Google Scholar 

  • Ganguli SS, Pal SK, Sundaralingam K (2021) Kumar P (2021) Insights into the crustal architecture from the analysis of gravity and magnetic data across Salem-Attur Shear Zone (SASZ), Southern Granulite Terrane (SGT), India: an evidence of accretional tectonics. Episodes 44:419–442

    Article  Google Scholar 

  • Geoffroy L, Callot JP, Aubourg C, Moreira M (2002) Magnetic and plagioclase linear fabric discrepancy in dykes: a new way to define the flow vector using magnetic foliation. Terra Nova 14(3):183190

    Article  Google Scholar 

  • Geshi N, Kusumoto S, Gudmundsson A (2010) The geometric difference between non-feeders and feeders dikes. Geology 38:195–198

    Article  Google Scholar 

  • Ghosh JG, Wit MJD, Zartman RE (2004) Age and tectonic evolution of Neoproterozoic ductile shear zones in the Southern Granulite Terrain of India, with implications for Gondwana studies. Tectonics 23:297–319

    Article  Google Scholar 

  • Green D, Neuberg J, Cayol V (2006) Shear stress along the conduit wall as a plausible source of tilt at Soufrière Hills volcano. Montserrat Geophys Res Lett 33:L10306. https://doi.org/10.1029/2006GL025890

    Article  Google Scholar 

  • Gudmundsson A (2006) How local stresses control magma-chamber ruptures, dyke injections, and eruptions in composite volcanoes. Earth Sci Rev 79:1–31

    Article  Google Scholar 

  • Halls HC, Fahrig WF (1987) Mafic dyke swarms. Geol Assoc Can Spec Pap 34:1–10

    Google Scholar 

  • Hautmann S, Gottsmann J, Sparks RSJ, Costa A, Melnik O, Voight B (2009) Modelling ground deformation caused by oscillating overpressure in a dyke conduit at Soufrière Hills Volcano. Montserrat Tectonophysics 471(1–2):87–95

    Article  Google Scholar 

  • Hoek JD (1995) Dyke propagation and arrest in Proterozoic tholeiitic dyke swarms, Vestfold Hills, East Antarctica. In: Baer G, Heimann A (eds) Physics and chemistry of dykes, pp 79–93

  • Horsman E, Morgan S, de Saint-Blanquat M, Habert G, Nugent A, Hunter RA, Tikoff B (2009) Emplacement and assembly of shallow intrusions from multiple magma pulses, Henry Mountains, Utah. Earth Environ Sci Trans R Soc Edinb 100(1–2):117–132

    Google Scholar 

  • Hoyer L, Watkeys MK (2017) Using magma flow indicators to infer flow dynamics in sills. J Struct Geol 96:161–175

    Article  Google Scholar 

  • Huppert HE, Sparks RSJ (1989) Chilled margins in igneous rocks. Earth Planet Sci Lett 92:397–405

    Article  Google Scholar 

  • Hutton DH (1988) Granite emplacement mechanisms and tectonic controls: inferences from deformation studies. Earth Environ Sci Trans R Soc Edinb 79(2–3):245–255

    Google Scholar 

  • Jain AK, Singh S, Manickavasagam RM (2003) Intracontinental shear zones in the Southern Granulite Terrain: their kinematics and evolution. Memoirs Geological Society of India 50:225–253

  • Jayabalan M, Umamaheswaran G, Suresh A (2012) Petrology and geochemistry of dolerite dykes of Dharmapuri and Salem Districts of Tamil Nadu. J Appl Geochem 14(1):52–68

    Google Scholar 

  • Jolly RJH, Sanderson DJ (1997) A Mohr circle construction for the opening of a pre-existing fracture. J Struct Geol 19(6):887–892

    Article  Google Scholar 

  • Kavanagh JL, Sparks RSJ (2011) Insights of dyke emplacement mechanics from detailed 3d dyke thickness datasets. J Geol Soc 168(4):965–978

    Article  Google Scholar 

  • Keir D, Pagli C, Bastow ID, Ayele A (2011) The magma-assisted removal of Arabia in Afar: evidence from dike injection in the Ethiopian rift captured using InSAR and seismicity. Tectonics 30(2). https://doi.org/10.1029/2010TC002785

  • Klamadji MN, Dedzo MG, Tchameni R, Dawaï D (2020) Petrography and geochemical characterization of dolerites from Figuil (Northern Cameroon) and Léré (Southwestern Chad). Int J Geosci 11(7):459–482

    Article  Google Scholar 

  • Maaløe S (1998) Shape of ascending feeder dikes, and ascent modes of magma. J Volcanol Geotherm Res 81(3–4):207–214

    Article  Google Scholar 

  • McCaffrey KJW, Miller CF, Karlstrom KE (1999) Synmagmatic deformation patterns in the Old Woman Mountains, SE California. J Struct Geol 21:335–349

    Article  Google Scholar 

  • Miller CF, Watson EB, Harrison TM (1988) Perspectives on the source, segregation and transport of granitoid magmas. Trans R Soc Edinburgh Earth Sci 79:135–156

    Google Scholar 

  • Mir AR (2022) Proterozoic newer dolerite dyke swarm magmatism in the Singhbhum Craton, Eastern India. In HM Saleh, & AI Hassan (Eds.), Geochemistry and mineral resources. IntechOpen. https://doi.org/10.5772/intechopen.104833

  • Morgan GB, London D (2012) Process of granophyre crystallization in the Long Mountain Granite, Southern Oklahoma. Bulletin 124(7–8):1251–1261

    Google Scholar 

  • Murthy NGK (1987) Mafic dyke swarms of the Indian Shield. In: Halls HC, Fahrig WF (eds) Mafic dyke swarms. Geol Assoc Canada Spl Paper 34, pp 393–400

  • Naha K, Srinivasan R (1996) Nature of the Moyar and Bhavani shear zones, with a note on its implications on the tectonics of the southern Indian Precambrian shield. Proc Indian Acad Sci Earth Planet Sci 105:143–189

    Google Scholar 

  • Neuberg JW, Collinson AS, Mothes PA, Ruiz MC, Aguaiza S (2018) Understanding cyclic seismicity and ground deformation patterns at volcanoes: intriguing lessons from Tungurahua volcano, Ecuador. Earth Planet Sci Lett 482:193–200. https://doi.org/10.1016/j.epsl.2017.10.050

    Article  Google Scholar 

  • Niu J, Song TRA (2021) Episodic transport of discrete magma batches beneath Aso volcano. Nat Commun 12(1):1–12. https://doi.org/10.1038/s41467-021-25883-y

    Article  Google Scholar 

  • Okumura S, Kozono T (2017) Silicic lava effusion controlled by the transition from viscous magma flow to friction-controlled flow. Geophys Res Lett 44:3608–3614. https://doi.org/10.1002/2017GL072875

    Article  Google Scholar 

  • Okumura S, Nakamura M, Nakano T, Uesugi K, Tsuchiyama A (2010) Shear deformation experiments on vesicular rhyolite: implications for brittle fracturing, degassing, and compaction of magmas in volcanic conduits. J Geophys Res Solid Earth 115:B06201. https://doi.org/10.1029/2009JB006904

    Article  Google Scholar 

  • Palmer HC, Ernst RE, Buchan KL (2007) Magnetic fabric studies of the Nipissing sill province and Senneterre dykes, Canadian Shield, and implications for emplacement. Can J Earth Sci 44(4):507–528

    Article  Google Scholar 

  • Paterson SR, Tobisch OT, Vernon RH (1991) Deformation and pluton emplacement during volcanic arc construction in the Foothills Terrane, central Sierra Nevada, California. Tectonophysics 191:89–110

    Article  Google Scholar 

  • Paterson SR, Fowler TK Jr, Schmidt KL, Yoshinobu AS, Yuan ES, Miller RB (1998) Interpreting magmatic fabric patterns in plutons. Lithos 44(1–2):53–82

    Article  Google Scholar 

  • Payacán I, Gutiérrez F, Gelman SE, Bachmann O, Parada MÁ (2014) Comparing magnetic and magmatic fabrics to constrain the magma flow record in La Gloria pluton, central Chile. J Struct Geol 69:32–46

    Article  Google Scholar 

  • Petrelli M, Zellmer GF (2020) Rates and timescales of magma transfer, storage, emplacement, and eruption. Dynamic Magma Evol 1–41https://doi.org/10.1002/9781119521143.ch1

  • Pivarunas AF, Meert JG, Pandit MK, Sinha A (2019) Paleomagnetism and geochronology of mafic dykes from the Southern Granulite Terrane, India: Expanding the Dharwar craton southward. Tectonophysics 760:4–22

    Article  Google Scholar 

  • Pons J, Barbey P, Nachit H, Burg JP (2006) Development of igneous layering during growth of Pluton: The Tarcouate Laccolith (Morocco). Tectonophysics 413(3):271–286

    Article  Google Scholar 

  • Que M, Allen AR (1996) Sericitization of plagioclase in the Rosses Granite Complex, Co. Donegal, Ireland. Mineral Mag 60(403):927–936. https://doi.org/10.1180/minmag.1996.060.403.07

    Article  Google Scholar 

  • Radhakrishna T, Joseph M (1996) Proterozoic paleomagnetism of mafic dyke swarms in high grade region of south India. Precamb Res 76:31–46

    Article  Google Scholar 

  • Radhakrishna T, Krishnendu NR, Balasubramonian G (2013) Palaeoproterozoic Indian shield in the global continental assembly: Evidence from the palaeomagnetism of mafic dyke swarms. Earth Sci Rev 126:370–389

    Article  Google Scholar 

  • Rasmussen J (1978) Schematic 3-D model of a dyke in the Faeroese basalt plateau. Bull Geol Soc 27:79–84

    Google Scholar 

  • Rusiecka MK, Baker DR (2021) Growth and textural evolution during crystallization of quartz and feldspar in hydrous, rhyolitic melt. Contrib Miner Petrol 176(7):1–15

    Article  Google Scholar 

  • Rusiecka MK, Bilodeau M, Baker DR (2020) Quantification of nucleation delay in magmatic systems: experimental and theoretical approach. Contrib Miner Petrol 175(5):1–16

    Article  Google Scholar 

  • Sajid M (2019) Petrography, geochemistry and physico-mechanical properties of dolerite from Oghi (Mansehra), Khyber Pakhtunkhwa, Pakistan. J Himalayan Earth Sci 52(2):185–196

    Google Scholar 

  • Santosh M, Maruyama S, Sato K (2009) Anatomy of a Cambrian suture in Gondwana: Pacific-type orogeny in southern India? Gondwana Res 16(2):321–341

    Article  Google Scholar 

  • Santosh M, Yang QY, Shaji E, Tsunogae T, Mohan MR, Satyanarayanan M (2015) An exotic Mesoarchean microcontinent: the Coorg Block, southern India. Gondwana Res 27(1):165–195

    Article  Google Scholar 

  • Santosh M, Yang QY, Shaji E, Ram Mohan M, Tsunogae T, Satyanarayanan M (2016) Oldest rocks from Peninsular India: Evidence for Hadean to Neoarchean crustal evolution. Gondwana Res 29:105–135

    Article  Google Scholar 

  • Shelley D (1966) The significance of granophyric and myrmekitic textures in the Lundy granites. Mineral Mag J Mineral Soc 35(273):678–692

    Article  Google Scholar 

  • Silpa AS, Satish Kumar M (2018) Dyke swarms in the Dharwar craton: a key to understanding the Late Archean to Early Proterozoic cratonic correlations. J Indian Inst Sci 98:365–378

    Article  Google Scholar 

  • Snoke AW, Tullis J, Todd VR (1998) Fault-related rocks: a photographic atlas. Princeton University Press, Princeton, NJ

    Book  Google Scholar 

  • Srivastava RK, Jayananda M, Gautam GC, Gireesh V, Samal AK (2014) Geochemistry of an ENE–WSW to NE–SW trending∼ 2.37 Ga mafic dyke swarm of the eastern Dharwar craton, India: does it represent a single magmatic event? Geochemistry 74(2):251–265

    Article  Google Scholar 

  • Srivastava RK, Söderlund U, Ernst RE, Mondal SK, Samal AK (2019) Precambrian mafic dyke swarms in the Singhbhum craton (eastern India) and their links with dyke swarms of the eastern Dharwar craton (southern India). Precambrian Res 329:5–17

    Article  Google Scholar 

  • Srivastava RK, Söderlund U, Ernst RE, Gautam GC (2021) A ca. 2.25 Ga mafic dyke swarm discovered in the Bastar craton, Central India: implications for a widespread plume-generated Large Igneous Province (LIP) in the Indian shield. Precambrian Res 360:106232

    Article  Google Scholar 

  • Tauxe L, Gee JS, Staudigel H (1998) Flow directions in dikes from anisotropy of magnetic susceptibility data: the bootstrap way. J Geophys Res: Solid Earth 103(B8):17775–17790

    Article  Google Scholar 

  • Tobisch OT, Cruden AR (1995) Fracture-controlled magma conduits in an obliquely convergent continental magmatic arc. Geology 23:941–944

    Article  Google Scholar 

  • Tobisch OT, Saleeby JB, Fiske RS (1986) Structural history of volcanic arc rocks, eastern Sierra Nevada, California: a case for extensional tectonics. Tectonics 5:65–94

    Article  Google Scholar 

  • Twiss RJ, Moores EM (1992) Structural geology. W.H. Freeman, New York

    Google Scholar 

  • Vachon R, Bazargan M, Hieronymus CF, Ronchin E, Almqvist B (2021) Crystal rotations and alignment in spatially varying magma flows: 2-D examples of common subvolcanic flow geometries. Geophys J Int 226(1):709–727

    Article  Google Scholar 

  • Valdiya KS (1998) Late quaternary movement and land scape rejuvenation in SE Karnataka and adjoining TN in south Indian shield. J Geol Soc India 51:139–166

    Google Scholar 

  • Valentine GA, Krogh KEC (2006) Emplacement of shallow dikes and sills beneath a small basaltic volcanic centre - the role of pre-existing structure (Paiute Ridge, southern Nevada, U.S.A.). Earth Planet Sci Lett 246(3):217–230

    Article  Google Scholar 

  • Venkatesh AS, Rao GP, Rao NP, Bhalla MS (1987) Palaeomagnetic and geochemical studies on dolerite dykes from Tamil Nadu, India. Precambr Res 34:291–310

    Article  Google Scholar 

  • Vernon R (2000) Review of microstructural evidence of magmatic and solid-state flow. Vis Geosci 5:1–23

    Article  Google Scholar 

  • Vernon RH, Paterson SR (2006) Mesoscopic structures resulting from crystal accumulation and melt movement in granites, Earth Environ. Sci Trans r Soc Edinburgh 97(4):369–381

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Department of Geology, Periyar University, Salem for providing DST-FIST-sponsored laboratory facilities. The corresponding author would like to acknowledge the support and help of the late Venkat Prasath who is not an author but has provided valuable contributions in preparing fieldwork and sample collection. The authors acknowledge the valuable input and comments from Dr. Syed Haroon Ali for improving this work. The authors acknowledge the reviewers for their critical evaluation, valuable suggestions, comments, and constructive review which help the authors to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Ramachandran.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: François Roure

The original online version of this article was revised: In the original version of this article, the given and family names of “C. Ramachandran, A. Thirunavukkarasu, R. Ravi” were incorrectly structured.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, C., Thirunavukkarasu, A. & Ravi, R. Wall rock deformation, chilled margin, textural analysis, and displacement structures of Salem dolerites emplaced within the Southern Granulite Terrane, Tamilnadu, India. Arab J Geosci 16, 52 (2023). https://doi.org/10.1007/s12517-022-11144-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-11144-9

Keywords

Navigation