Log in

Geochemical signatures of provenance, chemical weathering, and tectonic setting in the Greater Zab River sediments, Iraqi Kurdistan Region

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Active sediments along a 90 km section of Greater Zab River (GZR) in Kurdistan Region/ Iraq were analyzed for their major, trace, and rare earth elements contents to investigate their provenance, weathering at the source area, and tectonic setting. The enrichment of sediments with transition elements (Co, Cr, and Ni), the bivariate (Zr/Sc vs Th/Sc, K2O vs Rb, and Al2O3/TiO2 vs SiO2adj) plots, and elemental ratios (Th/Sc, Th/Co, Th/Cr, La/Sc, and Eu/Eu*) suggest the GZR sediments are derived from basic igneous rocks. However, the Al2O3/TiO2 ratio, bivariate TiO2 vs Zr, and chondrite-normalized patterns (enriched with LREE and small negative Eu anomalies) suggest some contribution of intermediate and felsic rock sources of the upper continental crust. The weathering indices (CIA and PIA) and the A-CN-K ternary diagram indicate a weak degree of weathering for the source materials. Th/U and Rb/Sr ratios of the stream sediments also suggest a low degree of weathering. Low CIA reflects limited or the near absence of chemical alteration and thus indicates arid and/or cool conditions. The Index of Compositional Variability (ICV) indicates very low compositional maturity. Tectonic discrimination diagrams log (K2O/Na2O) vs SiO2/Al2O3 ratios, log (K2O/Na2O) vs SiO2, and La-Th-Sc ternary diagram indicate the studied sediments plot in the oceanic and continental island arc. These tectonic settings are consistent with the northeastern tectonically active uplands closely associated with the subduction zone of the colliding Arabian and Iranian Plates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Ali JA (1977) Heavy minerals provinces of the recent sediments of Euphrates-Tigris basin. J Geol Soc Iraq 10:33–48

    Google Scholar 

  • Al-Rawi YT, Sayyab AS, Al-Jassim JA, Tamar-Agha M, Al-Sammarai AHI, Karim SA, Basi MA, Hagopian D, Hassan KM, Al-Mubarak M, Al-Badri A, Dhiab SH, Faris FM, Anwar F (1992) New names for some of the Middle Miocene-Pliocene formations of Iraq. (Fatha, Injana, Mukdadiya, and Bai Hassan formations). Iraq Geol J 25(1):1–7

    Google Scholar 

  • Andersson POD, Worden RH, Hodgson DM, Flint S (2004) Provenance evolution and chemostratigraphy of a Palaeozoic submarine fan-complex: Tanqua Karoo Basin, South Africa. Mar Petrol Geol 21:555–577

    Article  Google Scholar 

  • Andersson K, Dahlqvist R, Turner D, Stolpe B, Larsson T, Ingri J, Andersson P (2005) Colloidal rare earth elements in a boreal river: changing sources and distribution during the spring flood. Geochim Cosmochim Acta 70:3261–3274

    Article  Google Scholar 

  • Arhin E, Nude PM (2009) Overbank sediments as appropriate geochemical sample media in regional stream sediment surveys for gold exploration in the savannah regions of northern Ghana. J Geochem Explor 103:50–56

    Article  Google Scholar 

  • Armstrong-Altrin JS (2009) Provenance of sands from Cazones, Acapulco, and Bahı´a Kino beaches. Rev Mex Cien Geol 26(3):764–782

    Google Scholar 

  • Armstrong-Altrin JS (2020) Detrital zircon U-Pb geochronology and geochemistry of the Riachuelos and Palma Sola beach sediments, Veracruz State, Gulf of Mexico: a new insight on paleoenvironment. J Palaeogeogr 9(4):1–27. https://doi.org/10.1186/s42501-020-00075-9

    Article  Google Scholar 

  • Armstrong-Altrin JS, Verma SP (2005) Critical evaluation of six tectonic setting discrimination diagrams using geochemical data of Neogene sediments from known tectonic settings. Sediment Geol 177:115–129

    Article  Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Verma SP, Ramasamy S (2004) Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: implications for provenance, weathering, and tectonic setting. J Sediment Res 74:285–297

    Article  Google Scholar 

  • Armstrong-Altrin JS, Lee YI, Kasper-Zubillaga JJ, Carranza-Edwards A, Garcia D, Eby N, Balaram V, Cruz-Ortiz NI (2012) Geochemistry of beach sands along the Western Gulf of Mexico, Mexico: implication for provenance. Chem Erde 72:345–362

    Article  Google Scholar 

  • Armstrong-Altrin JS, Nagarajan R, Balaram V, Natalhy-Pineda O (2015) Petrography and geochemistry of sands from the Chachalacas and Veracruz beach areas, western Gulf of Mexico, Mexico: constraints on provenance and tectonic setting. J S Am Earth Sci 64:199–216

    Article  Google Scholar 

  • Armstrong-Altrin JS, Madhavaraju J, Vega-Bautista F, Ramos-Vázquez MA, Pérez-Alvarado BY, Kasper-Zubillaga JJ, EkoaBessa AZ (2021) Mineralogy and geochemistry of Tecolutla and Coatzacoalcos beach sediments, SW Gulf of Mexico. Appl Geochem 134:105103

    Article  Google Scholar 

  • Armstrong-Altrin JS, Ramos-Vázquez MA, Madhavaraju J, Marca-Castillo ME, Machain-Castillo ML (2022) Geochemistry of marine sediments adjacent to the Los Tuxtlas Volcanic Complex, Gulf of Mexico: Constraints on weathering and provenance. Appl Geochem 141:105321

    Article  Google Scholar 

  • Aubert D, Stille P, Probst A (2001) REE fractionation during granite weathering and removal by waters and suspended loads: Sr and Nd isotopic evidence. Geochim Cosmochim Acta 65:387–406. https://doi.org/10.1016/S0016-7037(00)00546-9

    Article  Google Scholar 

  • Bhatia MR (1983) Plate tectonics and geochemical composition of sandstones. J Geol 91:611–627

    Article  Google Scholar 

  • Bhatia MR, Crook KAW (1986) Trace element characteristics of greywackes and tectonic discrimination of sedimentary basins. Contrib Mineral Petrol 92:181–193

    Article  Google Scholar 

  • Bhuiyan MAH, Rahman MJJ, Dampare SB, Suzuki S (2011) Provenance, tectonics and source weathering of modern fluvial sediments of the Brahmaputra–Jamuna River, Bangladesh: inference from geochemistry. J Geochem Explor 111:113–137

    Article  Google Scholar 

  • Bineli MTN, Onana VL, Tang SDN, Bikoy YR, Ekodeck GE (2020) Mineralogy and geochemistry of sands of the lower course of the Sanaga River, Cameroon: implications for weathering, provenance, and tectonic setting. Acta Geochem. https://doi.org/10.1007/s11631-020-00437-z

  • Bock B, McLennan SM, Hanson GN (1998) Geochemistry and provenance of the Middle Ordovician Austin Glen Member (Normanskill Formation) and the Taconian Orogeny in New England. Sedimentology 45:635–655

    Article  Google Scholar 

  • Bracciali L, Marroni M, Pandolfi L, Rocchi S (2007) Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source area to configuration of margins. Geol Soc Am Spec Pap 420:73–93

    Google Scholar 

  • Buday T (1980) The regional geology of Iraq, stratigraphy and palaeontology. Geo Surv Miner Invest, Baghdad

    Google Scholar 

  • Caccia VG, Millero FJ (2007) Distribution of yttrium and rare earths in Florida Bay sediments. Mar Chem 104(3-4):171–185

    Article  Google Scholar 

  • Chougong DT, Bessa AZE, Ngueutchoua G, Yongue RF, Ntyam SC, Armstrong-Altrin JS (2021) Mineralogy and geochemistry of Lobé River sediments, SW Cameroon: implications for provenance and weathering. J Afr Earth Sci 183:104320

    Article  Google Scholar 

  • Cox R, Low DR, Culler RL (1995) The influence of sediment recycling and basement composition on evolution of mudrock chemistry in the southwestern United States. Geochim Cosmochim Acta 59:219–2940

    Article  Google Scholar 

  • Cullers RL (1994) The controls on the major and trace element variation of shales, siltstones and sandstones of Pennsylvanian- Permian age from uplifted continental blocks in Colorado to platform sediment in Kansas, USA. Geochim Cosmochim Acta 58:4955–4972

    Article  Google Scholar 

  • Cullers RL (2000) The geochemistry of shales, siltstones, and sandstones of Pennsylvanian-Permian age, Colorado, USA: implications for provenance and metamorphic studies. Lithos 51:181–203

    Article  Google Scholar 

  • Cullers RL (2002) Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. Chem Geol 191:305–327

    Article  Google Scholar 

  • Cullers RL, Podkovyrov VN (2000) Geochemistry of the Mesoproterozoic Lakhanda shales in southeastern Yakutia, Russia: implications for mineralogical and provenance control, and recycling. Precambrian Res 104(1-2):77–93

    Article  Google Scholar 

  • Cullers RL, Barrett T, Carlson R, Robinson B (1987) Rare earth element and mineralogic changes in Holocene soil and stream sediment: a case study in the Wet Mountains, Colorado, U.S.A. Chem Geol 63:275–297

    Article  Google Scholar 

  • Cullers RL, Basu A, Suttner LJ (1988) Geochemical signature of provenance in sand-mixed material in soils and stream sediments near the Tobacco Root batholith, Montana, USA. Chem Geol 70:335–348

    Article  Google Scholar 

  • Dostal J, Keppie JD (2009) Geochemistry of low-grade clastic rocks in the Acatlan Complex of southern Mexico: evidence for local provenance in felsic-intermediate igneous rocks. Sediment Geol 222:241–253

    Article  Google Scholar 

  • Ekoa Bessa AZ, Ngueutchoua G, Ndjigui PD (2018) Mineralogy and geochemistry of sediments from Simbock Lake, Yaoundé area (southern Cameroon): provenance and environmental implications. Arab J Geosci 11(22):1–18

    Article  Google Scholar 

  • Ekoa Bessa AZ, Ngueutchoua G, Ekomane E, Bisse SB, Eric BE, Chougong D, Kam JA, Teutsong T (2020) Provenance and weathering conditions of the Moloundou swamp sediments, southeast Cameroon: evidence from mineralogy and geochemistry. Solid. Earth Sci 5(3):169–181. https://doi.org/10.1016/j.sesci.2020.06.002

  • Ekoa Bessa AZ, Ndjigui PD, Fuh GC, Armstrong-Altrin JS, Betsi TB (2021) Mineralogy and geochemistry of the Ossa lake Complex sediments, Southern Cameroon: implications for paleoweathering and provenance. Arab J Geosci 14(4):1–17

    Article  Google Scholar 

  • Etemad-Saeed N, Hosseini-Barzi M, Adabi MH, Sadeghi A, Houshmandzadeh A (2015) Provenance of the Neoproterozoic sedimentary basement of northern Iran, Kahar Formation. J Afr Earth Sci 111:54–75

    Article  Google Scholar 

  • Fedo CM, Nesbitt HW, Young GM (1995) Unravelling the effects of potassium metasomatism in sedimentary rocks and paleosols, with implications for paleoweathering conditions and provenance. Geology 23:921–924

    Article  Google Scholar 

  • Feng R, Kerrich R (1990) Geochemistry of fine-grained clastic sediments in the Archean Abitib greenstones belt, Canada: implications for provenance and tectonic setting. Geochim Cosmochim Acta 54:1061–1081

    Article  Google Scholar 

  • Floyd PA, Leveridge BE (1987) Tectonic environments of the Devonian Gramscatho basin, south Cornwall: framework mode and geochemical evidence from turbidite sandstones. J Geol Soc Lond 144:531–542

    Article  Google Scholar 

  • Folk RL, Ward WC (1957) Brazos river bar- a study in the significance of grain size parameters. J Sed Pet 27:3–26

  • Garver JI, Royce PR, Smick TA (1996) Chromium and nickel in shale of the Taconic foreland: a case study for the provenance of fine-grained sediments with an ultramafic source. J Sediment Res 100:100–106

    Google Scholar 

  • Gu XX, Liu JM, Zheng MH, Tang JX, Qi L (2002) Provenance and tectonic setting of the Proterozoic turbidites in Hunan, South China: geochemical evidence. J Sediment Res 72(3):393–407

    Article  Google Scholar 

  • Güner OF (1994) Upper Cretaceous stratigraphy of Hekimhan-Hasancelebi region and the basin evolution. Geol Bull Turkey 37:135–148

    Google Scholar 

  • Guo Y, Yang S, Su N, Li C, Yin P, Wang Z (2018) Revisiting the effects of hydrodynamic sorting and sedimentary recycling on chemical weathering indices. Geochim Cosmochim Acta 227:48–63. https://doi.org/10.1016/j.gca.2018.02.015

    Article  Google Scholar 

  • Hayashi KI, Fujisawa H, Holland HD, Ohmoto H (1997) Geochemistry of ~ 1.9 Ga sedimentary rocks from northeastern Labrador, Canada. Geochim Cosmochim Acta 61:4115–4137

    Article  Google Scholar 

  • Hossain HMZ, Kawahata H, Roser BP, Sampei Y, Manaka T, Otani S (2017) Geochemical characteristics of modern river sediments in Myanmar and Thailand: implications for provenance and weathering. Chem Erde 77:443–458

    Article  Google Scholar 

  • Issa I, Al-Ansari N, Sherwany G, Knutsson S (2014) Expected Future of Water Resources within Tigris-Euphrates Rivers Basin. J Water Res Protec 6:421–432

    Article  Google Scholar 

  • Karim K, Koyi H, Baziany M, Hessami K (2011) Significance of angular unconformities between Cretaceous and Tertiary strata in the northwestern segment of the Zagros fold–thrust belt, Kurdistan Region, NE Iraq. Geol Mag 148(5–6):925–939

    Article  Google Scholar 

  • Keskin S (2011) Geochemistry of Çamardi Formation sediments, central Anatolia (Turkey): implication of source area weathering, provenance, and tectonic setting. Geosci J 15:185–195

    Article  Google Scholar 

  • Kettanah YA, Abdulrahman A (2022) Petrography and geochemistry of sandstones from the Injana Formation, Hemrin South Mountain, Northern Iraq: implications for provenance, weathering and tectonic setting. Geol J 57(5):2007–2023

    Article  Google Scholar 

  • Kontchipe YSN, Sopie FT, Ngueutchoua G, Aristide Nadine Sonfack AN, Nkouathio DG, Tchatchueng R, Nguemo GRK, Njanko T (2021) Mineralogy and geochemistry study of the Nyong River sediments,SW Cameroon. Implications for provenance, weathering, and tectonic setting. Arab J Geosci, Cameroon. https://doi.org/10.1007/s12517-021-07145-9

    Book  Google Scholar 

  • Le Bas MJ, Le Maitre RW, Streckeisen A, Zanettin B (1986) A chemical classification of volcanic rocks based on the total alkali-silica diagram. J Petrol 27(662):745–750

    Article  Google Scholar 

  • Liu Z, Zhao Y, Colin C, Stattegger K, Wiesner MG, Huh CA, Huang CY (2016) Source to sink transport processes of fluvial sediments in the South China Sea. Earth Sci Rev 153:238–273

    Article  Google Scholar 

  • Madhavaraju J, Armstrong-Altrin JS, Pillai RB, Pi-Puig T (2020) Geochemistry of sands from the Huatabampo and Altata beaches, Gulf of California, Mexico. Geol J. https://doi.org/10.1002/gj.3864

  • Maharana C, Srivastava D, Tripathi JK (2018) Geochemistry of sediments of the Peninsular rivers of the Ganga basin and its implication to weathering, sedimentary processes and provenance. Chem Geol 483:1–20

    Article  Google Scholar 

  • Mbale Ngama E, Sababa E, Bayiga EC, Ekoa Bessa AZ, Ndjigui PD, Bilong P (2019) Mineralogical and geochemical characterization of the unconsolidated sands from the Mefou River terrace, Yaoundé area, Southern Cameroon. J Afr Earth Sci 159:103570

    Article  Google Scholar 

  • McLennan SM (2001) Relationships between the trace element composition of sedimentary rocks and upper continental crust. G-cubed 2:2000GC000109

    Google Scholar 

  • McLennan SM, Hemming SR, McDaniel DK, Hanson GN (1993) Geochemical approaches to sedimentation, provenance, and tectonics. Geo Soc Amer 284:21–40. https://doi.org/10.1130/SPE284-p21

  • McLennan SM, Taylor SR, McCulloch MT, Maynard JB (1990) Geochemical and Nd-Sr isotopic composition of deep-sea turbidites: crustal evolution and plate tectonic associations. Geochim Cosmochim Acta 54(7):2015–2050

    Article  Google Scholar 

  • McLennan SM, Hemming SR, Taylor SR, Eriksson KA (1995) Early Proterozoic crustal evolution: geochemical and Nd-Pb isotopic evidence from metasedimentary rocks, southwestern North America. Geochim Cosmochim Acta 59(6):1153–1177

  • Morton AC, Hallsworth CR (1999) Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment Geol 124:3–29

    Article  Google Scholar 

  • Mustafa RK, Tobia FH (2020) Geochemical application in unraveling paleoweathering, provenance and environmental setting of the shale from Chia Gara Formation, Kurdistan Region, Iraq. Iraq Geol J 53(1A):90–116

    Article  Google Scholar 

  • Nascimento DR, Sawakuchi AO, Guedes CCF, Giannini PCF, Grohmann CH, Ferreira MP (2015) Provenance of sands from the confluence of the Amazon and Madeira rivers based on detrital heavy minerals and luminescence of quartz and feldspar. Sediment Geol 316:1–2

    Article  Google Scholar 

  • Ndjigui PD, Ebah Abeng SA, Ekomane E, Nzeukou NA, Ngo Mandeng FS, Lindjeck MM (2015) Mineralogy and geochemistry of pseudogley soils and recent alluvial clastic sediments in the Ngog Lituba region, Southern Cameroon: an implication to their genesis. J Afr Earth Sci 108:1–14

    Article  Google Scholar 

  • Ndjigui PD, Onana VL, Sababa E, Bayiga EC (2018) Mineralogy and geochemistry of the Lokoundje alluvial clays from the Kribi deposits, Cameroonian Atlantic coast: implications for their origin and depositional environment. J Afr Earth Sci 143:102–117

    Article  Google Scholar 

  • Nesbitt HW (1979) Mobility and fractionation of REE during weathering of granodiorite. Nature 279:206–210

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1982) Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299:715–717

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1984) Prediction of some weathering trends of plutonic and volcanic rocks based on thermodynamic and kinetic consideration. Geochim Cosmochim Acta 48:1523–1534

    Article  Google Scholar 

  • Nesbitt HW, Young GM (1989) Formation and diagenesis of weathering profiles. J Geol 97:129–147

    Article  Google Scholar 

  • Nesbitt HW, Fedo CM, Young GM (1997) Quartz and feldspar stability, steady and non-steady-state weathering, and petrogenesis of siliciclastic sands and muds. J Geol 105(2):173–192

    Article  Google Scholar 

  • Ngueutchoua G, Ekoa Bessa AZ, Eyong TJ, Demanou ZD, Baba Djaoro H, Tchami NL (2019a) Geochemistry of cretaceous fine-grained siliciclastic rocks from Upper Mundeck and Logbadjeck formations, Douala sub-basin, SW Cameroon: implications for weathering intensity, provenance, paleoclimate, redox condition, and tectonic setting. J Afr Earth Sci 152:215–236

    Article  Google Scholar 

  • Ngueutchoua G, Eyong TJ, Ekoa Bessa AZ, Azanji Agheenwi ZB, Emane Maschouer A, Sobdjou Kemteu C, Lontchi Dzoti Y, Hamadou T, Ongbassouek Baboule BM, Kenfack Nguemo GR (2019b) Provenance and depositional history of Mesozoic sediments from the Mamfe basin and Douala sub-basin (SW Cameroon) unraveled by geochemical analysis. J Afr Earth Sci 158:103550. https://doi.org/10.1016/j.jafrearsci.2019.103550

    Article  Google Scholar 

  • Pe-Piper G, Triantafyllidis S, Piper DJE (2008) Geochemical identification of clastic sediment provenance from known sources of similar geology: the Cretaceous Scotian Basin, Canada. J Sed Res 78(9):595–607

    Article  Google Scholar 

  • Rahman A, Das SC, Pownceby MI, James Tardio J, Alam S, Zaman MN (2020) Geochemistry of recent Brahmaputra River sediments: provenance, tectonics, source area weathering and depositional environment. Minerals. 10(9):813. https://doi.org/10.3390/min10090813

  • Ramos-Vázquez MA, Armstrong-Altrin JS (2019) Sediment chemistry and detrital zircon record in the Bosque and Paseo del Mar coastal areas from the southwestern Gulf of Mexico. Mar Pet Geol 110:650–675

    Article  Google Scholar 

  • Ramos-Vázquez MA, Armstrong-Altrin JS, Machain-Castillo ML, Gío-Argáez FR (2018) Foraminiferal assemblages, 14C ages, and compositional variations in two sediment cores in the western Gulf of Mexico. J S Am Earth Sci 88:480–496

    Article  Google Scholar 

  • Rivera-Gomez MA, Armstrong-Altrin JS, Verma SP, Diaz-Gonzalez L (2020) APMdisc: an online computer program for the geochemical discrimination of siliciclastic sediments from active and passive margins. Turk. J Earth Sci 29:550–578. https://doi.org/10.3906/yer-1908-15

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1986) Determination of tectonic setting of sandstone-mudstone suites using Si2O content and K2O/Na2O ratio. J Geol 94:635–650

    Article  Google Scholar 

  • Roser BP, Korsch RJ (1988) Provenance signatures of sandstone–mudstone suites determined using discrimination function analysis of major-element data. Chem Geol 67:119–139

    Article  Google Scholar 

  • Ross GR, Guevara SR, Arribere MA (1995) Rare earth geochemistry in sediments of the Upper Manso River Basin, Rio Negro, Argentina. Earth Planet Sci Lett 133:47–57

    Article  Google Scholar 

  • Roy PD, Caballero M, Lozano R, Smykatz-Kloss W (2008) Geochemistry of Late Quaternary sediments from Tecocomulco Lake, central Mexico: implication to chemical weathering and provenance. Chem Erde 68:383

    Article  Google Scholar 

  • Sharma A, Rajamani V (2000) Major element, REE, and other trace element behavior in amphibolite weathering under semiarid conditions in southern India. J Geol 108(4):487–496

    Article  Google Scholar 

  • Sharma A, Rajamani V (2001) Weathering of charnockites and sediment production in the catchment area of the Cauvery River, southern India. Sediment Geol 143(1-2):169–184

    Article  Google Scholar 

  • Sholkovitz ER (1995) The aquatic chemistry of rare earth elements in rivers and estuaries. Aquat Geochem 1(1):1–34

    Article  Google Scholar 

  • Singh P (2009) Major, trace and REE geochemistry of the Ganga River sediments: influence of provenance and sedimentary processes. Chem Geol 266:251–264

    Article  Google Scholar 

  • Sissakian V (2013) Geomorphology and morphometry of the Greater Zab River Basin, North of Iraq. Iraqi Bull Geol Min 9(3):21–49

    Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific, Oxford

    Google Scholar 

  • Tobia FH, Aswad KH (2014) Petrography and geochemistry of Jurassic sandstones, Western Desert, Iraq: Implications on provenance and tectonic setting. Arb J Gosci. https://doi.org/10.1007/s12517-014-1392-0

  • Tobia FH, Mustafa BH (2016) Geochemistry and mineralogy of the Al-rich shale from Baluti Formation, Iraqi Kurdistan region: implications for weathering and provenance. Arab J Geosci 9(20):1–23

    Article  Google Scholar 

  • Tobia FH, Shangola SS (2016) Mineralogy, geochemistry, and depositional environment of the Beduh shale (lower Triassic), Northern Thrust Zone, Iraq. Turk J Earth Sci 25(4):367–391

    Article  Google Scholar 

  • Valloni R, Maynard B (1981) Detrital modes of recent deep-sea sands and their relation to tectonic setting: a first approximation. Sediment 28:75–83

    Article  Google Scholar 

  • Verma SP, Armstrong-Altrin JS (2013) New multi-dimensional diagrams for tectonic discrimination of siliciclastic sediments and their application to Pre-Cambrian basins. Chem Geol 355:117–180

    Article  Google Scholar 

  • Verma SP, Armstrong-Altrin JS (2016) Geochemical discrimination of siliciclastic sediments from active and passive margin settings. Sediment Geol 332:1–12

    Article  Google Scholar 

  • Yang SY, Jung HS, Choi MS, Li CX (2002) The rare earth element compositions of the Changjiang (Yangtze) and Huanghe (Yellow) river sediments. Earth Planet Sci Lett 201:407–419

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Hikmat S. Mustafa, Dr. Dilshad O. Ali, and Miss Baran Hassan Mustafa at the Department of Geology/ Salahaddin University for their support during the fieldwork. We would like to thank an anonymous reviewer who offered critical comments which helped us to improve our presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rand Haiman Kafy.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest

Additional information

Responsible Editor: Domenico M. Doronzo

Supplementary Information

ESM 1

(DOCX 43 kb)

ESM 2

(DOCX 42 kb)

ESM 3

(DOCX 43 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kafy, R.H., Tobia, F.H. Geochemical signatures of provenance, chemical weathering, and tectonic setting in the Greater Zab River sediments, Iraqi Kurdistan Region. Arab J Geosci 15, 1556 (2022). https://doi.org/10.1007/s12517-022-10823-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-022-10823-x

Keywords

Navigation