Log in

Quantifying how climatic factors influence essential oil yield in wild-growing plants

  • Original Paper
  • Published:
Arabian Journal of Geosciences Aims and scope Submit manuscript

Abstract

Since the quantity and quality of plant metabolites are considerably affected by environmental conditions of the habitat, this study aimed at examining the impact of the main climatic factors on the quantity of essential oils (EOs) in two plant species growing spontaneously in Algerian semiarid zones: Thymus algeriensis Boiss & Reut. and Rosmarinus officinalis L. Essential oils were extracted yearly (2010–2014) from aerial parts by water distillation using Clevenger type system, then oil yield rates were estimated in relation to the dry matter of plant samples. Yields of species EOs showed significant variations during the 5 years and between the plant species and for the interaction “Year × Species”. The significant annual variations in EO yields suggest the involvement of climate, which affects differently the metabolism of plants resulting in different species EO yields. Rosmarinus officinalis accumulated the best oil content during 2010, 2012, and 2013 with 1%, 0.93%, and 0.88% respectively. Thymus algeriensis yielded higher EOs in 2013 followed by 2012 and 2011 with 1.08%, 0.67%, and 0.59% respectively. Furthermore, R. officinalis produced higher EO amount than T. algeriensis. The generalized linear model showed that oil accumulation in both species decreased significantly with the increase of precipitation. Secondary metabolism of T. algeriensis was more sensitive to climate variability compared to R. officinalis. While the later species responded negatively to the effect of wind speed and positively to mean temperature, all climate variables (except temperature) presented a significant influence on the variation of T. algeriensis EO yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets used and/or analyzed during the current study are available from the authors on a reasonable request.

References

  • Amarti F, Satrani B, Ghanmi M, Farah A, Aafi A, Aarab L, El Ajjouri M, Chaouch A (2010) Chemical composition and antimicrobial activity of essential oils of Thymus algeriensis Boiss & Reut. and Thymus ciliatus (Desf.) Benth. from Morocco. Biotechnol Agron Soc Environ 14(1):141–148 https://popups.uliege.be/1780-4507/index.php?id=5218

    Google Scholar 

  • Aziz SA, Kurniawati A, Faridah DN (2017) Changes of thymoquinone, thymol, and malondialdehyde content of black cumin (Nigella sativa L.) in response to Indonesia tropical altitude variation. Hayati J Biosci 24:156–161. https://doi.org/10.1016/j.hjb.2017.08.004

    Article  Google Scholar 

  • Başer KHC, Buchbauer G (eds) (2020) Handbook of essential oils: science, technology and applications, 3rd edn. CRC Press, Boca Raton, 1120p. https://doi.org/10.1201/9781351246460

    Book  Google Scholar 

  • Bensizerara D, Menasria T, Melouka M, Cheriet L, Chenchouni H (2013) Antimicrobial activity of xerophytic plant (Cotula cinerea Delile) extracts against some pathogenic bacteria and fungi. Jordan J Biol Sci 6(4):266–271. https://doi.org/10.12816/0001624

    Article  Google Scholar 

  • Bouyahya A, Dakka N, Talbaoui A, Et-Touys A, El-Boury H, Abrini J, Bakri Y (2017) Correlation between phenological changes, chemical composition and biological activities of the essential oil from Moroccan endemic Oregano (Origanum compactum Benth). Ind Crop Prod 108:729–737. https://doi.org/10.1016/j.indcrop.2017.07.033

    Article  Google Scholar 

  • Bruneton J (2001) Plantes toxiques, végétaux dangereux pour l’homme et les animaux. Edition Tec & Doc, Paris

    Google Scholar 

  • Chen Y, Wu YG, Xu Y, Zhang JF, Song XQ, Zhu GP, Hu XW (2014) Dynamic accumulation of sesquiterpenes in essential oil of Pogostemon cablin. Rev Bras 24:626–634. https://doi.org/10.1016/j.bjp.2014.11.001

    Article  Google Scholar 

  • Chenchouni H (2017) Edaphic factors controlling the distribution of inland halophytes in an ephemeral salt lake “Sabkha ecosystem” at North African semi-arid lands. Sci Total Environ 575:660–671. https://doi.org/10.1016/j.scitotenv.2016.09.071

    Article  Google Scholar 

  • Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582. https://doi.org/10.1128/cmr.12.4.564

    Article  Google Scholar 

  • Daniel M (2006) Medicinal plants: chemistry and properties. CRC Press, Boca Raton. https://doi.org/10.1201/b11003

    Book  Google Scholar 

  • De Martonne E (1925) Traité de Géographie Physique: 3 tomes. A. Colin, Paris

    Google Scholar 

  • Dob T, Darhmane D, Benabdelkader T, Chelghoum C (2006) Studies on the essential oil composition and antimicrobial activity of Thymus algeriensis Boiss. et Reut. Int J Aromather 16(2):95–100. https://doi.org/10.1016/j.ijat.2006.04.003

    Article  Google Scholar 

  • Dupont F, Guignard JL (2012) Botanique, les familles de plantes, 15th edn. Elsevier Masson SAS, Issy-les-Moulineaux

    Google Scholar 

  • Efendi D, Budiarto R, Poerwanto R, Santosa E, Agusta A (2021) Relationship among agroclimatic variables, soil and leaves nutrient status with the yield and main composition of Kaffir lime (Citrus hystrix DC) leaves essential oil. Metabolites 11(5):260. https://doi.org/10.3390/metabo11050260

    Article  Google Scholar 

  • European Pharmacopoeia (2004) 5th Ed. Council of Europe, Strasbourg, France.

  • Figueiredo AC, Barroso JG, Pedro LG, Scheffer JJC (2008) Factors affecting secondary metabolite production in plants: volatile components and essential oils. Flavour Fragr J 23(4):213–226. https://doi.org/10.1002/ffj.1875

    Article  Google Scholar 

  • Franchomme P (1999) L’aromathérapie, Thérapeutique de pointe en médecine naturelle, vol І–1, 1st edn. Sinceiro Entreprises Ltd

  • González-Rivera J, Duce C, Falconieri D, Ferrari C, Ghezzi L, Piras A, Tine MR (2016) Coaxial microwave assisted hydrodistillation of essential oils from five different herbs (lavender, rosemary, sage, fennel seeds and clove buds): chemical composition and thermal analysis. Innov Food Sci Emerg Technol 33:308–318. https://doi.org/10.1016/j.ifset.2015.12.011

    Article  Google Scholar 

  • Guignard JL (2000) Biochimie Végétale, 2nd edn. Dunod, Paris

    Google Scholar 

  • Guignard JL, Cosson L, Henry M (1985) Abrégé de Phytochimie. Masson, Paris

    Google Scholar 

  • Hopkins WG (2003) Physiologie Végétale. Edition De Boeck, Bruxelles

    Google Scholar 

  • Idder-Ighili H, Idder MA, Doumandji-Mitiche B, Chenchouni H (2015) Modeling the effects of climate on date palm scale (Parlatoria blanchardi) population dynamics during different phenological stages of life history under hot arid conditions. Int J Biometeorol 59(10):1425–1436. https://doi.org/10.1007/s00484-014-0952-z

    Article  Google Scholar 

  • Iserin P (2001) Encyclopédie des plantes médicinales. Identification, préparation, soins. Edition Larousse, Paris.

  • Jeshni MG, Mousavinik M, Khammari I, Rahimi M (2017) The changes of yield and essential oil components of German Chamomile (Matricaria recutita L.) under application of phosphorus and zinc fertilizers and drought stress conditions. J Saudi Soc Agric Sci 16:60–65. https://doi.org/10.1016/j.jssas.2015.02.003

    Article  Google Scholar 

  • Kainulainen P, Oksanen J, Palomäki V, Holopainen JK, Holopainen T (1992) Effect of drought and waterlogging stress on needle monoterpenes of Picea abies. Can J Bot 70(8):1613–1616. https://doi.org/10.1139/b92-203

    Article  Google Scholar 

  • Kleiber A, Duan Q, Jansen K, Verena Junker L, Kammerer B, Rennenberg H, Ensminger I, Gessler A, Kreuzwieser J (2017) Drought effects on root and needle terpenoid content of a coastal and an interior Douglas fir provenance. Tree Physiol 37(12):1648–1658. https://doi.org/10.1093/treephys/tpx113

    Article  Google Scholar 

  • Letchamo W, Gosselin A (1996) Transpiration, essential oil glands, epicuticular wax and morphology of Thymus vulgaris are influenced by light intensity and water supply. J Hortic Sci 71(1):123–134. https://doi.org/10.1080/14620316.1996.11515388

    Article  Google Scholar 

  • Llusià J, Peñuelas J, Alessio GA, Estiarte M (2006) Seasonal contrasting changes of foliar concentrations of terpenes and other volatile organic compound in four dominant species of a Mediterranean shrub land submitted to a field experimental drought and warming. Physiol Plant 127(4):632–649. https://doi.org/10.1111/j.1399-3054.2006.00693.x

    Article  Google Scholar 

  • Madhumita M, Guha P, Nag A (2019) Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: process optimization, GC-MS analysis and anti-microbial activity. Ind Crop Prod 138:111578. https://doi.org/10.1016/j.indcrop.2019.111578

    Article  Google Scholar 

  • Mehalaine S, Belfadel O, Menasria T, Messaili A (2017) Chemical composition and antibacterial activity of essential oils of three medicinal plants from Algerian semi-arid climatic zone. Phytothérapie:1–6. https://doi.org/10.1007/s10298-017-1143-y

  • Mehalaine S, Chenchouni H (2019) Effect of climatic factors on essential oil accumulation in two Lamiaceae species from Algerian semiarid lands. In: Chenchouni H et al (eds) Exploring the nexus of geoecology, geography, geoarcheology and geotourism. Springer, Cham, pp 57–60. https://doi.org/10.1007/978-3-030-01683-8_12

    Chapter  Google Scholar 

  • Mehalaine S, Chenchouni H (2020) Plants of the same place do not have the same metabolic pace: soil properties affect differently essential oil yields of plants growing wild in semiarid Mediterranean lands. Arab J Geosci 13(23):1263. https://doi.org/10.1007/s12517-020-06219-4

    Article  Google Scholar 

  • Mehalaine S, Chenchouni H (2021a) Effect of edaphic factors on essential oil production in wild plants growing under semiarid Mediterranean conditions. In: Chenchouni H, Chaminé HI, Khan MF, Merkel BJ, Zhang Z, Li P, Kallel A, Khélifi N (eds) New prospects in environmental geosciences and hydrogeosciences. Springer, Cham

    Google Scholar 

  • Mehalaine S, Chenchouni H (2021b) New insights for the sustainable production of medicinal plant materials: ex vitro and in vitro propagation of valuable Lamiaceae species from northern Africa. Curr Plant Biol

  • Msaada K, Ben Taarit M, Hosni K, Hammami M, Marzouk B (2009) Regional and maturational effects on essential oils yields and composition of coriander (Coriandrum sativum L.) fruits. Sci Hortic 122:116–124. https://doi.org/10.1016/j.scienta.2009.04.008

    Article  Google Scholar 

  • Ni ZJ, Wang X, Shen Y, Thakur K, Han J, Zhang JG, Hu F, Wei ZJ (2021) Recent updates on the chemistry, bioactivities, mode of action, and industrial applications of plant essential oils. Trends Food Sci Technol 110:78–89. https://doi.org/10.1016/j.tifs.2021.01.070

    Article  Google Scholar 

  • Nogués I, Muzzini V, Loreto F, Bustamante MA (2015) Drought and soil amendment effects on monoterpene emission in rosemary plants. Sci Total Environ 538:768–778. https://doi.org/10.1016/j.scitotenv.2015.08.080

    Article  Google Scholar 

  • Pengelly A (2004) The Constituents of Medicinal Plants: an introduction to the chemistry and therapeutics of herbal medicine, 2nd edn. Routledge, 184 pages. https://doi.org/10.4324/9781003117964

  • Perry NB, Anderson RE, Brennan NJ, Douglas MH, Heaney AJ, McGimpsey JA, Smallfield BM (1999) Essential oils from Dalmatian Sage (Salvia officinalis L.): variations among individuals, plant parts, seasons, and sites. J Agric Food Chem 47:2048–2054. https://doi.org/10.1021/jf981170m

    Article  Google Scholar 

  • Quézel P, Santa S (1963) Nouvelle Flore de l’Algérie et des Régions Désertiques Méridionales. Tome 2. Edition. CNRS, Paris

    Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria Available at www.r-project.org

    Google Scholar 

  • Rahimmalek M, Sayed Tabatabaei BE, Etemadi N, Hossein Goli SA, Arzani A, Zeinali H (2009) Essential oil variation among and within six Achillea species transferred from different ecological regions in Iran to the field conditions. Ind Crop Prod 29:348–355. https://doi.org/10.1016/j.indcrop.2008.07.001

    Article  Google Scholar 

  • Reynaud J (2011) Botanique. Comprendre la botanique, histoire, évolution, systématique. Ellipses Edition, Paris.

  • Riahi L, Elferchichi M, Ghazghazi H, Jebali J, Ziadi S, Aouadhi C, Chograni H, Zaouali Y, Zoghlami N, Mliki A (2013) Phytochemistry, antioxidant and antimicrobial activities of the essential oils of Mentha rotundifolia L. in Tunisia. Ind Crop Prod 49:883–889. https://doi.org/10.1016/j.indcrop.2013.06.032

    Article  Google Scholar 

  • Russo M, Galletti GC, Bocchini P, Carnacini A (1998) Essential oil chemical composition of wild populations of Italian oregano spice (Origanum vulgare ssp. hirtum (Link) Ietswaart): a preliminary evaluation of their use in chemotaxonomy by cluster analysis. 1. Inflorescences. J Agric Food Chem 46:3741–3746. https://doi.org/10.1021/jf980087w

    Article  Google Scholar 

  • Senoussi A, Schadt I, Hioun S, Chenchouni H, Saoudi Z, Aissaoui Zitoun Hamama O, Zidoune MN, Carpino S, Rapisarda T (2021) Botanical composition and aroma compounds of semi-arid pastures in Algeria. Grass Forage Sci 76(2):282–299. https://doi.org/10.1111/gfs.12510

    Article  Google Scholar 

  • Sharma S, Adams JP, Sakul R, Martin EM, Ricke SC, Gibson KE (2016) Loblolly pine (Pinus taeda L.) essential oil yields affected by environmental and physiological changes. J Sustain For 35(6):417–430. https://doi.org/10.1080/10549811.2016.1192046

    Article  Google Scholar 

  • Wichtl M, Anton R (2003) Planes thérapeutiques. Edition Tec & Doc Lavoisier, Paris

    Google Scholar 

  • Zaouali Y, Chograni H, Trimech R, Boussaid M (2013) Changes in essential oil composition and phenolic fraction in Rosmarinus officinalis L. var. typicus Batt. organs during growth and incidence on the antioxidant activity. Ind Crop Prod 43:412–419. https://doi.org/10.1016/j.indcrop.2012.07.044

    Article  Google Scholar 

  • Zouaoui N, Chenchouni H, Bouguerra A, Massouras T, Barkat M (2020) Characterization of volatile organic compounds from six aromatic and medicinal plant species growing wild in North African drylands. NFS J 18:19–28. https://doi.org/10.1016/j.nfs.2019.12.001

Download references

Acknowledgements

We thank the Laboratory of Plant Biology at the Department of Natural and Life Sciences, Larbi Tebessi University, Tebessa, Algeria, for all facilities provided in carrying out this study.

Author information

Authors and Affiliations

Authors

Contributions

SM and HC conceived the ideas of the study. SM designed methodology and conducted field and laboratory works. HC analyzed data and designed the article. SM and HC drafted, revised the manuscript, and approved the final version of the article.

Corresponding author

Correspondence to Haroun Chenchouni.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Responsible Editor: Zhihua Zhang

Supplementary Information

ESM 1

(DOCX 21.6 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehalaine, S., Chenchouni, H. Quantifying how climatic factors influence essential oil yield in wild-growing plants. Arab J Geosci 14, 1257 (2021). https://doi.org/10.1007/s12517-021-07582-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12517-021-07582-6

Keywords

Navigation