Log in

Solubility of Food-Relevant Substances in Pure and Modified Supercritical Carbon Dioxide: Experimental Data (2011–Present), Modeling, and Related Applications

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

For many high-pressure processes employing pressurized fluids, such as supercritical fluid extraction (SFE) of natural matrices with supercritical carbon dioxide (scCO2), CO2 plays a central role as a solvent, solubilizing agent, or medium for extracting and processing diverse food-type substances, in which the knowledge on the solubility behavior of multiple compounds at the varying process conditions is essential in the process design, but not completely understood. High-pressure solubility data in pure scCO2 or cosolvent-modified CO2 of distinct types of organic compounds found in or related to food (mainly vegetable oils, essential oils, carotenoids, phenolics, and vitamins) published in the last decade were reviewed, encompassing temperatures of 298–373 K and pressures up to 95 MPa. Crossover phenomena, solubility enhancements in cosolvent systems or those containing a co-solute, and the antisolvent feature of CO2 are also discussed. Current models for the correlation of solubility data by semi-empirical and thermodynamic models are compared, and the limitations of each class of models are highlighted. Lipid-soluble substances (fatty acid esters, fatty acids, and essential oils) are the most CO2-soluble food-type substances in contrast to polar and complex polyphenols and carotenoids. The investigated solutes can be obtained by SFE, separated by fractionation using scCO2, or applied to enzymatic reactions and particle formation processes. It was concluded based on recent applications that improved SFE, effective separation factors for supercritical fractionation, better solubilization of reactive systems, and supersaturation conditions to obtain micronized particles could be established based on the solubility behavior of dissolved solutes in the supercritical media at high pressures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Brunner G (2018) Calculation of phase equilibria and their relation to separation with supercritical fluids. J Supercrit Fluids 134:2–11. https://doi.org/10.1016/j.supflu.2017.12.031

    Article  CAS  Google Scholar 

  2. Hrncic MK, Cör D, Verboten MT, Knez Z (2018) Application of supercritical and subcritical fluids in food processing. Food Qual Saf 2:59–67. https://doi.org/10.1093/fqsafe/fyy008

    Article  CAS  Google Scholar 

  3. NIST (2022) Propriedades termofísicas de sistemas fluidos. https://webbook.nist.gov/chemistry/fluid/#

  4. Knez Ž, Pantić M, Cör D et al (2019) Are supercritical fluids solvents for the future? Chem Eng Process Process Intensif 141:107532. https://doi.org/10.1016/j.cep.2019.107532

  5. King JW (2014) Modern supercritical fluid technology for food applications. Annu Rev Food Sci Technol 5:215–238. https://doi.org/10.1146/annurev-food-030713-092447

    Article  CAS  PubMed  Google Scholar 

  6. De Melo MMR, Silvestre AJD, Silva CM (2014) Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. J Supercrit Fluids 92:115–176. https://doi.org/10.1016/j.supflu.2014.04.007

    Article  CAS  Google Scholar 

  7. Santana ÁL, Debien ICN, Meireles MAA (2015) High-Pressure Phase Equilibrium Methodologies Applied to Food Systems. Food Public Heal 5:184–202. https://doi.org/10.5923/j.fph.20150505.05

    Article  Google Scholar 

  8. Fornari T, Luna P, Stateva RP (2010) The vdW EoS hundred years later, yet younger than before. Application to the phase equilibria modeling of food-type systems for a green technology. J Supercrit Fluids 55:579–593. https://doi.org/10.1016/j.supflu.2010.10.021

    Article  CAS  Google Scholar 

  9. Knez Ž, Cör D, Knez Hrnčič M (2018) Solubility of Solids in Sub- and Supercritical Fluids: A Review 2010–2017. J Chem Eng Data 63:860–884. https://doi.org/10.1021/acs.jced.7b00778

    Article  CAS  Google Scholar 

  10. Škerget M, Knez Ž, Knez-Hrnčič M (2011) Solubility of Solids in Sub- and Supercritical Fluids: a Review. J Chem Eng Data 56:694–719. https://doi.org/10.1021/je1011373

    Article  CAS  Google Scholar 

  11. Antonie P, Pereira CG (2019) Solubility of functional compounds in supercritical CO2: Data evaluation and modelling. J Food Eng 245:131–138. https://doi.org/10.1016/j.jfoodeng.2018.10.012

    Article  CAS  Google Scholar 

  12. Tang Z, ** JS, Yu XY et al (2011) Equilibrium solubility of pure and mixed 3,5-dinitrobenzoic acid and 3-nitrobenzoic acid in supercritical carbon dioxide. Thermochim Acta 517:105–114. https://doi.org/10.1016/j.tca.2011.01.039

    Article  CAS  Google Scholar 

  13. Bitencourt RG, Palma AM, Coutinho JAP et al (2018) Solubility of caffeic acid in CO2 + ethanol: Experimental and predicted data using Cubic Plus Association Equation of State. J Supercrit Fluids 138:238–246. https://doi.org/10.1016/j.supflu.2018.04.008

    Article  CAS  Google Scholar 

  14. Garmus TT, de Oliveira Giani NA, Rammazzina Filho WA et al (2019) Solubility of oleic acid, triacylglycerol and their mixtures in supercritical carbon dioxide and thermodynamic modeling of phase equilibrium. J Supercrit Fluids 143:275–285. https://doi.org/10.1016/j.supflu.2018.08.018

    Article  CAS  Google Scholar 

  15. Lopes BLF, Sánchez-Camargo AP, Ferreira ALK et al (2012) Selectivity of supercritical carbon dioxide in the fractionation of fish oil with a lower content of EPA + DHA. J Supercrit Fluids 61:78–85. https://doi.org/10.1016/j.supflu.2011.09.015

    Article  CAS  Google Scholar 

  16. Fonseca JMS, Dohrn R, Peper S (2015) High Pressure Phase Equilibria Measurement for Mixtures Comprising Food Substances. In: Fornari T, Stateva RP (eds) High Pressure Fluid Technology for Green Food Processing. Springer International Publishing, p 517

  17. Lim J, Kim H, Cho HK, Shin MS (2011) Solubility of hinokitiol in supercritical fluids; measurement and correlation. Korean J Chem Eng 28:2319–2323. https://doi.org/10.1007/s11814-011-0112-7

    Article  CAS  Google Scholar 

  18. Li B, Guo W, Song W, Ramsey ED (2016) Interfacing supercritical fluid solubility apparatus with supercritical fluid chromatography operated with and without on-line post-column derivatization: Determining the solubility of caffeine and monensin in supercritical carbon dioxide. J Supercrit Fluids 115:17–25. https://doi.org/10.1016/j.supflu.2016.04.008

    Article  CAS  Google Scholar 

  19. Varona S, Braeuer A, Leipertz A et al (2013) Lycopene solubility in mixtures of carbon dioxide and ethyl acetate. J Supercrit Fluids 75:6–10. https://doi.org/10.1016/j.supflu.2012.12.003

    Article  CAS  Google Scholar 

  20. Temelli F, Córdoba A, Elizondo E et al (2012) Phase behavior of phytosterols and cholesterol in carbon dioxide-expanded ethanol. J Supercrit Fluids 63:59–68. https://doi.org/10.1016/j.supflu.2011.12.012

    Article  CAS  Google Scholar 

  21. dos Santos LC, Bitencourt RG, dos Santos P et al (2019) Solubility of passion fruit (Passiflora edulis Sims)seed oil in supercritical CO2. Fluid Phase Equilib 493:174–180. https://doi.org/10.1016/j.fluid.2019.04.002

    Article  CAS  Google Scholar 

  22. Reveco-Chilla AG, Cabrera AL, de la Fuente JC et al (2016) Solubility of menadione and dichlone in supercritical carbon dioxide. Fluid Phase Equilib 423:84–92. https://doi.org/10.1016/j.fluid.2016.04.001

    Article  CAS  Google Scholar 

  23. Effendi C, Shanty M, Ju YH et al (2013) Measurement and mathematical modeling of solubility of buttery-odor substance (acetoin) in supercritical CO2 at several pressures and temperatures. Fluid Phase Equilib 356:102–108. https://doi.org/10.1016/j.fluid.2013.07.035

    Article  CAS  Google Scholar 

  24. Peper S, Dohrn R (2012) Sampling from fluid mixtures under high pressure: Review, case study and evaluation. J Supercrit Fluids 66:2–15. https://doi.org/10.1016/j.supflu.2011.09.021

    Article  CAS  Google Scholar 

  25. Fornari T, Stateva RP (2015) High Pressure Fluid Technology for Green Food Processing. Springer International Publishing, Cham

    Book  Google Scholar 

  26. Gironi F, Maschietti M (2011) High-pressure gas-liquid equilibrium of the system carbon dioxide-citral at 50 and 70 °C. J Supercrit Fluids 57:25–30. https://doi.org/10.1016/j.supflu.2011.01.009

    Article  CAS  Google Scholar 

  27. Couto R, Seifried B, Moquin P, Temelli F (2018) Coenzyme Q10 solubility in supercritical CO2 using a dynamic system. J CO2 Util 24:315–320. https://doi.org/10.1016/j.jcou.2018.01.012

  28. Kostrzewa D, Dobrzyńska-Inger A, Rój E (2013) Experimental data on xanthohumol solubility in supercritical carbon dioxide. Fluid Phase Equilib 360:445–450. https://doi.org/10.1016/j.fluid.2013.10.001

    Article  CAS  Google Scholar 

  29. Medina-Gonzalez Y, Tassaing T, Camy S, Condoret JS (2013) Phase equilibrium of the CO2/glycerol system: Experimental data by in situ FT-IR spectroscopy and thermodynamic modeling. J Supercrit Fluids 73:97–107. https://doi.org/10.1016/j.supflu.2012.11.012

    Article  CAS  Google Scholar 

  30. Cunico LP, Acosta MC, Turner C (2017) Experimental measurements and modeling of curcumin solubility in CO2-expanded ethanol. J Supercrit Fluids 130:381–388. https://doi.org/10.1016/j.supflu.2017.06.018

    Article  CAS  Google Scholar 

  31. Elizalde-Solis O, Galicia-Luna LA (2011) New apparatus for solubility measurements of solids in carbon dioxide. Ind Eng Chem Res 50:207–212. https://doi.org/10.1021/ie1009537

    Article  CAS  Google Scholar 

  32. Araus KA, Canales RI, Del Valle JM, De La Fuente JC (2011) Solubility of β-carotene in ethanol- and triolein-modified CO 2. J Chem Thermodyn 43:1991–2001. https://doi.org/10.1016/j.jct.2011.07.013

    Article  CAS  Google Scholar 

  33. Cör D, Škerget M, Knez Ž (2014) Solubility of β-carotene and glyceryl trioleate mixture in supercritical CO2. J Chem Eng Data 59:653–658. https://doi.org/10.1021/je400553y

    Article  CAS  Google Scholar 

  34. Cabrera AL, Toledo AR, Del Valle JM, De La Fuente JC (2015) Measuring and validation for isothermal solubility data of solid 2-(3,4-Dimethoxyphenyl)-5,6,7,8-tetramethoxychromen-4-one (nobiletin) in supercritical carbon dioxide. J Chem Thermodyn 91:378–383. https://doi.org/10.1016/j.jct.2015.08.018

    Article  CAS  Google Scholar 

  35. Trupej N, Knez-Hrncic M, Skerget M, Knez Z (2017) Investigation of the thermodynamic properties of the binary system vitamin K3/carbon dioxide. Chem Ind Chem Eng Q 23:563–571. https://doi.org/10.2298/ciceq160804009t

    Article  CAS  Google Scholar 

  36. Edi-Soetaredjo F, Ismadji S, Yuliana Liauw M et al (2013) Catechin sublimation pressure and solubility in supercritical carbon dioxide. Fluid Phase Equilib 358:220–225. https://doi.org/10.1016/j.fluid.2013.08.012

    Article  CAS  Google Scholar 

  37. Zhan S, Li S, Zhao Q et al (2017) Measurement and Correlation of Curcumin Solubility in Supercritical Carbon Dioxide. J Chem Eng Data 62:1257–1263. https://doi.org/10.1021/acs.jced.6b00798

    Article  CAS  Google Scholar 

  38. Marceneiro S, Coimbra P, Braga MEM et al (2011) Measurement and correlation of the solubility of juglone in supercritical carbon dioxide. Fluid Phase Equilib 311:1–8. https://doi.org/10.1016/j.fluid.2011.08.024

    Article  CAS  Google Scholar 

  39. Paula JT, Sousa IMO, Foglio MA, Cabral FA (2016) Solubility of protocatechuic acid, sinapic acid and chrysin in supercritical carbon dioxide. J Supercrit Fluids 112:89–94. https://doi.org/10.1016/j.supflu.2016.02.014

    Article  CAS  Google Scholar 

  40. Rojas-Ávila A, Pimentel-Rodas A, Rosales-García T et al (2016) Solubility of Binary and Ternary Systems Containing Vanillin and Vanillic Acid in Supercritical Carbon Dioxide. J Chem Eng Data 61:3225–3232. https://doi.org/10.1021/acs.jced.6b00322

    Article  CAS  Google Scholar 

  41. Murthy TPK, Manohar B (2015) Modelling solubility of phenolics of mango ginger extract in supercritical carbon dioxide using equation of state and empirical models. J Food Sci Technol 52:5557–5567. https://doi.org/10.1007/s13197-014-1667-1

    Article  CAS  PubMed  Google Scholar 

  42. Cheng SH, Yang FC, Yang YH et al (2013) Measurements and modeling of the solubility of ergosterol in supercritical carbon dioxide. J Taiwan Inst Chem Eng 44:19–26. https://doi.org/10.1016/j.jtice.2012.09.001

    Article  CAS  Google Scholar 

  43. Obregón H, Huayta F, Cárdenas F, Chuquilin R (2020) Supercritical carbon dioxide extraction of Vitis Vinifera Malbec seeds oil : Kinetic modelling and solubility evaluation. In: 18th LACCEI International Multi-Conference for Engineering, Education, and Technology. pp 27–31

  44. Montoya MF, Francisco AS, Pereda S (2018) Equilibrium in pressurized systems (sub and supercritical). In: Pereira CG (ed) Thermodynamics of Phase Equilibria in Food Engineering. Elsevier Inc., Amsterdam, pp 385–418

    Google Scholar 

  45. Bitencourt RG, Ferreira NJ, Oliveira AL et al (2018) High pressure phase equilibrium of the crude green coffee oil – CO2 – ethanol system and the oil bioactive compounds. J Supercrit Fluids 133:49–57. https://doi.org/10.1016/j.supflu.2017.09.017

    Article  CAS  Google Scholar 

  46. Cornelio-Santiago HP, Gonçalves CB, de Oliveira NA, de Oliveira AL (2017) Supercritical CO2 extraction of oil from green coffee beans: Solubility, triacylglycerol composition, thermophysical properties and thermodynamic modelling. J Supercrit Fluids 128:386–394. https://doi.org/10.1016/j.supflu.2017.05.030

    Article  CAS  Google Scholar 

  47. Kwon KT, Uddin MS, Jung GW et al (2011) Solubility of red pepper (Capsicum annum) oil in near- and supercritical carbon dioxide and quantification of capsaicin. Korean J Chem Eng 28:1433–1438. https://doi.org/10.1007/s11814-010-0515-x

    Article  CAS  Google Scholar 

  48. Foster NR, Gurdial GS, Yun JSL et al (1991) Significance of the Crossover Pressure in Solid-Supercritical Fluid Phase Equilibria. Ind Eng Chem Res 30:1955–1964. https://doi.org/10.1021/ie00056a044

    Article  CAS  Google Scholar 

  49. Araus KA, Casado V, del Valle JM et al (2019) Cosolvent effect of ethanol on the solubility of lutein in supercritical carbon dioxide. J Supercrit Fluids 143:205–210. https://doi.org/10.1016/j.supflu.2018.08.012

    Article  CAS  Google Scholar 

  50. Araus KA, Del Valle JM, Robert PS, De La Fuente JC (2012) Effect of triolein addition on the solubility of capsanthin in supercritical carbon dioxide. J Chem Thermodyn 51:190–194. https://doi.org/10.1016/j.jct.2012.02.030

    Article  CAS  Google Scholar 

  51. Reddy SN, Madras G (2011) Solubilities of resorcinol and pyrocatechol and their mixture in supercritical carbon dioxide. Thermochim Acta 521:41–48. https://doi.org/10.1016/j.tca.2011.04.002

    Article  CAS  Google Scholar 

  52. Dwi MY, Julian J, N. Putro J et al (2016) Solubility of Acetophenone in Supercritical Carbon Dioxide. Open Chem Eng J 10:18–28. https://doi.org/10.2174/1874123101610010018

    Article  CAS  Google Scholar 

  53. Agustin B, Lin SY, Kurniawan A et al (2013) Solubilities of 3-acetylpyridine in supercritical carbon dioxide at several temperatures and pressures: Experimental and modeling. Fluid Phase Equilib 354:127–132. https://doi.org/10.1016/j.fluid.2013.06.036

    Article  CAS  Google Scholar 

  54. Coelho JP, Naydenov GP, Yankov DS, Stateva RP (2013) Experimental measurements and correlation of the solubility of three primary amides in supercritical CO2: Acetanilide, propanamide, and butanamide. J Chem Eng Data 58:2110–2115. https://doi.org/10.1021/je400357t

    Article  CAS  Google Scholar 

  55. Guo L, Qu M, ** J, Meng H (2019) Solubility of cinnamic acid in supercritical carbon dioxide and subcritical 1,1,1,2-tetrafluoroethane: Experimental data and modelling. Fluid Phase Equilib 480:66–80. https://doi.org/10.1016/j.fluid.2018.10.009

    Article  CAS  Google Scholar 

  56. Zuknik MH, Nik Norulaini NA, Wan Nursyazreen Dalila WS et al (2016) Solubility of virgin coconut oil in supercritical carbon dioxide. J Food Eng 168:240–244. https://doi.org/10.1016/j.jfoodeng.2015.08.004

    Article  CAS  Google Scholar 

  57. Corzzini SCS, Barros HDFQ, Grimaldi R, Cabral FA (2017) Extraction of edible avocado oil using supercritical CO2 and a CO2/ethanol mixture as solvents. J Food Eng 194:40–45. https://doi.org/10.1016/j.jfoodeng.2016.09.004

    Article  CAS  Google Scholar 

  58. Duba KS, Fiori L (2016) Solubility of grape seed oil in supercritical CO2: Experiments and modeling. J Chem Thermodyn 100:44–52. https://doi.org/10.1016/j.jct.2016.04.010

    Article  CAS  Google Scholar 

  59. Ciftci ON, Calderon J, Temelli F (2012) Supercritical carbon dioxide extraction of corn distiller’s dried grains with solubles: Experiments and mathematical modeling. J Agric Food Chem 60:12482–12490. https://doi.org/10.1021/jf302932w

    Article  CAS  PubMed  Google Scholar 

  60. Kotnik P, Škerget M, Knez Ž (2014) Phase equilibria of free fatty acids enriched vegetable oils and carbon dioxide: Experimental data, distribution coefficients and separation factors. J Supercrit Fluids 87:65–72. https://doi.org/10.1016/j.supflu.2014.01.002

    Article  CAS  Google Scholar 

  61. Schwarz CE, Knoetze JH (2012) Phase equilibrium measurements of long chain acids in supercritical carbon dioxide. J Supercrit Fluids 66:36–48. https://doi.org/10.1016/j.supflu.2011.12.011

    Article  CAS  Google Scholar 

  62. Yeo JYJ, Soetaredjo FE, Ismadji S, Sunarso J (2021) Experimental measurement and correlation of phase equilibria of palmitic, stearic, oleic, linoleic, and linolenic acids in supercritical carbon dioxide. J Ind Eng Chem 97:485–491. https://doi.org/10.1016/j.jiec.2021.03.002

    Article  CAS  Google Scholar 

  63. Narayan RC, Madras G (2014) Solubilities of n-butyl esters in supercritical carbon dioxide. J Chem Eng Data 59:3329–3334. https://doi.org/10.1021/je500309x

    Article  CAS  Google Scholar 

  64. Tomita K, Machmudah S, Wahyudiono et al (2014) Extraction of rice bran oil by supercritical carbon dioxide and solubility consideration. Sep Purif Technol 125:319–325. https://doi.org/10.1016/j.seppur.2014.02.008

    Article  CAS  Google Scholar 

  65. Del Valle JM, Urrego FA (2012) Free solute content and solute-matrix interactions affect apparent solubility and apparent solute content in supercritical CO 2 extractions. A hypothesis paper J Supercrit Fluids 66:157–175. https://doi.org/10.1016/j.supflu.2011.10.006

    Article  CAS  Google Scholar 

  66. Zhao S, Zhang D (2014) An experimental investigation into the solubility of Moringa oleifera oil in supercritical carbon dioxide. J Food Eng 138:1–10. https://doi.org/10.1016/j.jfoodeng.2014.03.031

    Article  CAS  Google Scholar 

  67. Sovová H (2012) Apparent Solubility of Natural Products Extracted with Near-Critical Carbon Dioxide. Am J Anal Chem 03:958–965. https://doi.org/10.4236/ajac.2012.312a127

    Article  Google Scholar 

  68. Bitencourt RG, Filho WAR, Paula JT et al (2016) Solubility of γ-oryzanol in supercritical carbon dioxide and extraction from rice bran. J Supercrit Fluids 107:196–200. https://doi.org/10.1016/j.supflu.2015.09.009

    Article  CAS  Google Scholar 

  69. Gadkari PV, Balaraman M (2015) Solubility of caffeine from green tea in supercritical CO2: a theoretical and empirical approach. J Food Sci Technol 52:8004–8013. https://doi.org/10.1007/s13197-015-1946-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Ilieva P, Kilzer A, Weidner E (2016) Measurement of solubility, viscosity, density and interfacial tension of the systems tristearin and CO2and rapeseed oil and CO2. J Supercrit Fluids 117:40–49. https://doi.org/10.1016/j.supflu.2016.07.014

    Article  CAS  Google Scholar 

  71. Sovová H (2005) Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation. J Supercrit Fluids 33:35–52. https://doi.org/10.1016/j.supflu.2004.03.005

    Article  CAS  Google Scholar 

  72. Scopel R, da Silva CF, Lucas AM et al (2016) Fluid phase equilibria and mass transfer studies applied to supercritical fluid extraction of Illicium verum volatile oil. Fluid Phase Equilib 417:203–211. https://doi.org/10.1016/j.fluid.2016.02.042

    Article  CAS  Google Scholar 

  73. Bitencourt RG, Cabral FA, Meirelles AJA (2016) Ferulic acid solubility in supercritical carbon dioxide, ethanol and water mixtures. J Chem Thermodyn 103:285–291. https://doi.org/10.1016/j.jct.2016.08.025

    Article  CAS  Google Scholar 

  74. Ota M, Hashimoto Y, Sato M et al (2016) Solubility of flavone, 6-methoxyflavone and anthracene in supercritical CO2 with/without a co-solvent of ethanol correlated by using a newly proposed entropy-based solubility parameter. Fluid Phase Equilib 425:65–71. https://doi.org/10.1016/j.fluid.2016.05.009

    Article  CAS  Google Scholar 

  75. Jia JF, Zabihi F, Gao YH, Zhao YP (2015) Solubility of Glycyrrhizin in Supercritical Carbon Dioxide with and without Cosolvent. J Chem Eng Data 60:1744–1749. https://doi.org/10.1021/je5011328

    Article  CAS  Google Scholar 

  76. Paviani LC, Chiari MRS, Crespo TR, Cabral FA (2013) Thermodynamic Modeling of Phase Equilibrium Behavior of Curcumin - CO2 - Ethanol. Iberoam Conf Supercrit Fluids III:1–7

    Google Scholar 

  77. Kotnik P, Škerget M, Knez Ž (2011) Solubility of nicotinic acid and nicotinamide in carbon dioxide at T = (313.15 to 373.15) K and p = (5 to 30) MPa: Experimental data and correlation. J Chem Eng Data 56:338–343. https://doi.org/10.1021/je100697a

    Article  CAS  Google Scholar 

  78. Al-Darmaki N, Lu T, Al-Duri B et al (2011) Solubility measurements and analysis of binary, ternary and quaternary systems of palm olein, squalene and oleic acid in supercritical carbon dioxide. Sep Purif Technol 83:189–195. https://doi.org/10.1016/j.seppur.2011.09.043

    Article  CAS  Google Scholar 

  79. Revelli AL, Laugier S, Erriguible A, Subra-Paternault P (2014) High-pressure solubility of naproxen, nicotinamide and their mixture in acetone with supercritical CO2 as an anti-solvent. Fluid Phase Equilib 373:29–33. https://doi.org/10.1016/j.fluid.2014.03.029

    Article  CAS  Google Scholar 

  80. Morales-Díaz C, Cabrera AL, de la Fuente JC, Mejía A (2021) Modelling of solubility of vitamin K3 derivatives in supercritical carbon dioxide using cubic and SAFT equations of state. J Supercrit Fluids 167. https://doi.org/10.1016/j.supflu.2020.105040

  81. Yu ZR, Singh B, Rizvi SSH, Zollweg JA (1994) Solubilities of fatty acids, fatty acid esters, triglycerides, and fats and oils in supercritical carbon dioxide. J Supercrit Fluids 7:51–59. https://doi.org/10.1016/0896-8446(94)90006-X

    Article  CAS  Google Scholar 

  82. Gordillo M, Blanco M, Molero A, Martinez de la Ossa E (1999) Solubility of the antibiotic Penicillin G in supercritical carbon dioxide. J Supercrit Fluids 15:183–190. https://doi.org/10.1016/S0896-8446(99)00008-X

    Article  CAS  Google Scholar 

  83. Jouyban A, Chan H-K, Foster NR (2002) Mathematical representation of solute solubility in supercritical carbon dioxide using empirical expressions. J Supercrit Fluids 24:19–35. https://doi.org/10.1016/S0896-8446(02)00015-3

    Article  CAS  Google Scholar 

  84. Chrastil J (1982) Solubility of solids and liquids in supercritical gases. J Phys Chem 86:3016–3021. https://doi.org/10.1021/j100212a041

    Article  CAS  Google Scholar 

  85. Adachi Y, Lu BC-Y (1983) Supercritical fluid extraction with carbon dioxide and ethylene. Fluid Phase Equilib 14:147–156. https://doi.org/10.1016/0378-3812(83)80120-4

    Article  CAS  Google Scholar 

  86. Del Valle JM, Aguilera JM (1988) An improved equation for predicting the solubility of vegetable oils in supercritical carbon dioxide. Ind Eng Chem Res 27:1551–1553. https://doi.org/10.1021/ie00080a036

    Article  Google Scholar 

  87. Sparks DL, Hernandez R, Estévez LA (2008) Evaluation of density-based models for the solubility of solids in supercritical carbon dioxide and formulation of a new model. Chem Eng Sci 63:4292–4301. https://doi.org/10.1016/j.ces.2008.05.031

    Article  CAS  Google Scholar 

  88. Méndez-Santiago J, Teja AS (1999) The solubility of solids in supercritical fluids. Fluid Phase Equilib 158–160:501–510. https://doi.org/10.1016/S0378-3812(99)00154-5

    Article  Google Scholar 

  89. Bartle KD, Clifford AA, Jafar SA, Shilstone GF (1991) Solubilities of Solids and Liquids of Low Volatility in Supercritical Carbon Dioxide. J Phys Chem Ref Data 20:713–756. https://doi.org/10.1063/1.555893

    Article  CAS  Google Scholar 

  90. Kumar SK, Johnston KP (1988) Modelling the solubility of solids in supercritical fluids with density as the independent variable. J Supercrit Fluids 1:15–22. https://doi.org/10.1016/0896-8446(88)90005-8

    Article  CAS  Google Scholar 

  91. Fortunatti-Montoya M, Sánchez FA, Hegel PE, Pereda S (2019) Fractionation of glycerol acetates with supercritical CO2. J Supercrit Fluids 153:2–11. https://doi.org/10.1016/j.supflu.2019.104575

    Article  CAS  Google Scholar 

  92. Lamba N, Narayan RC, Modak J, Madras G (2016) Solubilities of 10-undecenoic acid and geraniol in supercritical carbon dioxide. J Supercrit Fluids 107:384–391. https://doi.org/10.1016/j.supflu.2015.09.026

    Article  CAS  Google Scholar 

  93. Wang T, Lee P (2014) Measurement and Correlation for the Solid Solubility of Antioxidants d-Isoascorbic Acid and Calcium l-Ascorbate Dihydrate in Supercritical Carbon Dioxide. J Chem Eng Data 59:613–617. https://doi.org/10.1021/je400369n

    Article  CAS  Google Scholar 

  94. Mendez-Santiago J, Teja AS (2000) Solubility of solids in supercritical fluids: Consistency of data and a new model for cosolvent systems. Ind Eng Chem Res 39:4767–4771. https://doi.org/10.1021/ie000339u

    Article  CAS  Google Scholar 

  95. González JC, Vieytes MR, Botana AM et al (2001) Modified mass action law-based model to correlate the solubility of solids and liquids in entrained supercritical carbon dioxide. J Chromatogr A 910:119–125. https://doi.org/10.1016/S0021-9673(00)01120-1

    Article  PubMed  Google Scholar 

  96. Sovová H, Stateva RP (2019) New developments in the modelling of carotenoids extraction from microalgae with supercritical CO2. J Supercrit Fluids 148:93–103. https://doi.org/10.1016/j.supflu.2019.03.002

    Article  CAS  Google Scholar 

  97. Sovová H, Sajfrtová M, Stateva RP (2017) A novel model for multicomponent supercritical fluid extraction and its application to Ruta graveolens. J Supercrit Fluids 120:102–112. https://doi.org/10.1016/j.supflu.2016.10.008

    Article  CAS  Google Scholar 

  98. Peng D, Robinson DB (1976) A new two-constant equation of state. Ind Eng Chem Fundam 15:59–64

    Article  CAS  Google Scholar 

  99. Soave G (1972) Equilibrium constants from a modified Redlich-Kwong equation of state. Chem Eng Sci 27:1197–1203. https://doi.org/10.1016/0009-2509(72)80096-4

    Article  CAS  Google Scholar 

  100. Augelletti R, Frattari S, Gironi F, Guerani W (2016) Phase equilibria and thermodynamic modeling of systems CO2 - Bergamot oil and CO2 - Linalyl acetate. J Supercrit Fluids 116:1–9. https://doi.org/10.1016/j.supflu.2016.04.016

    Article  CAS  Google Scholar 

  101. Gañán NA, Dambolena JS, Martini RE, Bottini SB (2015) Supercritical carbon dioxide fractionation of peppermint oil with low menthol content - Experimental study and simulation analysis for the recovery of piperitenone. J Supercrit Fluids 98:1–11. https://doi.org/10.1016/j.supflu.2014.12.018

    Article  CAS  Google Scholar 

  102. Maschietti M (2011) High-pressure gas-liquid equilibrium of the system carbon dioxide-β-caryophyllene at 50 and 70 °C. J Supercrit Fluids 59:8–13. https://doi.org/10.1016/j.supflu.2011.07.020

    Article  CAS  Google Scholar 

  103. Joback KG, Reid RC (1987) Estimation of Pure-Component Properties from Group-Contributions. Chem Eng Commun 57:233–243. https://doi.org/10.1080/00986448708960487

    Article  CAS  Google Scholar 

  104. Somayajulu GR (1989) Estimation procedures for critical constants. J Chem Eng Data 34:106–120. https://doi.org/10.1021/je00055a031

    Article  CAS  Google Scholar 

  105. Marrero J, Gani R (2001) Group-contribution based estimation of pure component properties. Fluid Phase Equilib 183–184:183–208. https://doi.org/10.1016/S0378-3812(01)00431-9

    Article  Google Scholar 

  106. Lee BI, Kesler MG (1975) A generalized thermodynamic correlation based on three-parameter corresponding states. AIChE J 21:510–527. https://doi.org/10.1002/aic.690210313

    Article  CAS  Google Scholar 

  107. Poling B, Prausnitz JM, O’Connell JP (2001) The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York

    Google Scholar 

  108. Gañán N, Brignole EA (2011) Fractionation of essential oils with biocidal activity using supercritical CO2 - Experiments and modeling. J Supercrit Fluids 58:58–67. https://doi.org/10.1016/j.supflu.2011.04.010

    Article  CAS  Google Scholar 

  109. Arvelos S, Rade LL, Watanabe EO et al (2014) Evaluation of different contribution methods over the performance of Peng-Robinson and CPA equation of state in the correlation of VLE of triglycerides, fatty esters and glycerol+CO2 and alcohol. Fluid Phase Equilib 362:136–146. https://doi.org/10.1016/j.fluid.2013.09.040

    Article  CAS  Google Scholar 

  110. Jahromi SA, Roosta A (2019) Estimation of critical point, vapor pressure and heat of sublimation of pharmaceuticals and their solubility in supercritical carbon dioxide. Fluid Phase Equilib 488:1–8. https://doi.org/10.1016/j.fluid.2019.01.020

    Article  CAS  Google Scholar 

  111. Fernández-Ronco MP, Gracia I, De Lucas A, Rodríguez JF (2011) Measurement and modeling of the high-pressure phase equilibria of CO 2-Oleoresin Capsicum. J Supercrit Fluids 57:112–119. https://doi.org/10.1016/j.supflu.2011.02.010

    Article  CAS  Google Scholar 

  112. Gañán N, Brignole EA (2013) Supercritical carbon dioxide fractionation of T. minuta and S. officinalis essential oils: Experiments and process analysis. J Supercrit Fluids 78:12–20. https://doi.org/10.1016/j.supflu.2013.03.019

    Article  CAS  Google Scholar 

  113. Gironi F, Maschietti M (2012) Phase equilibrium of the system supercritical carbon dioxide-lemon essential oil: New experimental data and thermodynamic modelling. J Supercrit Fluids 70:8–16. https://doi.org/10.1016/j.supflu.2012.06.003

    Article  CAS  Google Scholar 

  114. Fortunatti Montoya M, Sánchez FA, Hegel PE, Pereda S (2018) Phase equilibrium engineering of glycerol acetates fractionation with pressurized CO2. J Supercrit Fluids 132:51–64. https://doi.org/10.1016/j.supflu.2017.02.026

    Article  CAS  Google Scholar 

  115. Dias ALB, dos Santos P, Martínez J (2018) Supercritical CO2 technology applied to the production of flavor ester compounds through lipase-catalyzed reaction: A review. J CO2 Util 23:159–178. https://doi.org/10.1016/j.jcou.2017.11.011

  116. Ciftci ON, Temelli F (2013) Enzymatic conversion of corn oil into biodiesel in a batch supercritical carbon dioxide reactor and kinetic modeling. J Supercrit Fluids 75:172–180. https://doi.org/10.1016/j.supflu.2012.12.029

    Article  CAS  Google Scholar 

  117. Melgosa R, Teresa Sanz M, Solaesa ÁG et al (2017) Supercritical carbon dioxide as solvent in the lipase-catalyzed ethanolysis of fish oil: Kinetic study. J CO2 Util 17:170–179. https://doi.org/10.1016/j.jcou.2016.11.011

  118. Ciftci ON, Temelli F (2011) Continuous production of fatty acid methyl esters from corn oil in a supercritical carbon dioxide bioreactor. J Supercrit Fluids 58:79–87. https://doi.org/10.1016/j.supflu.2011.05.011

    Article  CAS  Google Scholar 

  119. Matos RL, Lu T, McConville C et al (2018) Analysis of curcumin precipitation and coating on lactose by the integrated supercritical antisolvent-fluidized bed process. J Supercrit Fluids 141:143–156. https://doi.org/10.1016/j.supflu.2017.12.013

    Article  CAS  Google Scholar 

  120. Wang Q, Guan Y, Yao S, Zhu Z (2012) The liquid volume expansion effect as a simple thermodynamic criterion in cholesterol micronization by supercritical assisted atomization. 75:38–48. https://doi.org/10.1016/j.ces.2012.02.046

    Article  CAS  Google Scholar 

  121. Rossmann M, Braeuer A, Dowy S et al (2012) Solute solubility as criterion for the appearance of amorphous particle precipitation or crystallization in the supercritical antisolvent (SAS) process. J Supercrit Fluids 66:350–358. https://doi.org/10.1016/j.supflu.2011.11.023

    Article  CAS  Google Scholar 

  122. Medeiros GR, Ferreira SRS, Carciofi BAM (2017) High pressure carbon dioxide for impregnation of clove essential oil in LLDPE films. Innov Food Sci Emerg Technol 41:206–215. https://doi.org/10.1016/j.ifset.2017.03.008

    Article  CAS  Google Scholar 

  123. Varona S, Rodríguez-Rojo S, Martín Á et al (2011) Supercritical impregnation of lavandin (Lavandula hybrida) essential oil in modified starch. J Supercrit Fluids 58:313–319. https://doi.org/10.1016/j.supflu.2011.06.003

    Article  CAS  Google Scholar 

  124. Milovanovic S, Stamenic M, Markovic D et al (2013) Solubility of thymol in supercritical carbon dioxide and its impregnation on cotton gauze. J Supercrit Fluids 84:173–181. https://doi.org/10.1016/j.supflu.2013.10.003

    Article  CAS  Google Scholar 

  125. Songtipya L, Sane A (2013) Effect of concentration and degree of saturation on co-precipitation of catechin and poly(l-lactide) by the RESOLV process. J Supercrit Fluids 75:72–80. https://doi.org/10.1016/j.supflu.2012.12.024

    Article  CAS  Google Scholar 

  126. Edi-Soetaredjo F, Ismadji S, Ju YH (2013) Measurement and modeling of epicatechin solubility in supercritical carbon dioxide fluid. Fluid Phase Equilib 340:7–10. https://doi.org/10.1016/j.fluid.2012.12.005

    Article  CAS  Google Scholar 

  127. Duba KS, Fiori L (2015) The Journal of Supercritical Fluids Supercritical CO 2 extraction of grape seed oil : Effect of process parameters on the extraction kinetics. J Supercrit Fluids 98:33–43. https://doi.org/10.1016/j.supflu.2014.12.021

    Article  CAS  Google Scholar 

  128. Yang YC, Wei MC, Huang TC, Lee SZ (2013) Extraction of protocatechuic acid from Scutellaria barbata D. Don using supercritical carbon dioxide. J Supercrit Fluids 81:55–66. https://doi.org/10.1016/j.supflu.2013.04.007

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq (National Counsel of Technological and Scientific Development, Brazil) and CAPES (Coordination for the Improvement of Higher Education Personnel, Brazil) for the scholarship and financial support of this work and Universidade Federal de Santa Catarina (UFSC).

Author information

Authors and Affiliations

Authors

Contributions

Clóvis A. Balbinot Filho: conceptualization, data curation, writing—review, and editing; Jônatas L. Dias: methodology, writing—review, and editing, supervision; Evertan A. Rebelatto: methodology, writing—review, editing, supervision; Marcelo Lanza: methodology, writing—review, editing, supervision.

Corresponding author

Correspondence to Clóvis A. Balbinot Filho.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• The solubility behavior of food-type solutes in CO2 at high pressures is reviewed.

• CO2 as a solvent, cosolvent, or antisolvent to single or mixed organic compounds.

• Solute polarity is a determinant factor for solubility in pure and modified CO2.

• Semi-empirical models are versatile in correlating solubility data with low AARD.

• Estimation of thermophysical data of substances impact solubility calculation by EoS.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balbinot Filho, C.A., Dias, J.L., Rebelatto, E.A. et al. Solubility of Food-Relevant Substances in Pure and Modified Supercritical Carbon Dioxide: Experimental Data (2011–Present), Modeling, and Related Applications. Food Eng Rev 15, 466–490 (2023). https://doi.org/10.1007/s12393-023-09343-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-023-09343-5

Keywords

Navigation